
Encoding The Lexicographic Ordering
Constraint in SAT Modulo Theories

Hani A. Elgabou and Alan M. Frisch

Department of Computer Science,
University of York, Heslington, York, YO10 5GH, UK

{he583,alan.frisch}@york.ac.uk

http://www.cs.york.ac.uk/

Abstract. This paper presents eight different SMT encodings of the lex-
icographic ordering constraint. These constraints are helpful in breaking
some kinds of symmetries in combinatorial decision and optimisation
problems. The encodings are obtained from the literature then trans-
lated into an SMT suitable form. We have done this using two methods,
the first is by directly translating the encodings into SMT. The sec-
ond starts by rewriting the encodings in MiniZinc language, flattening
them into FlatZinc instances then using a tool called fzn2smt to trans-
late them to SMT. We evaluate the encodings on a suite of instances of
the Social Golfer problem, which is well known for its highly symmetric
models. This shows that different encodings of the lexicographic ordering
constraint perform best on different problem instances and that no one
encoding is dominant.

Keywords: Global Constraints, Lexicographic Ordering, Symmetry, SAT
Modulo Theories, MiniZinc, SMTLIB

1 Introduction

Modern Boolean satisfiability (SAT) solvers are essential tools in many applica-
tions including scheduling, verification, circuit design and others. The nature of
some of today’s combinatorial problems makes them difficult to be represented
using SAT’s Boolean formulas. Satisfiability Modulo Theories (SMT) is intro-
duced to overcome this limitation, where problems can be encoded using logical
formulas of combinations of atomic propositions and atomic expressions in one or
more Theories (T). The theory part in SMT formulas enables them to naturally
describe problems related to any of the SMT supported theories, like arithmetic,
arrays and bit-vectors. SMTLIB is the standard modelling language in SMT.

Symmetries arise in many constraint satisfaction problem models. A common
form of symmetry is the interchangeability between elements of sets of variables
and the corresponding sets of values. An example is the ability to swap any
two rows or columns in a Latin Square while preserving satisfiability. Breaking
symmetry reduces the search space, which could improve performance.

The Lex ordering constraint enforces lexicographic ordering between two vec-
tors of variables, which makes it useful in breaking symmetry between rows and



2 Encoding the Lexicographic Ordering Constraint in SAT Modulo Theories

columns of a matrix of decision variables [1]. For example, enforcing lex on be-
tween pairs of rows of a Latin Square eliminates the interchangeability between
them and the same applies for the columns.

A recent study demonstrated that SMT solvers have a competitive perfor-
mance in solving Constraint Satisfaction Problems. In that study, Bofill et al.
[2] built a tool called fzn2smt to translate CSP instances expressed in flatzinc
into the SMT language SMTLIB1.2 standard [3], then solved them using the
SMT solver Yices1 [4], which in general performed better than some well known
constraint solvers.

Our main aim for this research is to explore ways of further improving this
performance by studying some of the instances where fzn2smt-Yices exhibited
weaker performance. We found out that some of these instances involve Global
Constraints, which are constraints that could have a non-fixed number of vari-
ables and encapsulates a set of other constraints [5]. So we decided to study
how fzn2smt translate some of these constraints to try to come up with a better
translation. Our first study is on encodings of the lexicographic ordering global
constraint.

2 Methodology

We present eight alternative decompositions of the lexicographic ordering con-
straint, each of which is drawn from the constraint solving literature or is a
variant of such. We evaluate seven of the decompositions in solving a suite of
instances of the Social Golfers Problem (SGP) (Problem 010 in CSPLib [6]) with
the Yices2 [4] SMT solver. The eighth decomposition is not evaluated because,
as we will see, it is impractical to do so.

Using MiniZinc [7] and fzn2smt we have produced SMT encodings of the
SGP instances as follows. MiniZinc provides a default decomposition that can
be used for each of its global constraints, including the lexicographic ordering
constraint. Indeed, the MiniZinc decomposition of lexicographic ordering is one
of the seven we have evaluated. The other six encodings are produced by replac-
ing the MiniZinc default decomposition with one of the alternatives.

