Application of Bayesian Framework in Natural Language Understanding

Authors: Pawan Goyal, Laxmidhar Behera, T.M. McGinnity

Presented by: Burcu Can
Contents

1. Introduction
2. Basic Theory
3. Inference in Bayesian Networks
4. Extensions of Bayesian Networks
5. Bayesian Networks and Natural Language Understanding
 - Part-of-Speech Tagging
 - Parsing of a Sentence
 - Word Sense Disambiguation
 - Machine Translation
6. Summary
Introduction

• Problems in NLP:
 – Data sparseness
 – Spelling variants/errors (‘airplane’, ‘aeroplane’ or ‘foetus’, ‘fetus’)
 – Ambiguity (‘saw’ – a tool or the past tense of the verb ‘see’)
 – Pronoun resolution
Introduction – ‘cont

• Techniques using machine learning
 – State machines
 – Neural networks
 – Genetic algorithms etc.

• Nowadays, the dominant approach
 – Bayesian networks
Introduction – ‘cont

• Reasons for using Bayesian Networks:
 • Extension of probabilistic models
 • Explicitly represent the conditional dependencies
 • Provides an intuitive graphical visualization of the knowledge
 • Representation of conditional independence assumptions
 • Representation of the joint probability distribution of the model.
 • Less probabilities of the probabilistic model
 • Reduced computational complexity of the inferences
Basic Theory

- S-Snow, CL-Clouds, R-Rain, F-Flood, A-Car accident in a street, T-Traffic Jam, D-Delay, C-Causality
Basic Theory – ‘cont

• Term similarity between Traffic Jam (T) and Rain (R):

 \[\text{term-sim}(T,R) = P(T|R) + P(R|T) \]
 \[= P(T|R) + P(T|R)\frac{P(R)}{P(T)} \]
 \[= P(T|A)P(A|R)(1 + \frac{P(R)}{P(T)}) \]

 which is an example of inferencing in Bayesian network.
Inference in Bayesian Networks

- $P(X_i \mid E)$
 - E: set of evidence variables
 - Decompose E into two parts:
 - E^- is the part consisting of assignments to variables in the subtree rooted at X_i
 - E^+ is the rest of it.
- $P(X_i \mid E) = P(X_i \mid E^-, E^+) = P(E^- \mid X_i, E^+) P(X \mid X_i, E^+) / P(E^- \mid E^+) = \alpha \lambda (X_i) \pi (X_i)$
 - $\lambda (X_i) = P(E^- \mid X_i)$
 - $\pi (X_i) = P(X_i \mid E^+)$
Inference in Bayesian Networks

- Ex: Cloud(CL) and Delay(D) are observed in the document, and inference on Car Accident(A) is wanted.
 - $P(X_i | E)$?
 - $X_i : A$
 - $E : CL, D, E^- = CL, E^+ = D$
 - $P(A | CL, D) = \alpha \lambda(A) \pi(A)$
 - $\alpha = 1/P(D | CL)$
 - $\lambda = P(CL | A)$
 - $\pi = P(A | D)$
Extensions of Bayesian Networks

- Dynamic Bayesian Networks (DBN)
- Hierarchical Bayesian Networks
- Sigmoid Bayesian Networks
- Incremental Sigmoid Belief Networks (ISBN)
- Mixed Bayesian Networks

- Others: Belief networks, inference networks
Bayesian Networks and Natural Language Understanding

- Part-of-Speech (POS) Tagging
- Word Sense Disambiguation
- Machine Translation
- Information Retrieval
Part-of-Speech Tagging

• The process of marking up the words based on its definition, as well as its context:
 – nouns, adjectives, adverbs etc.

• Ex: The sailor dogs the hatch.
Part-of-Speech Tagging - 'cont

• Peshkin uses DBN for POS tagging.
• Forward-backward algorithm is used for the inference.
• POS tags are viewed as time series data of the observed samples in a given sentence.
Part-of-Speech Tagging - 'cont

