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Abstract

In this thesis we present nine different SMT encodings for the Lexicographic Ordering

Constraint (Lex ), These constraints are helpful in breaking some kinds of symmetries in

decision problems. The encodings are drawn from the constraint solving literature or is a

variant of such. This thesis aims to serve as a single source for all known to date encodings

for the lexicographic ordering constraint.

For the purpose of benchmarking, the encodings are translated into an SMT suitable

form. We have done this using two methods, the first is by directly translating the encod-

ings into SMT using C# code. The second starts by rewriting the encodings in MiniZinc

language, flattening them into FlatZinc instances, then using a tool called fzn2smt to

translate them to SMT. We evaluated the encodings on a suite of instances of the Social

Golfer problem and the Balanced Incomplete Block Design problem, both are well known

for their highly symmetric models. We tried to run inference capability tests using unsat-

isfiable instances of Lex between two long vectors, also by trying to find all solutions for

instances of the BIBD problem. We used the SMT solvers Yices2 and Z3 to benchmark

the encodings.

Our results show that what we called the Recursive OR encoding performed better

than all the other encoding on most of the instances, but it was notably worse on other

instances. This behaviour is roughly shared by some of the other encodings, it shows

that different encodings perform differently on different problems. The results also show

that, in many cases, not having any symmetry braking using either of the nine encodings

performed surprisingly better.
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Chapter 1

Introduction

Modern SAT solvers are essential tools in many applications today, including solving

problems related to scheduling, verification, circuit design and more. Before to be solved,

a problem need to be modelled as a Boolean Satisfiability Problem, in which the problem is

translated to a group of Boolean constraints. These constraints are represented by groups

of Boolean formulas called Conjunctive Normal Form or CNF. The increasing complexity

of some of today’s combinatorial problems makes them difficult to be represented by only

using SAT’s Boolean formulas . Satisfiability Modulo Theories (SMT ) has been introduced

to overcome this limitation [4] [21], where problems can be encoded using logical formulas

of combinations of atomic propositions and atomic expressions in one or more theories T .

The theory part in SMT formulas enables them to naturally describe problems related to

any of the SMT supported theories, like arithmetic, arrays and bit-vectors. SMTLIB is

the standard modelling language in SMT.

The phenomenon of symmetry arises in many constraint satisfaction problem models.

A common form of symmetry is the interchangeability between elements of sets of variables

and the corresponding sets of values. An example is the ability to swap any two rows or

columns in a Latin Square while still preserving validity of its rules. Breaking symmetry

reduces the search space, which could improve performance [49] [15].

The Lex ordering constraint enforces lexicographic ordering between two vectors of

variables, which makes it useful in breaking symmetry between rows and between columns

of a matrix of decision variables [53] [23] [3]. For example, enforcing Lex between each

row and its next in a Latin Square eliminates the interchangeability between the rows, the

same applies for the columns.

1



1.1 Motivation and Aims

A recent study demonstrated that SMT solvers have a competitive performance in solv-

ing Constraint Satisfaction Problems (CSP). In that study, Bofill et al [12] built a tool

called fzn2smt to translate CSP instances expressed in Flatzinc into the SMT language

SMTLIB1.2 standard. Then they solved these instances using the Yices1 SMT solver [22].

Yices1, in general, performed better than some well known constraint solvers. This per-

formance makes encoding CSP problems in SMT a promising research line. Bofill’s results

show that fzn2smt and Yices1 underperformed on instances that involve global constraints,

some of them have the lexicographic ordering constraint. The aim of this thesis is to find

whether there are better ways to encode the lexicographic constraint in SMT. We will try

this by studying and benchmarking different SMT encodings of the lexicographic order-

ing constraint and compare their performance. We will also study the effect that Bofill’s

translator has on these encodings when it is used to produce them.

1.2 Approach and Results

This thesis presents nine different encodings of the lexicographic ordering constraint.

1. The AND encoding [27]

2. The AND CSE encoding

3. The OR encoding [27]

4. The OR CSE encoding

5. The Recursive OR encoding [30]

6. The Arithmetic encoding [27]

7. Harvey’s encoding [27]

8. The Alpha encoding [30]

9. The AlphaM encoding [1]

Seven of the encodings are obtained from the literature then for the purpose of bench-

marking translated into an SMT suitable form. We have done this using two methods, the

first is by directly translating the encodings into SMT. The second follows Bofill’s method

2



of translating Minizinc instances to SMT using MiniZinc’s mzn2fzn and the fzn2smt tool.

It starts by rewriting the encodings in MiniZinc language, flattening them into FlatZinc

instances using MiniZinc’s mzn2fzn tool, then translating them to SMT using fzn2smt. We

evaluate the encodings on a suite of instances of the Social Golfer problem and Balanced

Incomplete Block Design. Both are well known for their highly symmetric models. We

also tried to run inference capability tests using unsatisfiable instances of Lex between two

long vectors and by trying to find all solutions for some instances of the Balanced Incom-

plete Block Design problem. We used Yices2 [22] and Z3 [17] SMT solvers to benchmark

the encodings.

The results in Chapter 4 are for the benchmarking suite problems for each of the SMT

solvers. We evaluated the performance of each encoding by recording the time it takes

the solver to solve its instances. To find the best possible typical timing for each instance,

we ran 30 different samples per instance. These samples were generated by randomly

arranging the lines of code of the instances.

To test the effect of each encoding on the benchmarking problems, we also ran tests on

all the instances without including any symmetry braking constraints (No Lex). Although

many results show that the No Lex has better timings than all of the encodings, the picture

would be completely different in cases of unsatisfible instances or when searching for all

possible solutions, as we will see in the all solutions benchmarks section. In the cases of

unsatisfible instances and all solutions, a solver needs to explore all possible paths of the

search tree to find all solutions or to prove none is exists. Symmetry breaking aims to

reduce number of these paths and makes the solving process runs faster. An example to

this effect is clear in the results of the unsatisfible instance of 8-4-4 in the result tables for

the BIBD problem.

1.3 Contributions and Results

This thesis is the first collection of all known to date encodings for the lexicographic order-

ing constraints. We translated and evaluated these encodings in SMT. Our benchmarks

results show that, typically, formula size could greatly affect the solving time. Our results

also show that different encoding perform differently on different instances, this implies

that using specialized algorithms to propagate Lex might be better than decomposing it

into many smaller constraints. The results also proved that Bofill et al would have gen-

erally got better performances if they had used a direct translation to SMT where it is

3



possible instead of using the fzn2smt. One surprising finding in this research, is that in the

long vectors test, which are large instances of pure Lex, the DNF OR encoding performed

better than the CNF AND encoding. CNF is the modelling language for SAT solvers,

which are at the heart of the SMT solving process.
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Chapter 2

Background

2.1 Boolean Satisfiability

The Boolean Satisfiability Problem (SAT) is the problem of finding one or more assign-

ments for a propositional formula which evaluate it to true, or proving no such assignment

exists.

The kind of propositional formulas that Boolean satisfiability deals with are formulas

composed of Boolean variables connected with relations of Boolean algebra. The basic

forms of these relations are AND, OR and NOT (∧,∨,¬).

Let A, B and C be Boolean variables. The following three formulas are examples of

propositional formulas.

A ∨B (2.1)

(A ∨B) ∧ ¬C (2.2)

¬C (2.3)

A single Boolean variable is a formula and a formula with no variables is called an

empty formula.