We use a MiniZinc model of the SGP in which row and column symmetry is
broken by constraining the rows to be in increasing lexicographic order and the
columns to be in increasing lexicographic order. With one of the seven decom-
positions in place, an SGP instance is translated to FlatZinc by the MiniZinc
system. The resulting FlatZinc is translated to SMT by fzn2smt. The SMT code
generated by this process follows the SMTLIB 1.2 standard and uses linear in-
teger arithmetic logic as provided by the QF LIA SMT theory.

We shall use the term mzn2smt to refer to the pipeline of translating a
MiniZinc specification to SMT in two steps, first using MiniZinc to produce
FlatZinc and then passing this through fzn2smt to produce SMT. We chose this
pipeline at this stage of our research just for convenience and we are aware of
some of its possible drawbacks. For instance, some constraints could be naturally
represented in SMT, but when they go through the translation process they get



Encoding the Lexicographic Ordering Constraint in SAT Modulo Theories 3

broken into smaller ones. That is way we performed two sets of benchmarks, one
is for the mzn2smt translation and the other is of the direct translation from
each encoding to SMT.

3 Encodings for Lex Ordering Constraints

This section presents eight different encodings for the lex Ordering Constraint.
Throughout, we consider a non-strict lex constraint between two vectors A and
B of finite-domain variables. Both vectors are considered to be of length n. We
write such a constraint as A ≤lex B. Each of the following subsections presents
a decomposition of the lex constraint followed by the result of passing it through
the mzn2smt pipeline. T1[i], T2[i], . . . are auxiliary Boolean arrays introduced by
mzn2smt. The index i of these arrays ranges between 1 and n. The generated
SMTLIB code does not literally contain arrays; we use the notation as a clean
way of naming a set of n distinct SMT variables.

3.1 The AND Decomposition Encoding [8]

This encoding decomposes lex constraint into a conjunction of smaller con-
straints as shown in the following formula, and because of that it is known
as AND Decomposition.

A[1] ≤ B[1]

n−1∧
i=1

(

i∧
j=1

(A[j] = B[j]))→ (A[i+ 1] ≤ B[i+ 1])

A[1] ≤ B[1] is there because the first values of the two vectors are the most
significant values to compare. The rest of the formula is self explanatory.
A strict ordering can be obtained by changing the formula (A[i+ 1] ≤ B[i+ 1])
to (A[i+ 1] < B[i+ 1]).

After translation using mzn2smt:

A[1] ≤ B[1] (1)

1 ≤ i ≤ n− 1 T1[i]⇔ (A[i] = B[i]) (2)

1 ≤ i ≤ n− 1 T2[i]⇔ (A[i+ 1] ≤ B[i+ 1]) (3)

1 ≤ i ≤ n− 2 T3[i]⇔
i+1∧
j=1

T1[j] (4)

¬T1[1] ∨ T2[1] (5)

1 ≤ i ≤ n− 2 ¬T3[i] ∨ T2[i+ 1] (6)

Number of constraints generated by this encoding is 4n− 4.



4 Encoding the Lexicographic Ordering Constraint in SAT Modulo Theories

3.2 The AND Decomposition Encoding using Common
Sub-expressions Elimination

This encoding, which we call AND CSE, is similar to the previous one and
produces a similar formula too. The difference is, in this encoding we use a
Boolean array to eliminate common sub-expressions in the formula as presented
in line (9). The purpose of this encoding is to compare performance between
using the nested loops as in line (4) in the previous encoding and this approach.

The resulting formula after eliminating common sub-expressions using the
Boolean array X[i]:

A[1] ≤ B[1] (7)

X[1]⇔ (A[1] = B[1]) (8)

1 ≤ i ≤ n− 2 X[i+ 1]⇔ (X[i] ∧ (A[i+ 1] = B[i+ 1])) (9)

1 ≤ i ≤ n− 1 X[n]→ (A[n+ 1] ≤ B[n+ 1]) (10)

A strict ordering can be obtained by changing the formula (A[i+ 1] ≤ B[i+ 1])
in line (3) to (A[i+ 1] < B[i+ 1]).

