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1 Introduction

The commercial benefits of a well-designed base roster for passenger traincrew
can be enormous, but producing efficient base rosters is an expensive and time-
consuming task. With existing processes and tools the efficiency of the finished
roster is largely determined by the skill of the roster clerks involved. Existing tools,
such as TRACSRoster1 and CREWS,2 use local search and frequently produce
rosters that need to be manually repaired or improved. There is a market demand
for better tools to make this process more effective and reliable.

This work presented here studied the feasibility of re-engineering TRAC-
SRoster, the Tracsis PLC traincrew rostering product, to produce better rosters
and to be easier to modify and maintain. TRACSRoster uses local search to find
rosters with no guarantee of quality. This paper considered the feasibility of basing
TRACSRoster on state-of-the-art complete solvers that perform exact optimisa-
tion. The paper presents and evaluates models for both SAT Modulo Theories
and finite domain constraint programming.

We have identified three techniques that enable a SMT to perform much
better on the train crew rostering problem. Nonetheless, the problem remains
very difficult for SMT. While we can solve some smaller instances to optimality,
the large instance remains unsolved.

Problem instances and models associated with this research can be found at
http://www.cs.york.ac.uk/aig/constraints/SMT/.

2 The Traincrew Rostering Problem

The Traincrew Rostering Problem is a constrained optimisation problem that
involves finding an optimal roster, or—more realistically—one that is good enough

? We are extremely grateful to David Turner of Tracsis who suggested we try this
problem, patiently explained the ins and outs of traincrew rostering, provided real data
and gave us access to TRACSRoster for testing. We thank the Yorkshire Innovation
Fund for funding this project. For their help in setting up this project we thank
Rukmal Abeysekera and Katie Wytwyckyj, both of the University of York Research
and Enterprise office.

1 TRACSRoster is a product of Tracsis PLC. For further information see
http://www.tracsis.com/software/tracsroster .

2 CREWS is a product of SISCOG – Sistemas Cognitivos, SA. For further information
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to be approved by the crew’s union. The crew on a train includes, possibly among
others, drivers, guards, train managers and catering staff. Each of these types of
crew members are rostered separately, but the form of the problem is the same
across all crew types. Drivers are the most challenging crew type to roster as
the most constraints apply to them. The problem instances we consider are all
for driver rostering. Therefore, the rest of this paper discusses drivers, but the
reader should bear in mind that scheduling other crew types is essentially the
same problem.

This remainder of this section describes the traincrew rostering problem in
three stages: a basic decision problem that entails finding a feasible solution; the
full decision problem that also entails finding a feasible solution; and an optimi-
sation problem of finding the feasible solution that is optimal.

2.1 The Basic Decision Problem

On each day of the week a set of jobs must be performed. Each job, called a
“turn,” comprises a work shift to be performed by a single driver. As an example,
a Monday turn could comprise driving an 8:00 train from the depot to station B,
taking a lunch break, driving a 13:30 train to station C and then taking a taxi
back to the depot arriving at 16:50. For the purpose of rostering, the particular
work to be performed within the turn is irrelevant; all that matters is that this
turn involves work that runs from 8:00 to 16:50 on Monday. A turn such as this
is called a working turn. There are two other types of turns: a training turn in
which the driver undertakes training and a spare turn in which the driver must
be available to substitute for an absent driver. For the decision problem all three
types of turn are treated the same; however they can be treated differently by the
objective function in the optimisation problem.

An instance of the problem specifies a finite set T of turns and a finite set D
of drivers. Define a “slot” as a pair comprising a driver and a day of the week.
Hence a problem instance has 7∗ |D| slots. A feasible solution assigns to each slot
either a single turn or a rest day and each turn must be assigned to exactly one
slot on the appropriate day.

As an example, consider an instance with 17 turns, T = {t1, t2, . . . , t17}, and
3 drivers, D = {d1, d2, d3}. Suppose that t1, t2, t3 are Monday turns; t4, t5, t6
are Tuesday turns; t7, t8, t9 are Wednesday turns; t10, t11, t12 are Thursday turns;
t13, t14, t15 are Friday turns; t16 is a Saturday turn; and t17 is a Sunday turn. Then
one feasible solution is displayed in Figure 1, where drivers d1, d2 and d3 operate
Line 1, Line 2 and Line 3, respectively.