Let α, β be propositional formulas, from the above examples we can note that all the

following are also propositional formulas:
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α ∧ β

α ∨ β

¬α

Throughout this thesis we will use formula to refer to a propositional formula and

variable for Boolean variable .

Finding an assignment for a Boolean formula or proving none exists is the main goal

of the Boolean SAT. A valid assignment for a formula is the set of true and false values

that can be assigned to all of its variables which evaluates the formula to true. Formulas

that have one or more valid assignment are denoted satisfiable (Sat), while the ones with

no such assignment are called unsatisfiable (Unsat). Here are some examples of formulas

and their satisfying assignments:

(A ∨ ¬B) ∧ (¬A ∨ ¬B) A = true and B = false

(A ∨ ¬B) ∧ (¬A ∨ ¬B) A = false and B = false

(¬A ∨B) ∧ (A ∨B) ∧ ¬B Unsat (has no satisfying assignment)

2.1.1 Conjunctive Normal Form

Conjunctive Normal Form or CNF can be regarded as an input language to almost all

current SAT solvers. Before solving a combinatorial problem using SAT, the problem

needs to be translated or encoded in Conjunctive Normal Form.

Conjunctive Normal Form is a conjunction of disjunctions. It is conjunctions of clauses

in which each clause is formed of disjunction of literals. A literal is a variable in one logical

state. For any variable A, A is a literal and ¬A is regarded as a different literal.

The following is an example of a formula in CNF:

(A ∨B) ∧ (A ∨ ¬B ∨ ¬C) ∧D

In the above formula, A,B,C and D are literals, so are their negations. (A ∨ B) is a

clause and also (A∨¬B∨¬C). D at the end of the formula is called a unit clause, which is

6



a clause that contains only one literal. We will see later how unit clauses are very helpful

in solving CNF formulas.

Using CNF has it is advantages, among them are, transforming any propositional

formula to CNF is relatively easy, can be done in a linear time and produces a formula

of a linear size compared to the original but with more variables [16]. Also, the structure

of the encoding facilitated relatively small but efficient algorithm to solve SAT problems,

namely algorithms based on the DPLL algorithm [16].

2.2 SAT Solvers

SAT problem was the first problem to be proven to be NP-Complete [14]. A consequence

of SAT’s NP-Completeness is that there are no known algorithms that can solve worst-

case instances of SAT in a feasible time. However, the importance of SAT solving to a

wide range of applications made it an active research field during the last decade. The

advances in modern SAT solvers made them efficient in solving many difficult real world

problems on different domains, this success drove the development of SAT solvers which

in turn inspired more applications [44].

2.2.1 DPLL algorithm

most modern SAT solvers are based on the DPLL (Davis, Putnam, Logemann and Love-

land) algorithm, which is a Search-Backtracking algorithm presented by Davis et al in

1962 [16].

DPLL algorithm works only on formulas in CNF. To solve a CNF formula, DPLL first

tries to simplify the input CNF, then selects one of its literals and assign it a value, either

true or false, and checks whether there is a conflict. A conflicting value is a value that

evaluates a formula to false. When a conflict arose, DPLL backtracks and flips the value

of the literal. In case of no conflicts DPLL picks another literal, assigns it a value and

repeats the same operation. DPLL works recursively though all the literals in the formula,

at the same time, trying to resolve the CNF on each recursion. DPLL terminates with

two possible outcomes, the first, it manages to assign values to all of the atoms in the

CNF, which proves the satisfiability of the formula, or it hits a conflict which cannot be

resolved by backtracking, in this case the formula is proven to be unsat.

To simplify a formula, DPLL uses two formula resolution techniques, Unit Propaga-
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tion or Boolean constraints Propagation (BCP) and the Pure Literal Rule. In both the

algorithm tries to reduce the input formula as much as possible before starting the search.

Unit propagation relies on two implications of a unit clause in a formula, for example,

let literal C be a unit clause in a formula, removing all other clauses that contain C will

not change the satisfiability state of the formula, also removing any occurrence of the

complement of C from the formula has no effect on its satisfiability. To demonstrate this

here is an example:

(A ∨B ∨ C) ∧ (¬A ∨B) ∧ (¬B ∨ ¬C) ∧A (2.4)

B ∧ (¬B ∨ ¬C) ∧A (2.5)

B ∧ ¬C ∧A (2.6)

In (2.4), A forms a unit clause, so (A ∨ B ∨ C) and ¬A were eliminated from the

formula. This resulted in B being the new unit clause as shown in formula (2.5), so we

propagate B. The technique is to keep applying unit propagation till no chances of further

simplifying the formula. (2.6) can not be simplified again, because all clauses are unit,

so from (2.6), the satisfying assignment for the formula is B = true, C = False and

A = true . If the propagation resulted in an empty clause then the formula is proven to

be unsatisfiable as shown by the following.

(A ∨ ¬B) ∧ (A ∨B) ∧ ¬A (2.7)

Propagate ¬A, (¬B) ∧ (B) ∧ ¬A (2.8)

Propagate B, (Empty Clause) ∧ (B) ∧ ¬A (2.9)

As for the Pure Literal Rule, a pure literal is a Boolean variable that only appears in a

single Boolean state throughout its occurrences in a CNF formula. The Pure Literal Rule

states that a CNF formula remains equisatisfiable when setting all of its pure literals to

True. This property implies that removing all clauses containing pure literals also retains

the equisatisfiability. For example, consider the following formula.

8



(A ∨B) ∧ (A ∨ ¬B) ∧ ¬B (2.10)

A is Pure, A = True (2.11)

A ∧ ¬B (2.12)

Both (2.10) and (2.12) are logically equivalent and their only satisfiable assignment is

A = True and B = False

In the next pseudo code for the DPLL algorithm, PureLiteral(φ) and UnitPropagate(φ)

will apply the Pure Literal rule and Unit Propagation on the input formula φ. PickLiteral(φ)

picks a different literal l from φ on each run. On a successful pick, l gets assigned a value,

a failure means that there are no more literals to choose, i.e. all literals in φ have been

successfully assigned a value and a satisfiable assignment has been found.

Algorithm 1 : DPLL (φ)

Require: CNF Formula: φ
Ensure: Satisfiabilty of φ: (True, False)
1: φ = PureLiteral(φ)
2: φ = UnitPropagate(φ)
3: if 2 /∈ φ (2 = An empty clause) then
4: if PickLiteral(φ) then
5: if DPLL(φ ∧ l) (Assigns True to l in φ) then
6: return True
7: end if
8: if DPLL(φ ∧ ¬l) (Assigns False to l in φ) then
9: return True

10: end if
11: else
12: return True
13: end if
14: end if
15: return False

2.2.2 SAT Solvers Enhancements

The importance of SAT solving to many applications motivated an intensive research

efforts to improve the DPLL algorithm [45] [46]. The performance of Modern SAT solvers

has been greatly increased by fine tuning DPLL and introducing new techniques, such as

Optimized BCP, Conflict Analysis, Clause Learning, Heuristic Strategies and Restarts,

in addition to efforts to increase performance by using SAT solvers in parallel to solve

problems [61] [34]. Here we will briefly discuss some of the important enhancements.