After translation using mzn2smt:

A[1] ≤ B[1] (11)

X[1]⇔ (A[1] = B[1]) (12)

1 ≤ i ≤ n− 2 T1[i]⇔ (A[i+ 1] = B[i+ 1]) (13)

1 ≤ i ≤ n− 1 T2[i]⇔ (A[i+ 1] ≤ B[i+ 1]) (14)

1 ≤ i ≤ n− 2 X[i+ 1]⇔ (X[i] ∧ T1[i]) (15)

1 ≤ i ≤ n− 1 ¬X[i] ∨ T2[i] (16)

Number of constraints generated by this encoding is 4n− 4.

3.3 The OR Decomposition Encoding [9]

This encoding, known as OR Decomposition, decomposes lex constraint into a
formula of smaller constraints dis-joined together, as shown below.

(A[1] < B[1]) ∨
n−1∨
i=1

(

i∧
j=1

(A[j] = B[j])) ∧ (A[i+ 1] < B[i+ 1]) ∨

(

n∧
i=1

(A[i] = B[i]))

A strict ordering can be obtained by removing
∧n

i=1(A[i] = B[i]) from the
above formula.



Encoding the Lexicographic Ordering Constraint in SAT Modulo Theories 5

After translation using mzn2smt:

1 ≤ i ≤ n T1[i]⇔ (A[i] = B[i]) (17)

1 ≤ i ≤ n T2[i]⇔ (A[i] < B[i]) (18)

1 ≤ i ≤ n− 1 T3[i]⇔
i∧

j=1

T1[j] ∧ T2[i+ 1] (19)

T3[n]⇔
n∧

i=1

T1[i] (20)

(

n−1∨
i=1

T3[i]) ∨ T2[1] ∨ T3[n] (21)

Number of constraints generated by this encoding is 3n+ 1

3.4 The OR Decomposition Encoding using Common
Sub-expressions Elimination

This version of OR decomposition, called OR CSE, uses a Boolean array to
eliminate common sub-expressions from the formula. X[i] is a Boolean array
with an index range of 1ton, this array is used to eliminating common sub-
expressions as shown in th following formula.

((A[1] < B[1]) ∨

(

n−1∨
i=1

X[i] ∧ (A[i+ 1] < B[i+ 1])) ∨X[n]) ∧

X[1]⇔ (A[1] = B[1])

1 ≤ i ≤ n− 1 X[i+ 1]⇔ (X[i] ∧ (A[i+ 1] = B[i+ 1]))

A strict ordering can be obtained by removing X[n] from the above formula.

After translation using mzn2smt:

1 ≤ i ≤ n X[1]⇔ (A[1] = B[1]) (22)

1 ≤ i ≤ n− 1 T2[i]⇔ (A[i+ 1] = B[i+ 1]) (23)

1 ≤ i ≤ n T3[i]⇔ (A[i] < B[i]) (24)

1 ≤ i ≤ n− 1 X[i+ 1]⇔ (X[i] ∧ T2[i]) (25)

1 ≤ i ≤ n− 1 T4[i]⇔ (X[i] ∧ T3[i+ 1]) (26)

(

n−1∨
i=1

T4[i]) ∨ T3[1] ∨X[n] (27)

Number of constraints generated by this encoding is 5n− 2



6 Encoding the Lexicographic Ordering Constraint in SAT Modulo Theories

3.5 Arithmetic Lex Encoding [8]

Another way of encoding lex constraint is using arithmetic constraint. This con-
straint compares the sum of the values of two vectors with each value multiplied
by a factor that represents the significance of the values. We assume all the
variables in A and B have a domain of 1tod.

n∑
i=1

A[i]× dn−i ≤
n∑

i=1

B[i]× dn−i

mzn2smt translation produces the same formula above.
This encoding is limited by the size of data type used to represent domains

of values, for example, if A[1] × dn−1 exceeds the maximum value that can be
stored in a 32-bit integer this would cause an arithmetic overflow and a system
error in computers.