Mon Tues Wed Thur Fri Sat Sun

Line 1 t1 t4 t7 t10 t13 rest rest
Line 2 t2 t5 t8 t11 t14 t16 rest
Line 3 t3 t6 t9 t12 t15 rest t17

Fig. 1. A feasible roster.



Figure 1 shows one week of work for each of three drivers. However, drivers are
scheduled for 6 months at a time. This roster is extended to a 6-month schedule
by rotating the drivers through the lines. Thus, the second week of the schedule
is obtained by rotating d1 to Line 2, d2 to Line 3 and d3 to Line 1. In general
the schedule for each week is obtained by rotating the schedule from the previous
week. Any feasible solution to an instance with n drivers can be displayed as a
table with n lines in which each slot is labeled with either a turn or “rest” and in
which each turn appears in exactly one slot.

2.2 The Full Decision Problem

A sequence of lines through which the drivers rotate each week is called a link.
Because the schedule rotates, each driver eventually operates every turn in the
link and so each driver must be qualified to operate each turn. In all but the
simplest problem instances many drivers are not qualified to operate every turn.
In such cases a roster is formed with multiple links. There are also other reasons
for forming the lines into multiple lines.

To obtain multiple links, each instance specifies how many links must be ros-
tered, and how many lines are in each link and which qualifications are required
of all drivers operating that link. So every turn is associated with a set of qualifi-
cations (those which are required to operate the turn) and every link is associated
with a set of qualifications (those which are required by all drivers in the link).
We say that the qualifications of a slot are those of the link it is in. Now a feasible
roster must meet one additional constraint: a turn t with qualifications Q must
be assigned to a slot s whose qualifications are a superset of Q. We say that s
and t are compatible.

An instance comprises:

– T , a finite set of turns, each of which has a day of the week, a start time, an
end time and a set of qualifications;

– Links, a finite set of links, each of which has a number of lines and a set of
qualifications.

Let a slot be a triple comprising a link, a line number and a day of the week. A
feasible solution to an instance of the train rostering problem assigns every turn
t to a single slot s such that

– No two turns are assigned to the same slot;
– The day of t is the same as the day of s; and
– The qualifications of t are a subset of the qualifications of s.

2.3 The Optimisation Problem

The optimisation problem extends the decision problem by assigning to every
feasible solution an objective value that must be optimised. We have attempted to
capture the objective used by TRACSRoster, which itself is ad hoc and repeatedly
changing in each attempt to produce a roster that is acceptable to the drivers’
unions. It is worth bearing this in mind if some aspects of the objective appear



arbitrary or ad hoc. Furthermore, we can only approximate the objective used by
TRACSRoster because we do not have access to all the details of its operation.

The objective is obtained by adding to the decision problem a set of soft
constraints, each associated with a penalty that is imposed if the constraint is
violated by a feasible solution. The objective is to minimise the sum of all the
imposed penalties. Each instance of the rostering problem can use different soft
constraints. Indeed, even within a problem instance different links can use different
soft constraints.

TRACSRoster supports dozens of types of soft constraints, a subset of which
are used in each instance. Here are examples of some of the soft constraints that
arise in the instances we have worked on so far.

– The total amount of time worked in each line has an upper and a lower bound.

– The duration between turns worked on any two consecutive days has a lower
bound.

– Within each line the start times of turns differs by at most a certain amount.

One soft constraint, called a pattern constraint, is of particular interest. The
pattern constraint for a link designates each slot in the link as either a work slot, a
rest slot, or an “any” slot. A work slot can be labelled “duty,” which indicates that
the slot should be filled with any kind of duty, or “NS duty,” which indicates that
the slot should be filled with a non-spare duty—that is, the duty is to perform
a pre-determined turn. As an example, Fig. 5 shows the pattern used in problem
Instance B, which will be introduced later. It is a three-line pattern, but patterns

Mon Tues Wed Thurs Fri Sat Sun

line 1 rest rest rest NS duty duty duty duty
line 2 any duty duty rest rest NS duty duty
line 3 any duty duty duty duty rest rest

Fig. 2. A three-line pattern.

can contain any number of lines. If the link and pattern have the same number of
lines, then the pattern is overlaid directly on the link. If the link has fewer lines
than the pattern, then the pattern is truncated to the same size of link and then
overlaid. If, as is typically the case, the link has more lines than the pattern then
the pattern is repeated until it fills the link. The general rule is that line k of the
link is overlaid with line ((k+2) mod p)+1 of the pattern, where p is the number
of lines in the pattern.