• Optimized BCP

9



When solving SAT problems most of the SAT Solvers’ running time is spent on

BCP, that is the case because whenever the DPLL algorithm assigns a value to a

literal the propagation algorithm is continuously revisiting all the clauses checking

whether any of them have become unit clauses. To ease this overhead Moskewicz et al

introduced the Watched 2-Literals method which greatly improved the performance

of SAT solving [46].

• Conflict Analysis and Clause Learning

Most of state-of-the-art SAT solvers are Conflict Driven Clause Learning solvers

(CDCL), where the search is guided by the analysis of conflicts to produce learned

clauses and strategies to decide where to Back-Jump from a conflict (Non-Chronological-

Backtracking) [62]. Conflict analysis is also used to calculate when it is a good time

to decide that the current solving efforts are unfruitful then restart. Restarts throw

away all current assignments but preserve some of the useful learned clauses. These

methods are used to prune the search space and guide the solver to more promising

paths to find a SAT assignment.

• Heuristic Strategies

Heuristic Strategies concerned with the question; After propagation which literal to

pick next to assign a value?. This choice could greatly affect the solving process,

making bad ones could lead the solver to endless paths of unsat assignments. There

are different heuristic strategies around but all of them depend on conflict analysis

[62].

2.2.3 Applications of SAT Solvers

SAT solving has provided solutions for many applications, these include; software and

hardware testing [39] [43], model checking and design verification and debugging [11]

[55], in fact SAT solvers works as a backbone for some of today’s digital circuits design

applications [52] [42].

Take Model Checking application as an example, most of the SAT based model checking

applications rely on the concept of a Safety Properties [44] [11] [37], which is a set of

Boolean constraints that must be satisfied on all states of the model. To check a model

SAT solvers are used to try to find a complement of its Safety Properties, which is basically

trying to find any assignment that makes the model fail.
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Although Verification and Model Checking are the main application areas of SAT

solvers, they also show promising performances in other real world domains, such as

scheduling, planning [60] and optimisation using Max-SAT [28].

2.3 Satisfiability Modulo Theories

As SAT solvers started to gain popularity in more applications, the need for more expres-

sive modelling language beyond the SAT’s CNF became more apparent. Some problems

could be naturally represented by means of one or more background theories. For exam-

ple, the arithmetic elements in a code, the physical properties of a system or the states

of a model could be represented by the theory of linear arithmetic [10]. Surely some of

these problems could still be modelled using CNF, but doing this could result in very large

and tedious formulas and with a different abstraction level from the original model [51].

Consider the formula A + B = 3 and A − B = 1, where 1 ≤ A ≤ 3 and 1 ≤ B ≤ 3 for

integers A and B. A possible CNF encoding for the formula (A+B = 3)∧ (A−B = 1) is:

A1 = true for A = 1, A2 = true for A = 2 and A3 = true for A = 3

B1 = true for B = 1, B2 = true for B = 2 and B3 = true for B = 3

Possible values are {1, 2, 3}. Encoded by the constraints in (2.13)

Conflicting values for (A,B) are (1, 1), (2, 2), (3, 3), (3, 1), (1, 3), (2, 3), (3, 2)

The conflicting values are encoded by the constraints in (2.14) and (2.15)

The CNF :

(A1 ∨A2 ∨A3) ∧ (B1 ∨B2 ∨B3) ∧ (2.13)

(¬A1 ∨ ¬B1) ∧ (¬A2 ∨ ¬B2) ∧ (¬A3 ∨ ¬B3) ∧ (¬A3 ∨ ¬B1) ∧ (2.14)

(¬A1 ∨ ¬B3) ∧ (¬A2 ∨ ¬B3) ∧ (¬A3 ∨ ¬B2) (2.15)

There are other ways to encode the previous formula in CNF [29] [58] [56], but intro-

ducing more variables other than A and B is unavoidable in all of them. If we repeat the

same process but with domains of −10 ≤ A ≤ 10 and −10 ≤ B ≤ 10, we would need 21

auxiliary variables in addition to a special algorithm to figure out all the conflicting pairs

of values. The answer to this problem was extending the available SAT solvers to deal

directly with atoms in one or more background theories T instead of encoding them into
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CNF.

Procedures for reasoning over background theories (T − Solvers) have been gain-

ing interest since the 1970s and already employed in some domains [47] [54] [20], such

as Knowledge Representation and Reasoning, Constraint Satisfaction Problems and AI.

However, these procedures could not handle the reasoning with respect to the Boolean

component of a formula [51], so procedures which combine theory reasoning with Boolean

satisfiability were matured over the last three decades [33] [36] [32] [4] [19] to leverage the

strengths of both sides. This combination of procedures are called Satisfiability Modulo

Theories or SMT.

Satisfiability Modulo Theories is the problem of deciding the satisfiability of a proposi-

tional formula φ with respect to a background theory T [7]. In other words the problem

of finding assignment µ in T that satisfy the formula φ. SMT deals with formulas of com-

bination of atoms in propositional logic and others in one or more background theories,

as shown in the next example.

(x ≥ 2) ∧ (x ≤ 0 ∨ y ≥ 0) ∧A ∧B (2.16)

x ≥ 2, x ≤ 0 and y ≥ 0 are atoms in the theory of linear arithmetic (T − atoms). x and

y are integers.

SMT solving is addressed by integrating a SAT solver with one or more theory solvers

(T −Solvers). There are two approaches to achieve this integration, the first is to translate

the input formula into equi-satisfiable proportional formula then use an off-the-shelf SAT

solver to produce a satisfiable assignment. A theory solver (T − Solver) is used to check

the validity the assignment with respect to T , this method is called the Eager approach.

The second method and the widely adapted by the SMT community is called the Lazy

approach [10] [51], in which the T − atoms in the input formula are abstracted and

fed to the SAT solver to produce an assignment. The T − Solver keeps checking the

assignment while it is being built for any conflicts in T (T − Inconsistency). In case of

T − Inconsistency the T − Solver generates a conflict clause (lemma) then adds it to

the formula and feed it back to the SAT solver. Using the previous formula (2.16) as an

example:
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SMT solver input :

(x ≥ 2) ∧ (x ≤ 0 ∨ y ≥ 0) ∧A ∧B (2.17)

Abstarcting T − atoms :

c = (x ≥ 2), d = (x ≤ 0) and e = (y ≥ 0) (2.18)

SAT solver input :

c ∧ (d ∨ e) ∧A ∧B (2.19)

SAT solver returns a partial model :

c = true, d = true (2.20)

T − solver checks the partial model for any T − Inconsistency :

(x ≥ 2) and (x ≤ 0) are in Conflict (2.21)

So the partial model (c = true, d = true) is T − Inconsistent (2.22)

T − solver notifies the SAT solver about the conflict (2.23)

The lemma ¬(c ∧ d) is added to the formula (2.24)

SAT solver Backjumps and adjusts the model (2.25)

2.3.1 SMTLIB

SMT-LIB is the standard modelling language for Satisfiability Modulo Theories. It was

introduced by the SMT-LIB initiative [7] to serve as a standard benchmarking suite for

their annual SMT solvers competition [13] and a standard language and interfaces for

the different SMT solvers [8]. The SMT-LIB standard promotes ease of parsing over

human readability, that is because SMT-LIB code is meant to be generated by automated

modelling tools, also to make it easier for the solvers to parse the code so easier for their

developers to adopt the standard [7].