Feature set:
- Capitalization
- Hyphenation
- Numeric
- Prefix
- Suffix

Observable features
- Memory

Prefix
- Suffix
- Word
- Number
- Hyphen
- Case

Index N

Index $N+1$
Part-of-Speech Tagging - 'cont

• The probability of a complete sequence of POS tags $T_1...T_n$ is modeled as:

$$
\Pr(T_1...T_n) = \Pr(T_1) \times \Pr(F_1 | F_1) \times \Pr(T_2 | T_1, \text{Start}) \\
\times \Pr(F_2 | T_2) \times \Pr(M_2 | T_1) \\
\times \prod_{i=3}^{n-1} \Pr(T_i | T_{i-1}, M_{i-1}) \\
\times \Pr(M_i | T_{i-1}, M_{i-1}) \times \Pr(F_i | T_i) \\
\times \Pr(T_n | T_{n-1}, M_{n-1}) \times \Pr(F_n | T_n),
$$

$$
\Pr(F_i | T_i) = \Pr(S_i | T_i) \times \Pr(P_i | T_i) \times \Pr(W_i | T_i) \\
\times \Pr(C_i | T_i) \times \Pr(H_i | T_i) \times \Pr(N_i | T_i)
$$
Word Sense Disambiguation (WSD)

• Task of finding the sense of a word in a context.
 – Ex: the word *bass*
 • 1. a type of fish
 • 2. tones of low frequency

• 1. I went fishing for some sea bass
• 2. The bass line of the song is too weak
Word Sense Disambiguation (WSD) - 'cont

• Necessary in:
 – Machine Translation
 – Information Retrieval
 – Information Extraction

• Two Bayesian methods, naïve Bayes classifier and Bayesian belief networks are used to learn probabilistic classifiers for WSD.
Word Sense Disambiguation (WSD) - 'cont

• Bayesian Belief Networks [Wiebe, Bruce]
 – Community
 • People living in a particular area
 • An association of people with similar interests
 • Common ownership
 • The body of people in a learned occupation
 – Town
 • An urban area with a fixed boundary that is smaller than a city
 • The people living in a municipality smaller than a city
 • An administrative division of a county
Word Sense Disambiguation (WSD) - 'cont

• The one node per sense approach
Word Sense Disambiguation (WSD) - 'cont
• The one node per word approach
Word Sense Disambiguation (WSD) - 'cont

• Synset: a group of data elements that are considered semantically equivalent for the purposes of information retrieval.

• Hypernym: conceptual parent

• Ex: synset: \{occupation, vocation, occupational group\} is the hypernym of synset: \{profession, community\}
Word Sense Disambiguation (WSD) - 'cont

• Defining the CPTs:
 – Each child node corresponds to a hyponym node in WordNet.
 – Assign conditional probability:
 • $P(\text{hyponym} | \text{hypernym})$
 • Ex: MUNICIPALITY#1 has two children

<table>
<thead>
<tr>
<th>municipality#1</th>
<th>P(town#1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>0.000 + \epsilon</td>
</tr>
<tr>
<td>T</td>
<td>0.500</td>
</tr>
</tbody>
</table>
Machine Translation

- The task of translating the text from one natural language to another.
- Static Bayesian networks, dynamic Bayesian networks
- Filali has introduced a new generalization of DBN, as multi dynamic Bayesian networks (MDBN)
- MDBN has multiple streams of variables that can get unrolled, but where each stream may be unrolled for a differing amount.
Machine Translation – ‘cont

•MDBN is a variant of DBN.
•DBN consists of a directed acyclic graph
 \[G = (V, E) = (V_1 \cup V_2, E_1 \cup E_2 \cup E_2^\rightarrow) \]
Machine Translation – ‘cont

• Multi-Dynamic Bayesian Network (MDBN)

\[G = (V, E) = \left(\bigcup_{k} V^{(k)}, \bigcup_{k} E^{(k)} \cup E'_{\parallel} \right) \]

• IBM Model
Machine Translation – ‘cont

• A string of French words $F=f$ of length $M=m$, into a string of English words $E=e$ of length $L=l$.
 – $P(f,e) = P(f|e)P(e)$, $P(e)$: language model
 – $P(f,e) = \sum_a P(f,a|e)$
Information Retrieval

• Extracting useful information from document collections

• Document retrieval inference network
 – Document network
 – Query network
Information Retrieval – ‘cont

• Document network
 – Document nodes \((d_i)\)
 – Text representation nodes \((t_j)\)
 – Concept representation nodes \((r_k)\)

• Query network
 – Information need \((I)\)
 – Query nodes \((q_i)\)
 – Query concept nodes \((c_i)\)
Information Retrieval – ‘cont
Information Retrieval – ‘cont