If patterns are used on multiple links in the roster, they are applied to each
link independently.

A roster is incurs a penalty for each slot in the roster that does not respect
the pattern. Each violation incurs the same penalty and a slot designated “any”
by the pattern never incurs a penalty.



3 Problem Instances

Our experiments were run on four real problem instances (anonymised in this pa-
per) whose features are listed in Figure 3. For each problem instance the columns
display the total number of turns, soft constraints, links and lines; the last col-
umn shows how the lines are distributed among the links. Within each of these
particular instances the same same soft constraints apply to every link.

Instance B uses the three-line pattern shown in Fig. 5 and Instance D uses
a six-line pattern. Within both these instances the pattern applies to every link
that has three or more lines. Instances A and C use no patterns.

Turns Soft Lines Links Lines in each link

Instance A 49 6 13 1 13
Instance B 107 16 21 4 6, 6, 7, 2
Instance C 123 1 29 2 27, 2
Instance D 661 9 159 11 41, 3, 48, 18, 3, 1, 1, 24, 1, 18, 1

Fig. 3. Characteristics of the four instances.

4 Solvers Used

We encoded all SMT models of the rostering problem in the language of WSimply
[1], a tool which translates a model in its input language to the language of SMT
with the QF-LIA theory (quantifier-free linear integer aritmetic) as specified by
the SMTLib standard. To solve the SMT models we used Yices 1 with its QF-LIA
solver [2] because it has been shown to be particularly effective across a wide range
of combinatorial problems [3].

We encoded all CP models of the rostering problem in the language of MiniZinc
1.6 and used CPX as the backend solver.

All experiments have been run on a Intel R© CoreTMCPU@2.8GHz, with 12GB
of RAM.

5 Modelling the Full Decision Problem and Results

Our methodology is to first find an effective model to solve the full decision
problem and then extend that model to handle the optimisation problem. This
section of the paper presents and evaluates the effectiveness of a range of models
for the full decision problem. We consider both SMT models and CP models.

Let S be the set of slots, T be the set of turns, L be the set of lines and D
be the set of days of the week. Let c(s) be the set of turns compatible with slot s
and c+(s) be c(s)∪ {0}, where we use 0 to assign to any slot that is rostered as a
rest day. Let c′(t) be the set of slots compatible with turn t.



The models are presented using some abstract constraints that are subse-
quently translated to concrete constraints in a variety of ways. The abstract con-
straints are as follows, where B is a set of Boolean expressions:

EO(B) is true if and only if exactly one expression in B is true.

AMO(B) is true if and only if at most one expression in B is true.

ALO(B) is true if and only if at least one expression in B is true.

BDD(pb) is a Boolean encoding of the pseudo-Boolean constraint pb.

In particular, BDD encodes pb with the method of Ab́ıo et al. [4], which
translates pb to a binary decision diagram (BDD) and then translates the BDD
to a Boolean constraint. The method only works on pseudo-Boolean constraints
of the form

∑
i ci·bi ≤ a, where each ci is a positive integer, a is a non-negative

integer, and each bi is a Boolean variable.

5.1 Integer Models

For each slot s ∈ S the integer model has as an integer variable Is whose domain
is c+(s). The only constraints in the model are to ensure that every turn in T is
assigned to exactly one variable in S.

EO({Is = t | s ∈ c′(t)}) (t ∈ T ) (1)

Integer Model in SMT SMT with the Quantifier-Free Linear Integer Arith-
metic (QF-LIA) theory provides unbounded integer variables, so we must impose
constraints to implement the finite domains. We used the following constraints:

0 ≤ Is ∧ Is ≤ max(c+(s)) (s ∈ S) (2)∨
t∈c+(s)

Is = t (s ∈ S) (3)

Notice that (3) implies (2); however, it is advantageous to include this implied
constraint as it provides information about the value of Is to the LIA solver.

To implement the abstract constraints of (1) we decompose each EO constraint
into a conjunction of an AMO constraint and an ALO constraint. We used two
alternative versions of ALO and two alternative versions of AMO.