2.3.2 SMT Applications

The modular concept of SMT solvers enables them to easily support new theories which

could open the doors for more applications . The scope of applications of SMT solvers

currently ranges over software testing and verifications, model checking and theorem prov-

ing. Companies like Microsoft developing their own SMT solver [17] and currently using
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it as a main tool for their software verification and unit test generation [18]. Another well

known innovative company, SRI International [2], rely on the integration of their SMT

solver Yices to build their theorem proving, model checking and probabilistic consistency

tools [22]. Alongside the previous examples, the SMT solver Yices proved to be very com-

petitive on a suit of benchmarks of problems related to scheduling, optimisation, design

and others [12].

2.4 Symmetry in Satisfiability

A symmetry in satisfiability can be defined as permutations of a set of assignments of a

formula which preserve its satisfiability state. For instance, if M is a set of all assignments

that satisfies the formula φ, then any bijection f(M) that maintains the satisfiability

of φ is a symmetry of M . Symmetries arises in models of many satisfiability problems,

where pairs of values or variables in a formula can be interchanged without affecting

its satisfiability state [40] [50]. For example, because of the property of commutativity

(¬A∨B)∧ (A∨¬B) has a symmetry between its variables A and B, which maps A→ B

and B → A. This type of symmetry is known as variable symmetry. Another type of

symmetry appears when the interchangeability is possible between values. For instance,

in (¬A∨B)∧ (A∨¬C)∧ (¬B∨C) we could flip any assignments of A and B with no effect

on the outcome of the formula. Variable and value symmetries could exist simultaneously

in the same model, this case is known as the mixed symmetry.

Symmetries in satisfiability solving create redundant paths to solutions as well as to

non-solutions in the search space. Eliminating Symmetries could save a solver time and

resources spent in exploring those paths in search of a solution [25] [49] [15]. There are two

main approaches to symmetry breaking in satisfiability [31] [24], both are based on adding

extra constraints to prune the redundant branches of the search tree. The main difference

between the two lays on when to add the symmetry breaking constraints. One approach

adds a set of symmetry breaking constraints to the problem’s model before starting the

search, it is called static symmetry breaking. The second, which is known as dynamic

symmetry breaking, is based on trying to guide the search process away form symmetries

by adding the appropriate symmetry breaking constraints during search.
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2.4.1 Symmetry Braking and the Lexicographic Order Constraint

A well known case of symmetries in combinatorial problems is the interchangeability be-

tween rows and between columns of matrices of decision variables. An n×m size matrix

has a n!×m! possible symmetries among each pair of rows and pair columns. The following

example shows the possible rows and columns permutations for a 2 × 3 array.

 a b c

d e f

 b a c

e d f

 c b a

f e d

 a c b

d f e

 c a b

f d e

 b c a

e f d


 d e f

a b c

 e d f

b a c

 f e d

c b a

 d f e

a c b

 f d e

c a b

 e f d

b c a


Row and column symmetries are closely related to some real world problems, specifically

whenever matrices are employed to model a problem, which is a common practice in

scheduling problems for instance.

The Lexicographic order constraint has been proved useful in breaking certain kinds

of symmetries in matrices of decision variables. To break all row and column symmetries

Crawford et al [15] introduced what is now known as the lex-leader constraints. An

example provided by Frisch et al [26] shows how to apply row-wise lex-leader on a 2 × 3

array like the one in the previous example, it is built on the idea that an order of a

matrix must be lexicographically less than or equal that all of its permutations, to do so,

a matrix is transformed into a single row of elements, starting from Left-Right-Top-Down

our previous 2× 3 matrix becomes [a, b, c, d, e, f ] and the symmetry breaking constraints

are presented as follows:

[
a b c d e f

]
≤Lex

[
b a c e d f

]
[
a b c d e f

]
≤Lex

[
c b a f e d

]
[
a b c d e f

]
≤Lex

[
a c b d f e

]
[
a b c d e f

]
≤Lex

[
c a b f d e

]
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[
a b c d e f

]
≤Lex

[
b c a e f d

]
[
a b c d e f

]
≤Lex

[
d e f a b c

]
[
a b c d e f

]
≤Lex

[
e d f b a c

]
[
a b c d e f

]
≤Lex

[
f e d c b a

]
[
a b c d e f

]
≤Lex

[
d f e a c b

]
[
a b c d e f

]
≤Lex

[
f d e c a b

]
[
a b c d e f

]
≤Lex

[
e f d b c a

]
This will eliminate all the 11 permutations from the previous example retaining only

the following assignment:

 a b c

d e f


Although Crawford’s method is complete, i.e., beaks all row and column symmetries in

n×mmatrices, it is impractical specially on large matrices, because it produces (n!×m!)−1

symmetry breaking constraints, which could add burdens that outweigh the benefit of any

potential search space pruning.

Based on Crawford’s work and by introducing number of symmetry breaking (SB)

constraints linear to number of rows and columns in matrices, Shlyakhter [53] and Flener

et al [23] independently managed to break not all but a great percentage of symmetries

in matrices. This is done by adding a Lex constraint between each pair of neighbouring

rows and columns, this introduces (n − 1) + (m − 1) number of SB constraints. Again,

using the matrix from the previous examples, this method can be presented as follows:
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 a b c

d e f



≤Lex between rows[
a b c

]
≤Lex

[
d e f

]

≤Lex between columns[
a d

]
≤Lex

[
b e

]
[
b e

]
≤Lex

[
c f

]
We used this method to model all the symmetry breaking constraints we used in this

research.

Lex constraint could be also used to break both variable and values symmetries at the

same time [59].
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Chapter 3

Encodings for the Lex Ordering

Constraint

This chapter presents nine different encodings for the Lex Ordering Constraint. Each of

which is drawn from the constraint solving literature or is a variant of such. Throughout,

we consider a non-strict Lex constraint between two vectors A and B of finite-domain

variables. Both vectors are considered to be of length n. We write such constraint as

A ≤lex B. We assume that n ≥ 2, because Lex on two vectors of n = 1 is simply

A[1] ≤ B[1].

We shall use the term mzn2smt to refer to Bofill’s method of translating a MiniZinc

1.6 [1] specification to SMT 1.2, it is done in two steps, starts by using MiniZinc to produce

FlatZinc and then passing this through fzn2smt to produce SMT. We chose this pipeline

at this stage of our research just for convenience and we are aware of some of its possible

drawbacks. For instance, some constraints could be naturally represented in SMT, but

when they go through the translation process they get broken into smaller ones.

Untitled Document

Exported at: Thu Apr 23 2015 21:37:09 GMT+0100 (GMT Daylight Time)

mzn2smt

mzn2fzn

MiniZinc
Code

FlatZinc
Code fzn2smt

SMT1.2
Code

Figure 3.1: The mzn2smt Pipeline

18



Each of the following subsections presents an encoding of the Lex constraint followed

by the result of passing it through the mzn2smt pipeline. Since most of the encodings

are non-CNF, we decided to measure their sizes by number of atom occurrences, rather

than number of constraints . T1[i], T2[i], . . . are auxiliary Boolean arrays introduced by

the mzn2smt. The index i of these arrays ranges from 1 and n. The generated SMTLIB

code does not literally contain arrays; we use the notation as a clean way of naming a set

of n distinct SMT variables.

3.1 The AND Decomposition Encoding

This encoding, which is considered by Frisch et al [27], decomposes Lex constraint into a

conjunction of smaller constraints as shown in the following formula, and because of that

it is known as AND Decomposition.