• Belief Network Model (Ribeiro-Neto)

- d_i: document
- k_t: index terms
- q: user query
- $d = k_1, k_2, \ldots, k_t$
- $q = k_1, k_2, \ldots, k_t$
Information Retrieval – ‘cont

• \(P(d \mid q) = ? \) (ranking of document \(d \), with respect to the query \(q \))

• \(P(q) = \sum_u P(q \mid u) \cdot P(u) \) query concept

• \(P(d) = \sum_u P(d \mid u) \cdot P(u) \)

• \(P(d \mid q) = \frac{P(d \land q)}{P(q)} \Rightarrow P(d \mid q) \propto P(d \land q) \)

• \(P(d \mid q) \propto \sum_u P(d \land q \mid u) P(u) \)

• \(P(d \mid q) \propto \sum_u P(d \mid u) P(q \mid u) P(u) \)
Information Retrieval – ‘cont

• Bayesian Network Retrieval Model (Campos et al.)
 – Flexible topology
 – Term relationships
 – Document relationships
 – Fast, exact inference
 – No query components, instead query is considered as an evidence
Information Retrieval – ‘cont

- Bayesian Network Retrieval Model
 - Two sets of variables:
 - Terms ($\alpha=T_i, i=1,...,M$)
 - Documents ($\beta=D_j, j=1,...,N$)
 - Two types of knowledge
 - Expert knowledge
 - Collection knowledge
Information Retrieval – ‘cont

• Bayesian Network Retrieval Model
 – Expert knowledge
 • Connection of term nodes and documents
 • No links joining the documents
 – Collection knowledge
 • Dependence relationships between the terms
 • Uses polytree
Information Retrieval – ‘cont

• Bayesian Network Retrieval Model
Information Retrieval – ‘cont

- Fung et. al
 - Topic relationships
Information Retrieval – ‘cont

• Semantic Bayesian Networks (Hong et al)
 – Keyword layer
 – Concept layer
 – Target layer
Information Retrieval – ‘cont
Information Retrieval – ‘cont

- How to assign conditional probabilities?

| Condition | $P(w = 1 | c_i = 1)$ | $P(w = 1 | c_i = 0)$ |
|--|----------------------|----------------------|
| w must occur given c_i | 0.95-0.99 | 0.7-0.9 |
| w often occurs given c_i | 0.95-0.99 | 0.2-0.5 |
| w may occur given c_i | 0.4-0.6 | 0.01-0.1 |
| w seldom occurs given c_i | 0.2-0.3 | 0.01-0.1 |
| w never occurs given c_i | 0.01-0.1 | 0.01-0.1 |
Information Retrieval – ‘cont

• Semantic relations

<table>
<thead>
<tr>
<th>Class</th>
<th>Sub-classification</th>
<th>Relationship</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Has-a</td>
<td>Object-attribute</td>
<td>O – A</td>
<td>Phone-bell, MP3 player-price</td>
</tr>
<tr>
<td></td>
<td>Attribute-value</td>
<td>A – V</td>
<td>Size-big, price-low</td>
</tr>
<tr>
<td>Is-a</td>
<td>-</td>
<td>Is-a</td>
<td>Size-volume</td>
</tr>
</tbody>
</table>
Information Retrieval – ‘cont

- Sride et. al
 - Information Retrieval System for Structured Documents based on Bayesian networks
Information Retrieval – ‘cont

• Structured document representation:
Information Retrieval – ‘cont

• Structured document representation:
Summary & Discussion

- Four NLP problems are given.
- Can cope up with well with NLP problems
- Could be combined with other ML methods
References

• Brown, Cocke et al, A statistical Approach to Machine Translation, 1990
• Campos et al, Applying Bayesian Networks to Information Retrieval, 1995
• Peshkin et al, Part-of-Speech Tagging with minimal lexicalization, 2003
• Peshkin et al, Bayesian Nets for Syntactic Categorization of Novel Words, 2003
• Janyce et al, Constructing Bayesian Networks from WordNet for Word-Sense Disambiguation, 1998
• Kim et al, A Semantic Bayesian Network Approach to Retrieving Information with Intelligent Conversational Agents
• Turtle et al, Inference Networks for Document Retrieval
• Ribeiro-Neto et al, A Belief Network Model for Information Retrieval, 1996
Questions?