A strict ordering can be achieved by changing ≤ to <.Number of constraints
generated by this encoding is 1.

3.6 Harvey Lex Encoding [8]

This encoding is presented by [8] who attribute it to Warwick Harvey. The
general formula as presented by the source is

(A[1] < (B[1] + (A[2] < (B[2] + (...+ (A[n] < (B[n]) + 1)...)))) = 1

To remove the ellipsis and encode the decomposition in Minizinc, we intro-
duce X[i], a Boolean array used to eliminate common sub-expressions, where i
is an index with possible values from 1 to n− 1.

X[1]

X[n] = (A[n] < (B[n] + 1))

0 ≤ i ≤ n− 2 X[n− i− 1] = A[n− i− 1] < (B[n− i− 1] +Bool2Int(X[n− i]))

We get a strict version by changing B[n]+1 to B[n]+0 in the above formula.
Translation from MiniZinc to SMT using mzn2smt produces the following.

int[i] is an integer array introduced by fzn2smt to encode the Bool2Int function
of MiniZinc. int[i] has a domain of 0 to 1 and a size of 1 to n

X[1] (28)

X[n]⇔ ((A[n]−B[n]) ≤ 0) (29)

1 ≤ i ≤ n int[i] ≤ 1 (30)

1 ≤ i ≤ n int[i] ≥ 0 (31)

1 ≤ i ≤ n− 1 X[i+ 1]→ (int[i] = 1) (32)

1 ≤ i ≤ n− 1 ¬X[i+ 1]→ (int[i] = 0) (33)

1 ≤ i ≤ n− 1 X[n− i]⇔ ((A[n− i]−B[n− i]− int[i]) ≤ −1) (34)

The translated Harvey encoding generates 5n− 1 constraints.



Encoding the Lexicographic Ordering Constraint in SAT Modulo Theories 7

3.7 Alpha Lex Encoding [9]

We call this encoding Alpha, because it uses a Boolean array as an index to
track the relations between values. This Boolean array is called α[i] and behaves
as follows:

if α[i] = 1 then A[j] = B[j] for all 1 <= j <= i <= n
and
if α[i] = 1 and α[i+ 1] = 0 then A[i+ 1] < B[i+ 1]
This makes all values from α[1] to α[i] equal to 1 while A[i] = B[i] holds, and

equal to 0 from the first occurrence of A[i] < B[i] till the end of vectors. This
encoding could be changed to a strict lex by adding the constraint α[n+ 1] = 0.
α is a Boolean matrix so α[i] = 1 is equivalent to α[i] = true and α[i] = 0 is
equivalent to α[i] = false.

α[0] = 1 (35)

0 ≤ i ≤ n− 1 α[i] = 0→ (α[i+ 1] = 0) (36)

1 ≤ i ≤ n α[i] = 1→ (A[i] = B[i]) (37)

0 ≤ i ≤ n− 1 ((α[i] = 1) ∧ (α[i+ 1] = 0))→ (A[i+ 1] < B[i+ 1]) (38)

0 ≤ i ≤ n− 1 α[i] = 1→ (A[i+ 1] ≤ B[i+ 1]) (39)

After translation using mzn2smt:
Here we use α

′
instead of α because the mzn2smt translator changed the

range of α from 0 ≤ i ≤ n to 1 ≤ i ≤ n+ 1

α
′
[1] (40)

1 ≤ i ≤ n+ 1 T1[i]⇔ ¬α
′
[i+ 1] (41)

1 ≤ i ≤ n T2[i]⇔ (A[i] = B[i]) (42)

1 ≤ i ≤ n T3[i]⇔ (A[i] < B[i]) (43)

1 ≤ i ≤ n T4[i]⇔ (A[i] ≤ B[i]) (44)

1 ≤ i ≤ n T5[i]⇔ (α[i] ∧ T1[i+ 1]) (45)

1 ≤ i ≤ n ¬T1[i] ∨ T1[i+ 1] (46)