A[1] ≤ B[1]

n−1∧
i=1

(
i∧

j=1

(A[j] = B[j]))→ (A[i+ 1] ≤ B[i+ 1])

This encoding produces (n2+n)
2 atom occurrences, which makes the produced formula

grow quadratically.

A strict ordering can be obtained by adding the constraint (A[n − 1] = B[n − 1]) →

(A[n] < B[n]) to the encoding and reducing the range of i to n− 2 in the conjunction.

After translation using mzn2smt:

A[1] ≤ B[1] (3.1)

1 ≤ i ≤ n− 1 T1[i]⇔ (A[i] = B[i]) (3.2)

1 ≤ i ≤ n− 1 T2[i]⇔ (A[i+ 1] ≤ B[i+ 1]) (3.3)

1 ≤ i ≤ n− 2 T3[i]⇔
i+1∧
j=1

T1[j] (3.4)

¬T1[1] ∨ T2[1] (3.5)

1 ≤ i ≤ n− 2 ¬T3[i] ∨ T2[i+ 1] (3.6)

This translation also has an O(n2) growth and produces (n2+13n)
2 +9 atom occurrences.
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A strict ordering can be obtained by adding the constraint T2[n− 1] ⇔ (A[n] < B[n]) to

the encoding and reducing the range of i to n− 2 in (3.3).

3.2 The AND Decomposition Encoding using Common Sub-

expression Elimination

Common Sub-expression Elimination helps in reducing formula size by substituting any

recurring parts of the formula with variables. For example, by applying Lex using the

AND encoding between vectors A and B, both of a size 4, we get the following formula:

(A[1] ≤ B[1]) (3.7)

(A[1] = B[1])→ (A[2] ≤ B[2]) (3.8)

((A[1] = B[1]) ∧ (A[2] = B[2]))→ (A[3] ≤ B[3]) (3.9)

((A[1] = B[1]) ∧ (A[2] = B[2]) ∧ (A[3] = B[3]))→ (A[4] ≤ B[4]) (3.10)

The above formula has a quadratic size growth, which can be eliminated using the

Boolean array X[i] to perform CSE. The following resulting formula has a linear growth:

(A[1] ≤ B[1]) (3.11)

X[1]⇔ (A[1] = B[1]) (3.12)

X[2]⇔ (X[1] ∧ (A[2] = B[2])) (3.13)

X[3]⇔ (X[2] ∧ (A[3] = B[3])) (3.14)

X[1]→ (A[2] ≤ B[2]) (3.15)

X[2]→ (A[3] ≤ B[3]) (3.16)

X[3]→ (A[4] ≤ B[4]) (3.17)

The following encoding, which we call AND CSE, is similar to the AND encoding and

produces a similar formula too. The difference is, in this encoding we use a Boolean array

to eliminate common sub-expressions in the formula as presented in line (3.20).

The purpose of this encoding is to compare performance between using the nested

loops as in line (3.4) in the previous encoding and this approach.
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The AND encoding using eliminating common sub-expressions using the Boolean array

X[i]:

A[1] ≤ B[1] (3.18)

X[1]⇔ (A[1] = B[1]) (3.19)

1 ≤ i ≤ n− 2 X[i+ 1]⇔ (X[i] ∧ (A[i+ 1] = B[i+ 1])) (3.20)

1 ≤ i ≤ n− 1 X[i]→ (A[i+ 1] ≤ B[i+ 1]) (3.21)

This formula produces 5n− 5 atom occurrences. A strict ordering can be obtained by

adding the constraint X[n− 1]→ (A[n] < B[n]) to the encoding and changing the range

of i in (3.21) to n− 2.

After translation using mzn2smt:

A[1] ≤ B[1] (3.22)

X[1]⇔ (A[1] = B[1]) (3.23)

1 ≤ i ≤ n− 2 T1[i]⇔ (A[i+ 1] = B[i+ 1]) (3.24)

1 ≤ i ≤ n− 1 T2[i]⇔ (A[i+ 1] ≤ B[i+ 1]) (3.25)

1 ≤ i ≤ n− 2 X[i+ 1]⇔ (X[i] ∧ T1[i]) (3.26)

1 ≤ i ≤ n− 1 ¬X[i] ∨ T2[i] (3.27)

This formula produces 9n− 11 atom occurrences.

A strict ordering can be obtained by adding the constraint T2[n− 1]⇔ (A[n] < B[n])

to the encoding and reducing the range of i to n− 2 in (3.25).

3.3 The OR Decomposition Encoding

This encoding, also considered by Frisch et al [27], decomposes the Lex constraint into

a formula of smaller constraints disjoined together, ie a DNF formula. It is traditionally

known as the OR decomposition.
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(A[1] < B[1]) ∨

(

n−1∨
i=1

(

i∧
j=1

(A[j] = B[j])) ∧ (A[i+ 1] < B[i+ 1])) ∨ (3.28)

(
n∧

i=1

(A[i] = B[i])) (3.29)

This encoding produces (n2+3n)
2 atom occurrences, which, like AND encoding, makes

the produced formula grow quadratically. A strict ordering can be obtained by removing

(3.29) from the above formula.

After translation using mzn2smt:

1 ≤ i ≤ n T1[i]⇔ (A[i] = B[i]) (3.30)

1 ≤ i ≤ n T2[i]⇔ (A[i] < B[i]) (3.31)

1 ≤ i ≤ n− 1 T3[i]⇔
i∧

j=1

T1[j] ∧ T2[i+ 1] (3.32)

T3[n]⇔
n∧

i=1

T1[i] (3.33)

(

n−1∨
i=1

T3[i]) ∨ T2[1] ∨ T3[n] (3.34)

This encoding produces (n2+15n)
2 atom occurrences. A strict ordering can be obtained

by removing T3[n] from (3.34).

3.4 The OR Decomposition Encoding using Common Sub-

expression Elimination

This OR decomposition, we call it OR CSE, uses a Boolean array to eliminate common

sub-expressions from the formula. X[i] is a Boolean array with an index range of 1 to n,
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it is used to eliminate common sub-expressions as shown in the following formula.

((A[1] < B[1]) ∨

(
n−1∨
i=1

X[i] ∧ (A[i+ 1] < B[i+ 1])) ∨X[n]) (3.35)

X[1]⇔ (A[1] = B[1]) (3.36)

1 ≤ i ≤ n− 1 X[i+ 1]⇔ (X[i] ∧ (A[i+ 1] = B[i+ 1])) (3.37)

This encoding produces 5n − 1 atom occurrences. A strict ordering can be obtained

by removing X[n] from (3.35).

After translation the OR using mzn2smt we get:

1 ≤ i ≤ n X[1]⇔ (A[1] = B[1]) (3.38)

1 ≤ i ≤ n− 1 T2[i]⇔ (A[i+ 1] = B[i+ 1]) (3.39)

1 ≤ i ≤ n T3[i]⇔ (A[i] < B[i]) (3.40)

1 ≤ i ≤ n− 1 X[i+ 1]⇔ (X[i] ∧ T2[i]) (3.41)

1 ≤ i ≤ n− 1 T4[i]⇔ (X[i] ∧ T3[i+ 1]) (3.42)

(
n−1∨
i=1

T4[i]) ∨ T3[1] ∨X[n] (3.43)

This encoding produces 13n− 7 atom occurrences. A strict ordering can be obtained

by removing X[n] from (3.43).