ALO1(X)
def
=

∨
x∈X

x

ALO2(X)
def
= BDD(

∑
x∈X
¬x ≤ |X|−1)

AMO1(X)
def
=

∑
x∈X

if x then 1 else 0 ≤ 1

AMO2(X)
def
= BDD(

∑
x∈X

x ≤ 1)

In total we have four integer SMT models.



Integer Model in CP Finite domain constraint solvers directly support do-
mains for the integer variables. So all that is needed is an implementation of
the constraints of (1). We used two alternatives, one based on a global “exactly”
constraint, the other based on a summation constraint.

exactly(1, [Is | s ∈ c′(t)], t) (t ∈ T ) (4)

∑
s∈c′(t)

bool2int(Is = t) = 1 (t ∈ T ) (5)

In total we have two integer CP models.

5.2 Boolean Models

For every slot s ∈ S and for every turn t ∈ c+(s) this model has a Boolean variable
Bs,t. The intended interpretation is that Bs,t is true if and only if turn t is to take
place in slot s. Constraints are needed to ensure that for every slot s ∈ S there is
exactly one t ∈ c+(s) such that Bs,t is true.

EO({Bs,t | t ∈ c+(s)}) (s ∈ S) (6)

Finally, the following constraints ensure that for each turn t ∈ T there is
exactly one slot s ∈ c′(t) such that Bs,t is true. These constraints are the Boolean
correlate of (1).

EO({Bs,t | s ∈ c′(t)}) (t ∈ T ) (7)

Boolean Model in SMT We implemented the constraints of (6) by AMO and
ALO constraints. The ALO constraints are∨

t∈c+(s)

Bs,t (s ∈ S) (8)

We tried a variety of ways to implement the AMO constraints and found the
most effective to be channeling to the original integer representation of the slot
value. In particular, for each slot s ∈ S we introduce a variable Is whose domain
is c+(s). Introducing these additional integer slot variables is also worthwhile as
they will prove useful in modelling the optimisation problem.

The channeling constraints are

Bs,t ⇐⇒ Is = t (s ∈ S, t ∈ c+(s)) (9)

and we also add the constraints of (2). Though (2) is implied by the conjunction
of (8) and (9), it is useful because it gives the LIA solver partial information about
the domain of each Is.

For implementing (7), we decomposed each EO constraint into a conjunction
of an AMO constraint and an ALO constraint. We tried each of ALO1 and ALO2

in combination with each of AMO1 and AMO2.
In total we have four Boolean SMT models.



Boolean Model in CP The abstract constraints of (6) are implemented the
same way as in the Boolean SMT model: introducing the integer slot variables,
the channelling the constraints of (9), the ALO constraints of (8) and the implied
constraints of (2).

The abstract constraints of (7) are implemented with the following constraints:∑
s∈c′(t)

bool2int(Bs,t) = 1 (t ∈ T ) (10)

We have only one Boolean Model in CP.

5.3 Using Domain Mapping to Implement the Models

The integer models of Sec. 5.1 treat each turn as an integer and each slot s as
an integer variable whose domain is the set of turns c+(s). However we have not
identified what integers correspond to what turns. How this correspondence is
done has important consequences on how well the integer models perform.

Suppose the turns are implemented by consecutive integers starting at 1 and
that this is done systematically day by day. For example, suppose that each day
has exactly 10 turns with 1..10 being Monday turns, 11..10 are Tuesday turns
and so on. So the domain of the Tuesday slots is {0, 11, 12, . . . , 20}, which is not a
consecutive range of integers. This is, captured by (2), which just bounds Tuesday
slot to 0..20. The constraints of (3) are needed to prohibit the integer variable
from taking values 1..10.

The complexity of non-consecutive integer domains is increased in an instance
that has multiple links with different skill requirements. In the above example,
it could be that turns 11..15 are compatible with link 1, 16..20 are compatible
with link 2, {11, 13, 15, 17} are compatible with link 3 and {12, 14, 16, 18} are
compatible with link 4.

The shortcoming of the presented SMT models is that the LIA solver has access
to only (2) and thus operates without complete information about the domain.
The non-consecutive integer domains could also impede that performance of a CP
solver, particularly if it uses bounds consistency.