1 ≤ i ≤ n ¬T5[i] ∨ T3[i] (47)

1 ≤ i ≤ n ¬α
′
[i] ∨ T4[i] (48)

1 ≤ i ≤ n ¬α
′
[i+ 1] ∨ T2[i] (49)

Number of constraints generated by this encoding is 9n+ 2

3.8 Alpha M Encoding [7]

This decomposition, which we call Alpha M, is the default decomposition used
by Minizinc [7]. Like the previous Alpha encoding it uses a binary array as a
bookkeeping mechanism for relations between the corresponding values in both
vectors. The index of the Alpha array ranges from 1 to n+ 1.



8 Encoding the Lexicographic Ordering Constraint in SAT Modulo Theories

α[1] = 1 (50)

1 ≤ i ≤ n α[i] = ((A[i] < B[i]) ∨ α[i+ 1]) ∧ (A[i] ≤ B[i]) (51)

α[i] = 1 makes sure that A[i] ≤ B[i] is true. We obtain a strict version by
adding α[n+ 1] = 0 to the constraints.

After translation using mzn2smt:

α[1] (52)

1 ≤ i ≤ n T1[i]⇔ (A[i] ≤ B[i]) (53)

1 ≤ i ≤ n T2[i]⇔ (A[i] < B[i]) (54)

1 ≤ i ≤ n T3[i]⇔ (T2[i] ∨ α[i+ 1]) (55)

1 ≤ i ≤ n α[i]⇔ (T3[i] ∧ T1[i]) (56)

Number of constraints generated by this encoding is 4n+ 1

4 The Social Golfers Problem

The Social Golfers Problem is a computational problem of partitioning a set of
golfers into g groups of size s in each of w weeks such that no two players meet
more that once in the same group. An instance of the Social Golfer problem is
usually denoted g− s−w, which stand for number of groups, the group size and
number of weeks. We use m = g ∗ s to denote the number of players

The table below shows one possible solution to the instance 3-2-3, where
rows and columns represent players and weeks respectively, and each value in
the table denotes a group number. So as an example column 2 can be interpreted
as follows; In Week2, Player1 and Player3 meet in the first group, Player2 and
Player5 meet in the second group and Player4 and Player6 meet in the third.

Week1 Week2 Week3
1 1 1 Player1
1 2 2 Player2
2 1 2 Player3
2 3 3 Player4
3 2 3 Player5
3 3 1 Player6

The Social Golfer is known for its highly symmetric models. We use the
lex constraint to break two groups of symmetries in the problem; symmetries
in weeks and symmetries in players. The MiniZinc model that we used for the
problem maps Players and Weeks to groups in an array as above. Symmetry
among the players is broken by constraining the rows to be in lex increasing



Encoding the Lexicographic Ordering Constraint in SAT Modulo Theories 9

order and symmetry among the weeks is broken by constraining the columns to
be in lex increasing order.

The model that we used for the SGP is a modified model created by H.
Kjellerstrand [10] and it has two constraints: The first is to make all groups
contain s players, while the second is to make sure that each two players play
together at most once in each week.

Schedule[, ] is a two dimensional integer array that holds the weekly assign-
ment of players to groups. Each group has exactly s players:

1 ≤ group ≤ g 1 ≤ week ≤ w (

m∑
player=1

Bool2Int(Schedule[player, week] = group)) = s

Where Bool2Int() is Boolean to integer converter function and m = number of
players, which equals to g × s.

Each pair of players only meets at most once

1 ≤ pa ≤ m 1 ≤ pb ≤ m
1 ≤ wa ≤ w 1 ≤ wb ≤ w
where pa 6= pb ∧ wa 6= wb

(Schedule[pa, wa] 6= Schedule[pb, wa])∨
(Schedule[pa, wb] 6= Schedule[pb, wb])

For any two distinct players, pa and pb, and any two distinct weeks, wa and wb,
players pa and pb cannot play in the same group in both week wa and wb.