3.5 The Recursive OR Decomposition

This variant of the OR encoding, presented by Gent et al [30], decomposes Lex into a

set of nested of ORs and ANDs, unwinding them produces the same OR encoding. We

produced this encoding using a recursion.

A[1] < B[1] ∨ (A[1] = B[1] ∧ (A[2] < B[2] ∨ (A[2] = B[2] ∧ (... ∧ (A[n] ≤ B[n])...))))

We get the above encoding using the following constraints. We introduced the boolean

array X, of a size n, to eliminate common sub-expressions and to simulate a recursion.
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X[1] (3.44)

X[n]⇔ (A[n] ≤ B[n]) (3.45)

1 ≤ i ≤ n− 1 X[n− i]⇔ (A[n− i] < B[n− i] ∨

(A[n− i] = B[n− i] ∧X[n− i+ 1])) (3.46)

The Recursive OR Decomposition produces 2n atom occurrences. It can be made

strict by changing (A[n] ≤ B[n]) in (3.45) to (A[n] < B[n]).

The mzn2smt translation of the recursive OR is as follows:

X[1] (3.47)

1 ≤ i ≤ n T1[i]⇔ (A[1] = B[1]) (3.48)

1 ≤ i ≤ n T2[i]⇔ (A[1] < B[1]) (3.49)

X[n]⇔ (T1[n] ∨ T2[n]) (3.50)

1 ≤ i ≤ n− 1 T3[i]⇔ (X[i]⇔ T2[i]) (3.51)

1 ≤ i ≤ n− 1 T4[i]⇔ (T1[n− i]⇔ X[n− i+ 1]) (3.52)

1 ≤ i ≤ n− 1 T4[i] ∨ T3[n− i] (3.53)

This translation produces 12n−4 atom occurrences. It can be made strict by removing

T1[n] from (3.50).

3.6 The Arithmetic Lex Encoding

Another way of encoding Lex constraint is using an arithmetic constraint. This constraint

considered by Frisch et al [27] , it compares the sum of the values of two vectors with each

value multiplied by a factor that represents the significance of the values. We assume all

the variables in A and B have a domain of 1 to d.

n∑
i=1

A[i]× dn−i ≤
n∑

i=1

B[i]× dn−i

mzn2smt translation produces exactly the same formula above.

This encoding is limited by the size of data type used to represent domains of values,
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for example, if A[1] × dn−1 exceeds the maximum value that can be stored in a 32-bit

integer this would cause an arithmetic overflow and a system error in computers. A strict

ordering can be achieved by changing ≤ to <.

3.7 Harvey Lex Encoding

This alternative arithmetic encoding is introduced by Frisch et al [27] who attribute it to

Warwick Harvey. The general formula of this encoding is:

(A[1] < (B[1] + (A[2] < (B[2] + (...+ (A[n] < (B[n]) + 1)...)))) = 1

To remove the ellipsis and encode the decomposition in Minizinc, we introduce X[i], a

Boolean array used to eliminate common sub-expressions, where i is an index with possible

values from 1 to n− 1.

X[1] (3.54)

X[n]⇔ (A[n] < (B[n] + 1)) (3.55)

0 ≤ i ≤ n− 2 X[n− i− 1]⇔

(A[n− i− 1] < (B[n− i− 1] +Bool2Int(X[n− i]))) (3.56)

This encoding produces 2n− 1 atom occurrences. We get a strict version by changing

B[n] + 1 to B[n] + 0 in (3.55). 1 The translation from MiniZinc to SMT using mzn2smt

produces the following. int[i] is an integer array introduced by fzn2smt to encode the

Bool2Int function of MiniZinc. int[i] has a domain of 0 to 1 and a size of 1 to n
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X[1] (3.57)

X[n]⇔ ((A[n]−B[n]) ≤ 0) (3.58)

1 ≤ i ≤ n int[i] ≤ 1 (3.59)

1 ≤ i ≤ n int[i] ≥ 0 (3.60)

1 ≤ i ≤ n− 1 X[i+ 1]→ (int[i] = 1) (3.61)

1 ≤ i ≤ n− 1 ¬X[i+ 1]→ (int[i] = 0) (3.62)

1 ≤ i ≤ n− 1 X[n− i]⇔ ((A[n− i]−B[n− i]− int[i]) ≤ −1) (3.63)

This translation produces 8n− 3 number of atom occurrences. We get a strict version

by changing ((A[n]−B[n]) ≤ 0) to ((A[n]−B[n]) < 0) in (3.58).

3.8 Alpha Lex Encoding

This encoding was introduced by Gent et al [30], we called it Alpha, because it uses a

Boolean array as an index to track the relations between values. This Boolean array is

called α[i] and behaves as follows:

1 ≤ i ≤ n

1 ≤ j ≤ i

if α[i] = true then A[j] = B[j] (3.64)

if (α[i] = true and α[i+ 1] = false) then A[i+ 1] < B[i+ 1] (3.65)

This makes all values from α[1] to α[i] equal to 1 while A[i] = B[i] holds, and equal to

0 from the first occurrence of A[i] < B[i] till the end of vectors.
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α[0] (3.66)

0 ≤ i ≤ n− 1 ¬α[i]→ ¬α[i+ 1] (3.67)

1 ≤ i ≤ n α[i]→ (A[i] = B[i]) (3.68)

0 ≤ i ≤ n− 1 ((α[i]) ∧ (¬α[i+ 1]))→ (A[i+ 1] < B[i+ 1]) (3.69)

0 ≤ i ≤ n− 1 α[i]→ (A[i+ 1] ≤ B[i+ 1]) (3.70)

This encoding behaves in a way similar to the AND encoding. Line (3.66) is to guar-

antee that A[1] ≤ B[1] and if A[1] = B[1] then α[1] = true, which in turn, implies that

the next index of A is less than or equal the next index of B, this goes on till the end of

the vectors. The difference between the two encodings appears with the first occurrence

of A[i] < B[i], where ALPHA uses the constraints in lines (3.67) and (3.69) to make the

values of A[i] and B[i] after the first occurrence of A[i] < B[i] insignificant to the problem.

This encoding can be changed to a strict Lex by adding the constraint ¬α[n + 1] to

the formula. The encoding produces 9n− 6 atom occurrences.

Next is the encoding’s mzn2smt translation. Here we use α
′

instead of α because the

mzn2smt translator changed the range of α from 0 ≤ i ≤ n to 1 ≤ i ≤ n+ 1

α
′
[1] (3.71)

1 ≤ i ≤ n+ 1 T1[i]⇔ ¬α
′
[i+ 1] (3.72)

1 ≤ i ≤ n T2[i]⇔ (A[i] = B[i]) (3.73)

1 ≤ i ≤ n T3[i]⇔ (A[i] < B[i]) (3.74)

1 ≤ i ≤ n T4[i]⇔ (A[i] ≤ B[i]) (3.75)

1 ≤ i ≤ n T5[i]⇔ (α[i] ∧ T1[i+ 1]) (3.76)

1 ≤ i ≤ n ¬T1[i] ∨ T1[i+ 1] (3.77)

1 ≤ i ≤ n ¬T5[i] ∨ T3[i] (3.78)

1 ≤ i ≤ n ¬α′
[i] ∨ T4[i] (3.79)

1 ≤ i ≤ n ¬α′
[i+ 1] ∨ T2[i] (3.80)

This translation produces 18n − 3 atom occurrences and can be changed to a strict

Lex by adding the constraint ¬α[n+ 1]
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3.9 Alpha M Lex Encoding

This decomposition, which we call Alpha M, is the default decomposition used by the

Minizinc 1.6 [1]. Like the previous Alpha encoding it uses a Boolean array as a bookkeeping

mechanism for relations between the corresponding values in both vectors. The index of

the Alpha array ranges from 1 to n+ 1.