The use of non-consecutive integer domains has an additional secondary effect
on the Boolean models. These models have one Boolean variable for each compat-
ible slot and turn. However, a shortcoming arises because these Boolean models
are generated by WSimply. WSimply, like other modelling languages including
MiniZinc, essence, essence′ and opl, generates collections of variables by us-
ing an array. In this case, it would be a two-dimensional Boolean array indexed
by S and T . Hence, WSimply produces unnecessary Boolean variables for slots
and turns that are not compatible. We set each of these unnecessary variables to
false as they represent rostering assignments that cannot be made.

To avoid these shortcomings of non-consecutive integer domains, we introduce
a new technique, which we call domain mapping, that transforms our models into
ones in which the integer domains are consecutive. In particular, the domain of
each slot s is 0..|c(s)|, where 0 continues to represent a rest day and each turn
t ∈ c(s) is represented by a distinct integer, denoted ts, in 1..|c(s)|.



This change must reflected in the implementation of each constraint.
First consider the constraints of the integer SMT and CP models. Constraint

(1) now becomes
EO({Is = ts | s ∈ c′(t)}) (t ∈ T ). (11)

Constraints (2) and (3) are now replaced with a single constraint

0 ≤ Is ∧ Is ≤ |c(s)| (s ∈ S). (12)

Constraint (4) is incompatible with the use of domain mapping, so we must use
constraint (5) which now becomes∑

s∈c′(t)

bool2int(Is = ts) = 1 (t ∈ T ). (13)

The Boolean models also employ the integer variables so the domain mapping
can be applied there in the same way.

5.4 Experimental Evaluation of the Models

We focus this evaluation on Instance D as its decision problem is much harder
than the others. If we can’t quickly find feasible solutions then there is very little
hope of having success with the optimisation problem.

We tried to solve a total of 21 models of Instance D: the 11 models described
in Sections 5.1 and 5.2, 10 of which are then modified with domain mapping as
described in Section 5.3. As described in Sec. 4 we used MiniZinc/CPX for the
CP models and Yices 1 QF-LIA for the SMT models.

Of the 21 models of Instance D only two were able to find a satisfying assign-
ment within 600 seconds (translation time plus run time). The successful models
were both Boolean SMT models with domain mapping. The two successful models
differ in terms of which AMO encoding they used, as shown in Figure 4.

ALO1 ALO2

AMO1 > 600 > 600

AMO2 27.6 (1.7) 41.6 (6.2)

Fig. 4. Solve time of the decision problem for Instance D using the Boolean SMT model
with domain mapping. The total translation time plus solve time in seconds is given. In
parentheses the the solve time in seconds is given.

6 Modelling the Optimisation Problem and Results

The previous section identified the best approach to solving the full decision prob-
lem: the Boolean SMT model using ALO1 and AMO2. This section deals with
extending that model to handle the train crew optimisation problem.



We consider the most important soft constraint to be the pattern constraint,
which expresses a preference for rosters that respect a given pattern of work and
rest days. It is important because in some instances it has the highest weight and
in many instances the pattern aligns with other constraints, such as a preference
for rosters in which there are not too many consecutive work days without a rest
day.

This section proceeds by considering first the modelling of the pattern soft
constraint then the modelling of all the other soft constraints. As SMT is inher-
ently a decision problem it is necessary special methods are needed to use it for
optimisation problems. The issue is considered next. Lastly the section presents
experiments that evaluate the performance of the models and solving methods
considered.

6.1 Modelling the Pattern Constraint as a Hard Constraint

The hard constraints only distinguish between days off duty (called rest days) and
days on duty. The soft constraints distinguish three kinds of days on duty: work
days during which a driver is to drive, training days and spare days in which a
driver is to be available to fill in for a scheduled driver who is off work.

The most important soft constraint, in terms of having the highest weight, is
the preference for rosters that respect a given pattern of work and rest days.

Because of its importance we have decided to try an approach in which we
replace the soft pattern constraint with hard constraints that are satisfied by a
roster if and only if that roster is an optimal solution of the soft pattern constraint.

Each day of the week is treated independently, so just consider one day. For
that day let:

– nt be the number of turns,
– W be the set of working slots in the pattern and nw = |W |,
– R be the set of rest slots in the pattern and nr = |R|, and
– A be the set of anything slots in the pattern and na = |A|.

Exactly one of seven cases must hold and this specifies what constraints to
add to the model in each case.