From the assignment array Schedule[, ] it is clear that symmetries can happen
between weeks and between players. To break symmetry between weeks we put
lex constraint ordering between each two neighbouring columns and the same is
done for players.

Lex constraint on weeks:

1 ≤ week ≤ w − 1 [Schedule[player, week] | player ∈ 1..m] ≤lex

[Schedule[player, week + 1] | 1player ∈ 1..m]

Lex constraint on players:

1 ≤ player ≤ m− 1 [Schedule[player, week] | week ∈ 1..w] ≤lex

[Schedule[player + 1, week] | week ∈ 1..w]

5 Benchmarks

The MiniZinc implementation includes a set of libraries to decompose global
constraints and made to be called from MiniZinc models. We created a MiniZ-
inc global library for each of the seven lex decompositions, then we called them
from the Social Golfer MiniZinc code. We modified a MiniZinc model created by



10 Encoding the Lexicographic Ordering Constraint in SAT Modulo Theories

H. Kjellerstrand [10] for the problem by removing his implementation of sym-
metry breaking code and adding a symmetry breaking based on lexicographical
orderings constraint. All benchmarks were run on a Windows PC with Intel i7
1.8Ghz processor and 8GB of RAM and using Yices 2.2.1 as an SMT solver.
We ran 30 samples for each instance, each sample is created by choosing a ran-
dom ordering of the constraints from a uniform distribution over all orderings
of the sample SMT file. Each figure in the following two tables represents an
average of 30 timings for each encoding on each instance. We only used satis-
fiable instances obtained from [11]. We ran two sets of benchmarks, the first is
for samples translated to SMT using the mzn2smt pipeline, while the second is
for the same samples but translated directly from the each of the 7 presented
encodings in this paper. Both sets of benchmarks share the same code for the
SGP, the difference is only in the code related to different the lex constraint
encodings.

Table 5 shows the timings in seconds for each of the encodings on instances
of the SGP produced by mzn2smt. As it can be seen from these results the OR
encoding takes the lead by a very narrow margin, it also seems that using CSE
did not made any improvement to the timings of AND and OR encodings.

Instances AND AND OR OR Alpha Alpha M Harvey
G-S-W CSE CSE

5-3-5 0.27 0.25 0.28 0.26 0.25 0.27 0.33
5-3-6 1.40 1.79 1.70 2.02 1.60 1.59 1.94
5-3-7 12.53 13.08 11.07 13.94 13.47 14.77 16.71
6-3-5 0.27 0.27 0.25 0.26 0.26 0.29 0.32
6-3-6 1.63 1.64 1.70 1.79 1.69 1.55 1.87
6-3-7 6.77 6.72 7.14 7.32 6.10 6.84 6.81
6-4-4 0.63 0.63 0.62 0.63 0.66 0.64 0.68
6-4-5 5.32 4.82 5.01 4.53 4.97 4.88 4.89
8-4-4 1.08 0.98 1.11 1.17 1.09 1.14 1.20
8-4-5 10.88 10.80 10.42 9.73 10.76 9.63 10.80
8-4-6 85.45 87.43 79.19 90.63 84.18 93.65 83.29

Arithmetic
mean 11.48 11.67 10.77 12.03 11.37 12.29 11.71

Geometric
mean 2.66 2.67 2.65 2.77 2.66 2.73 2.97

Table 1. Solution timings (in Seconds) for instances of The SGP using fzn2smt trans-
lation

Table 5 is for the directly translated samples. Here Alpha encodings takes a
marginal lead while Harvey encoding came last by a relatively wide gap. Com-
pared to the mzn2smt translation results, the only improvement is in AND en-
coding results.