α[1] (3.81)

1 ≤ i ≤ n α[i]⇔ (((A[i] < B[i]) ∨ α[i+ 1]) ∧ (A[i] ≤ B[i])) (3.82)

Like in AND and ALPHA encodings, ALPHA M makes sure that A[1] ≤ B[1] by

setting α[1] to true, which in line (3.82) guarantees that A[2] ≤ B[2] and α[2] = true, this

continues with each next A[i], B[i] and α[i] till the first occurrence of A[i] < B[i], where

afterwards α[i+ 1] becomes false and all values of A[i+ 1], B[i+ 1] and α[i+ 2] become

insignificant.

This encoding produces 4n+ 1 number of atom occurrences and we can obtain a strict

version by adding ¬α[n+ 1] to the constraints.

After translation using mzn2smt :

α[1] (3.83)

1 ≤ i ≤ n T1[i]⇔ (A[i] ≤ B[i]) (3.84)

1 ≤ i ≤ n T2[i]⇔ (A[i] < B[i]) (3.85)

1 ≤ i ≤ n T3[i]⇔ (T2[i] ∨ α[i+ 1]) (3.86)

1 ≤ i ≤ n α[i]⇔ (T3[i] ∧ T1[i]) (3.87)

This translation produces 10n+ 1 number of atom occurrences and could be changed

to a strict Lex by also adding the constraint ¬α[n+ 1]
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Chapter 4

Experimental Results

We evaluated eight of the decompositions on solving a suite of instances of the Social

Golfers Problem (SGP) and Balanced Incomplete Block Designs Problem (BIBD), prob-

lems 010 and 028 in CSPLib [38]. Both problems are well known for their highly symmetric

models. The arithmetic decomposition is not evaluated because it is impractical to do so.

We also run inference tests on a set of unsatisfiable instances of enforcing Lex between two

long vectors. To chose the benchmarking SMT solvers, we ran performance comparison

tests between four SMT solvers, Yices1, Yices2 [22], Z3 [17] and CVC4 [9]. We decided

to use the two with the best performances and the best output format, these were Yices2

and Z3.

We ran two sets of benchmarks to evaluate the decompositions. The first, is by directly

translating each encoding to SMT using the C# programming language then benchmark

them. In the second, we were aiming to test the effect of using constraint reification on the

SMT decompositions of Lex. Constraint reification was the method chosen by Bofill et al

to translate CSP problems into SMT [12], which alongside the SMT solver Yices2, proved

competitive against some leading CSP solvers. Reifying a constraint C is reformulating it

to the form of (b⇔ C), where b is a boolean proposition. We used two off-the-shelf tools,

Minizinc’s mzn2fzn [1] and Bofill’s fzn2smt to get the reified constraints translations for

the decompositions.

Both sets of benchmarks share the same code for the benchmarking problems, the

difference is only in the code related to the different Lex constraint encodings.

We made the direct translation using a C# language code. As for the mzn2smt trans-

lation, the MiniZinc implementation includes a set of libraries to decompose global con-

straints and made to be called from MiniZinc models. We created a similar MiniZinc
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global library for each of the eight Lex decompositions, then we called them from the

benchmarking problem’s code. We modified a MiniZinc model for the problems by adding

a symmetry breaking based on lexicographical orderings constraint.

Frisch et al [27] proved that the conjunction of AND and OR encodings facilitates

a stronger Generalised Arc Consistency (GAC) than each separately, so we decided to

include AND ∧ OR in the Long Vectors instances tests and call it ANDOR. We did not

do ANDOR tests on the SGP and the BIBD because the size of the ANDOR caused

Out-of-Memory problems on most of the instances.

All benchmarks were run on a Windows PC with Intel i7 1.8Ghz processor and 8GB of

RAM and using Yices2 v2.2.1 and Z3 v4.3.0 SMT solvers on the SGP, the BIBD problems

and on the unsatisfiable instances.

We noticed that different orders of an SMT file have different solving times. To get a

mean value of solving times, we decided to run 30 samples for each instance. Each sample

is created by choosing a random ordering of the constraints from a uniform distribution

over all orderings of the sample SMT file. To generate the 30 samples we made a shuffling

script. Each figure in the tables from table 4.1 to 4.24 represents an average of 30 values

for each encoding on each instance. Figure 4.1 demonstrates the process of obtaining the

samples. We set a time-out of 300 seconds for each run for both the SMT solver.

mzn2smt

Exported at: Thu Apr 23 2015 22:01:04 GMT+0100 (GMT Daylight Time)

mzn2smt

ShufflerSMT File 30
Samples

Figure 4.1: Generating the Samples

Apart from the instance 8-4-4 of the SGP, we only used satisfiable instances for both

the SGP and the BIBD. Instances of the SGP were obtained from [35], as for the BIBD

we made our own. The instances were chosen to represent different levels of difficulty.

4.1 The Social Golfers Problem

The Social Golfers Problem is a computational problem of partitioning a set of golfers into

g groups of size s in each of w weeks such that no two players meet more that once in the

same group. An instance of the Social Golfer problem is usually denoted g− s−w, which

stand for number of groups, the group size and number of weeks. We use m = g × s to

denote the number of players
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The table below shows one possible solution to the instance 3-2-3, where rows and

columns represent players and weeks respectively, and each value in the table denotes

a group number. So as an example column 2 can be interpreted as follows; In Week2,

Player1 and Player3 meet in the first group, Player2 and Player5 meet in the second

group and Player4 and Player6 meet in the third.

Week1 Week2 Week3
1 1 1 Player1
1 2 2 Player2
2 1 2 Player3
2 3 3 Player4
3 2 3 Player5
3 3 1 Player6

The Social Golfer is known for its highly symmetric models. For example, in the

previous solution of the instance 3-2-3 of the SGP, we could swap any two rows or two

columns and still get a valid solution. The solution below is a result of swapping the first

and last rows.

Week1 Week2 Week3
3 3 1 Player1
1 2 2 Player2
2 1 2 Player3
2 3 3 Player4
3 2 3 Player5
1 1 1 Player6

We use the Lex constraint to break two groups of symmetries in the problem; symme-

tries in weeks (columns) and symmetries in players (rows). The MiniZinc model that we

used for the problem maps Players and Weeks to groups in an array as above. Symmetry

among the players is broken by constraining the rows to be in Lex increasing order and

symmetry among the weeks is broken by constraining the columns to be in Lex increasing

order.

The model that we used for the SGP is a modified model created by H. Kjellerstrand

[41] and it has two constraints : The first is to make all groups contain s players, while

the second is to make sure that each two players play together at most once in each week.

Schedule[, ] is a two dimensional integer array that holds the weekly assignment of

players to groups. Each group has exactly s players:

1 ≤ group ≤ g 1 ≤ week ≤ w (

m∑
player=1

Bool2Int(Schedule[player, week] = group)) = s

31



Where Bool2Int() is Boolean to integer converter function.