Case Constraints to Impose Violations

nt < nw s = 0 for all s ∈ (R ∪A) nw − t
exactly nt slots in W are non-zero

nt = nw s = 0 for all s ∈ (R ∪A) 0
s 6= 0 for every s ∈W

nw < nt < nw + na s = 0 for all s ∈ R 0
s 6= 0 for all s ∈W
exactly nt−nw slots in A are non-zero

nt = nw + na s 6= 0 for all s ∈W ∪A 0
s = 0 for all s ∈ R

nw + na < nt s 6= 0 for all s ∈ (W ∪A) nr
< nw + na + nr exactly nt−nw−na slots in R are non-zero

nt = nw + na + nr s 6= 0 for all s ∈ (W ∪A ∪R) nr
nt > nw + na + nr False (instance is unsatisfiable)



6.2 Modelling the Remaining Soft Constraints

In this section we describe the remaining soft constraints used in the experimental
section.

First of all we introduce some auxiliary variables, which are needed for the
soft constraints.

– startT imes: starting time of slot s

– endT imes: end time of slot s

– workingDurations: work duration of slot s

– weekWorkDurationln: sum of work duration of the slots of line ln

– freeWeekendln: a Boolean indicating if the weekend of line ln is free

– conseqWorks: number of consecutive working turns including slot s

– conseqFrees: number of consecutive rest turns including slot s

We impose constraints that force these variables to take the appropriate values
according to the variables in the decision model.

We note that the values of variables startT imes, endT imes, workingDurations

and weekWorkDurationln are in minutes.

Next we describe nine rules which generate the soft constraints.

1. Any two successive turns where the first turn is an operational duty turn and
the second one is an operational duty turn should have a rest period at least
of time.

(¬Bs,0 ∧ ¬Bnext(s),0) Implies

(startT imenext(s) + 1440− endT imes ≥ time) (s ∈ S)

where next(s) is the slot that follows slot s within a link. The Monday slot
of line l follows the Sunday slot of line l − 1 and the Monday slot of line 1
follows the Sunday slot of the last line.

2. Any two successive turns where the first turn is an operational duty turn and
the second one is an spare duty turn should have a rest period at least of
time.

(¬Bs,0 ∧ Inext(s) ≥ i ∧ Inext(s) ≤ j) Implies

(startT imenext(s) + 1440− endT imes ≥ time) (s ∈ S)

where i..j is the range of spare turn indices of next(s).

3. Any two successive turns where the first turn is a spare duty turn and the
second one is an operational duty turn should have a rest period at least of
time.

(Is ≥ i ∧ Is ≤ j ∧ ¬Bnext(s),0) Implies

(startT imenext(s) + 1440− endT imes ≥ time) (s ∈ S)

where i..j is the range of spare turn indices of s.



4. Any two successive turns where the first turn is a work turn and the second
one is a work turn should have a rest period at least of time.

(Is ≥ is ∧ Is ≤ js ∧ Inext(s) ≥ inext(s) ∧ Inext(s) ≤ jnext(s)) Implies

(startT imenext(s) + 1440− endT imes ≥ time) (s ∈ S)

where is..js and inext(s)..jnext(s) are the ranges of work turn indices of s and
next(s) respectively.

5. At least n weekends of rest are required in the link.∑
ln∈1..nlines

freeWeekendln ≥ n

where nlines is the number of lines in the link.

6. In any line, the total number of duty hours should be at least min and at
most max.

min ≤ weekWorkDurationln ≤ max (ln ∈ 1..nLines)

7. Blocks of work turns should contain at least min but no more than max turns.

(conseqWorks = min− 1) Implies (conseqWorknext(s) = min) (s ∈ S)

(conseqWorks = max) Implies (conseqWorknext(s) = 0) (s ∈ S)

8. Each blocks of rest days should be least min but no more than max days
long.

(conseqFrees = min− 1) Implies (conseqFreenext(s) = min) (s ∈ S)

(conseqFrees = max) Implies (conseqFreenext(s) = 0) (s ∈ S)

9. Allow 24:00 hours per rest day plus time rest for blocks of min to max rest
days.

(conseqFrees = val) ∧ (conseqFrees = 0) Implies

startT imenext(s) + 1440 + 1440 ∗ val − endT imeprevious(s,val+1) ≥ time

(s ∈ S, val ∈ min..max)

where previous(s, n) is the n-th previous slot of s.