Encoding the Lexicographic Ordering Constraint in SAT Modulo Theories 11

Instances AND AND OR OR Alpha Alpha M Harvey
G-S-W CSE CSE

5-3-5 0. 27 0.28 0.27 0.29 0.27 0.25 0.42
5-3-6 1.93 1.88 2.07 1.53 1.91 1.78 3.13
5-3-7 12.36 13.59 13.65 16.18 10.73 17.84 32.51
6-3-5 0.26 0.27 0.29 0.34 0.27 0.26 0.48
6-3-6 1.54 1.76 1.94 1.88 1.69 1.83 3.18
6-3-7 7.27 7.26 7.24 6.98 6.94 6.93 10.56
6-4-4 0.72 0.69 0.65 0.66 0.65 0.68 1.11
6-4-5 4.81 5.06 5.04 4.72 4.74 4.64 6.34
8-4-4 1.12 1.03 1.21 1.25 1.16 1.00 1.71
8-4-5 10.41 10.57 9.89 10.78 10.08 10.56 21.26
8-4-6 82.84 82.16 81.60 78.15 90.06 82.68 127.09

Arithmetic
mean 11.23 11.32 11.26 11.16 11.68 11.68 18.89

Geometric
mean 2.73 2.78 2.84 2.86 2.71 2.76 4.66

Table 2. Solution timings (in Seconds) for instances of The SGP using a direct trans-
lation

6 Conclusion and Future Work

Although the averages of the results provide no clear judgement about which
encoding is better, from individual results some conclusions still can be made.
For example, in 5 on the instance 5-3-7 Alpha encoding performed better than
OR CSE, while on the instance 8-4-6 it was the opposite. So conjoining both
encodings into a single one might perform better on both instances. This vari-
ability also could be a good property for building a portfolio of encodings, where
an instance tackled using multiple encodings in parallel and get solved first by
its most efficient encoding.

This research is still a work in progress and for the next stages we plan to
answer some of the questions that have arisen. For instance, the question of the
effect of conjoining two or more encodings and examining which SMT encodings
obtain Generalized Arc Consistency and its impact on performance. Also the
main question of our study, which is; Can we do better by directly translating
from MiniZinc instead of going through the mzn2smt?. We are also planning
to study other global constraints and our next nominee is the value precedence
constraint, which is useful in breaking value symmetries.

References

1. Flener, Pierre, Alan M. Frisch, Brahim Hnich, Zeynep Kiziltan, Ian Miguel, Justin
Pearson, and Toby Walsh. Breaking row and column symmetries in matrix models,
Principles and Practice of Constraint Programming-CP 2002, pp. 462-477. Springer
Berlin Heidelberg, 2002.



12 Encoding the Lexicographic Ordering Constraint in SAT Modulo Theories

2. Bofill, Miquel, Miquel Palah, Josep Suy, and Mateu Villaret. Solving constraint
satisfaction problems with SAT modulo theories, Constraints 17, no. 3 (2012): 273-
303.

3. SMTLIB The Satisfiability Modulo Theories Library, http://smt-lib.org/
4. The Yices SMT Solver, http://yices.csl.sri.com/
5. van Hoeve W. and Katriel I. , Global Constraints, Handbook of Constraint Program-

ming. Amsterdam, The Netherlands. Elsevier. 2006
6. CSPLib: A problem library for constraints, http://www.csplib.org/
7. G12 MiniZinc Distribution, http://www.MiniZinc.org/software.html
8. Frisch, Alan M., Brahim Hnich, Zeynep Kiziltan, Ian Miguel, and Toby Walsh.

Propagation algorithms for lexicographic ordering constraints, Artificial Intelligence
170, no. 10 (2006): 803-834.

9. Gent, Ian P., Patrick Prosser, and Barbara M. Smith. A 0/1 encoding of the gaclex
constraint for pairs of vectors, Notes of the ECAI-02 Workshop W9 Modelling and
Solving Problems with Constraints. 2002.

10. My Constraint Programming Blog, http://www.hakank.org/constraint_

programming_blog/

11. Warwick’s Results Page for the Social Golfer Problem, http://web.archive.org/
web/20050308115423/http://www.icparc.ic.ac.uk/~wh/golf/

12. Crawford, James, Matthew Ginsberg, Eugene Luks, and Amitabha Roy.
Symmetry-breaking predicates for search problems, 5th Int. Conf. on Knowledge
Representation and Reasoning KR 96 (1996): 148-159.