We want to remark that each rule generates a list of soft constraints. All the
soft constraints generated from the same rule have the same penalty, which is an
input parameter specified by the instance.



6.3 Solving Optimisation Problems with SMT

As the most successful method of solving the hard constraints is to use the Boolean
model for SMT, we have chosen to extend that to the optimisation problem.

SMT is inherently for decision problems but there are various ways to put a
wrapper around a solver to enable the solution of optimisation problems. We tried
three different wrappers:

Binary First use Yices 1 to solve the decision problem. Compute the objective
value, u, of that solution. Then use binary search over the range 0..u to find
the smallest value, opt (0 ≤ opt ≤ u) such that the decision problem with
the constraint that the objective does not exceed opt is satisfiable. This was
implemented through the Yices 1 API, which enabled learned clauses to be
retained through multiple runs of the binary search.

BDD We also tried the above approach except that the constraint that the ob-
jective does not exceed opt was compiled by encoding the constraint as a BDD
and then translating that BDD to a Boolean constraint [5].

Core We treated the rostering problem as a weighted SMT problem, using the
objective function to determine the weights. We solved the resulting weighted
SMT problem with the unsatisfiable-core method of Ansotegui et al. [6], which
we implemented as a wrapper around Yices 1.

6.4 Experimental Evaluation

First of all, in Figure 5 we present the time spent by the three SMT solving
methods when solving instances B and D using the full decisional model plus the
pattern constraint. We show that representing the pattern as hard constraints
allows us to solve the model, in contrast to representing the pattern as soft con-
straints which cannot be solved in less than 600 seconds. Note that we only have
one column when we represent the pattern as hard constraints because there is
no optimization and, hence, it is the same time for all three methods.

Instance D Instance B

Pattern HC Pattern SC Pattern HC Pattern SC

BDD Binary Core BDD Binary Core

Total time 29.5 > 600 > 600 > 600 1.08 > 600 > 600 > 600

Solve time 2.87 > 600 > 600 > 600 0.026 > 600 > 600 > 600

Fig. 5. Solving and total times (in seconds) of the three SMT solving methods when rep-
resenting the pattern as hard constraints (HC) and as soft constraints (SC) for instances
B and D.

Finally, in Figure 6 we show the performance of the three SMT solving methods
solving different models of instances A, B, C and D. Instances A and C are solved
using all the rules of their respective optimization models, while instances B and D



are solved using only a subset of the rules of their respective optimization model.
The patterns are all represented using hard constraints, and Rn refers to rule n
defined in Section 6.2.

The table of results shows that for solving these instances the core-based
method is the best solving method followed by the BDD. On one hand, we find
the optimal solution of instances A and C in 2.2 and 5.3 seconds respectively. On
the other hand, we find the optimal solution for a subset of rules of instances B
and D, the pattern and three rules for the former and the pattern and one rule
for the latter.

BDD Binary Core

Instance A: R4+R5+R6+R7+R8+R9 2.06 (0.65) 3.35 (1.91) 1.64 (0.25)

Instance C: R1 5.29 (1.09) 5.21 (1.01) 4.52 (0.36)

Instance D: pattern 29.5 (2.87)

Instance D: pattern+R1 213.46 (99.49) > 600 119.42 (5.91)

Instance D: pattern+R1+R2 > 600 > 600 > 600

Instance B: pattern 1.08 (26 ms)

Instance B: pattern+R1+R2+R3 4.98 (0.81) 9.85 (5.66) 4.43 (0.25)

Fig. 6. Total time and solving time (within parentheses) in seconds spent by the three
solving methods on solving different models of instances A, B, C and D.

7 Conclusions and Future Directions

Our work has found that for small problem instances our approach can rapidly
find optimal solutions. However, the difficulty of the instances grows rapidly as the
number of lines or number of soft constraints increase. Our expectations were that
SMT approaches would scale better than this and understanding this could prove
useful to improving the performance. We have made some attempts to identify
the difficult parts of the problem, but have not yet succeeded and we have some
ideas for improving our models.

Future work includes understanding why our current approach is not perform-
ing better and trying to solve the problem with other solvers. We also have some
ideas for improving our models. Finally, we hope that this paper could stimulate
others to attack the problem.

The traincrew rostering problem may prove to be best suited for solution by a
local search method and we think it is quite possible that further work could devise
a local search method that significantly improves upon the method currently used
by TRACSRoster.
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