Each pair of players meet at most once

1 ≤ pa ≤ m 1 ≤ pb ≤ m

1 ≤ wa ≤ w 1 ≤ wb ≤ w

where pa 6= pb ∧ wa 6= wb

(Schedule[pa, wa] 6= Schedule[pb, wa])∨

(Schedule[pa, wb] 6= Schedule[pb, wb])

For any two distinct players, pa and pb, and any two distinct weeks, wa and wb, players

pa and pb cannot play in the same group in both week wa and wb.

From the assignment array Schedule[, ] it is clear that symmetries can happen between

weeks and between players. To break symmetry between weeks we put lex constraint

ordering between each two neighbouring columns and the same is done for players.

Lex constraint on weeks:

1 ≤ week ≤ w − 1 [Schedule[player, week] | player ∈ 1..m] ≤lex

[Schedule[player, week + 1] | player ∈ 1..m]

Lex constraint on players:

1 ≤ player ≤ m− 1 [Schedule[player, week] | week ∈ 1..w] ≤lex

[Schedule[player + 1, week] | week ∈ 1..w]

4.1.1 SGP Results using Yices2

The results of the SGP using Yices2 are arranged in four tables, two for timings for the

directly translated instances and their corresponding numbers of decisions, and similar

two for the mzn2smt translation. From Tables 4.1 and 4.4, apart from the Recursive

OR (ROR) and Harvey’s, all other encoding show similar performance with very minor

differences between timings. ROR’s average timing is greatly reduced by its timeing-out

on the instance 5-3-7, and a smaller effect by the instances 6-3-5 and 5-3-6, otherwise

it performed better than all of the other instances, and on most of the larger instances.
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Also, from the two tables, it is clear that using constraint reification greatly improved ROR

and Harvey’s timings, with not much effect on the others. Also, CSE made a negligible

difference in cases of the AND and the OR. Tables 4.3 and 4.6 show that, in general, ROR

is much faster in making decisions than all the others on most of the instances. Decisions

are assigning values to variables, and they depend on the solver’s ability to make certain

inferences. Those faster decisions imply that the ROR encoding facilitates solving the

instances using faster or fewer inferences compared to the other encodings. We compute

decision rates by dividing the average number of decisions by the average solution time

for each encoding on each instance.

Instances AND AND OR OR ROR Alpha AlphaM Harvey No Lex
G-S-W CSE CSE
5-3-5 0.27 0.28 0.27 0.29 0.17 0.27 0.25 0.42 0.38
5-3-6 1.93 1.88 2.07 1.53 9.66 1.91 1.78 3.13 164.85
5-3-7 12.36 13.59 13.65 16.18 300.00 10.73 17.84 32.51 265.53
6-3-5 0.26 0.27 0.29 0.34 0.17 0.27 0.26 0.48 0.15
6-3-6 1.54 1.76 1.94 1.88 0.97 1.69 1.83 3.18 1.69
6-3-7 7.27 7.26 7.24 6.98 12.50 6.94 6.93 10.56 119.99
6-4-4 0.72 0.69 0.65 0.66 0.42 0.65 0.68 1.11 1.15
6-4-5 4.81 5.06 5.04 4.72 2.96 4.74 4.64 6.34 9.25
8-4-4 1.12 1.03 1.21 1.25 0.62 1.16 1.00 1.71 0.88
8-4-5 10.41 10.57 9.89 10.78 6.68 10.08 10.56 21.26 23.56
8-4-6 82.84 82.16 81.60 78.15 36.75 90.06 82.68 127.09 57.63

Arith-mean 11.23 11.32 11.26 11.16 33.72 11.68 11.68 18.89 58.63
Geo-mean 2.73 2.78 2.84 2.86 3.01 2.71 2.76 4.66 7.80

Table 4.1: Average solution time (in seconds) for instances of the SGP using the direct
translation and Yices2 SMT solver

Instances AND AND OR OR ROR Alpha AlphaM Harvey
G-S-W CSE CSE
5-3-5 8 10 8 10 12 8 8 13
5-3-6 41 39 41 34 79 34 35 50
5-3-7 135 114 99 133 2,163 92 141 192
6-3-5 10 12 11 12 16 9 7 18
6-3-6 50 51 54 57 62 54 56 82
6-3-7 163 158 162 164 296 177 152 199
6-4-4 22 23 20 19 29 22 20 31
6-4-5 122 127 128 134 136 125 114 132
8-4-4 66 62 72 65 98 61 59 98
8-4-5 467 405 347 449 607 429 409 727
8-4-6 2,154 2,446 2,443 2,311 2,135 2,552 2,209 3,051

Table 4.2: Average number of decisions (divided by 1000) for instances of the SGP using
the direct translation and Yices2 SMT solver
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Instances AND AND OR OR ROR Alpha AlphaM Harvey
G-S-W CSE CSE

535 30 35 31 35 68 29 34 31
536 21 21 20 22 8 18 20 16
537 11 8 7 8 7 9 8 6
635 39 43 39 36 99 32 27 37
636 32 29 28 30 64 32 31 26
637 22 22 22 23 24 26 22 19
644 30 34 31 28 69 34 30 28
645 25 25 25 28 46 26 25 21
844 59 60 59 52 158 53 59 57
845 45 38 35 42 91 43 39 34
846 26 30 30 30 58 28 27 24

Table 4.3: Average number of decisions per millisecond for instances of the SGP using the
direct translation and Yices2 SMT solver

Instances AND AND OR OR ROR Alpha AlphaM Harvey No Lex
G-S-W CSE CSE
5-3-5 0.27 0.25 0.28 0.26 0.17 0.25 0.27 0.33 0.38
5-3-6 1.40 1.79 1.70 2.02 2.46 1.60 1.59 1.94 164.85
5-3-7 12.53 13.08 11.07 13.94 265.0 13.47 14.77 16.71 265.85
6-3-5 0.27 0.27 0.25 0.26 0.16 0.26 0.29 0.32 0.15
6-3-6 1.63 1.64 1.70 1.79 1.03 1.69 1.55 1.87 1.69
6-3-7 6.77 6.72 7.14 7.32 28.92 6.10 6.84 6.81 119.99
6-4-4 0.63 0.63 0.62 0.63 0.47 0.66 0.64 0.68 1.15
6-4-5 5.32 4.82 5.01 4.53 3.14 4.97 4.88 4.89 9.25
8-4-4 1.08 0.98 1.11 1.17 0.67 1.09 1.14 1.20 0.88
8-4-5 10.88 10.80 10.42 9.73 6.77 10.76 9.63 10.80 23.56
8-4-6 85.45 87.43 79.19 90.63 41.51 84.18 93.65 83.29 57.49

Arith-mean 11.48 11.67 10.77 12.03 31.85 11.37 12.29 11.71 58.63
Geo-mean 2.66 2.67 2.65 2.77 2.95 2.66 2.73 2.97 7.80

Table 4.4: Average solution time (in seconds) for instances of the SGP using mzn2smt
translation and Yices2 SMT solver

Instances AND AND OR OR ROR Alpha AlphaM Harvey
G-S-W CSE CSE
5-3-5 10 10 10 9 14 8 9 11
5-3-6 32 34 37 38 48 35 34 40
5-3-7 129 113 94 123 629 115 161 128
6-3-5 11 10 10 11 16 10 11 13
6-3-6 52 59 63 56 63 59 55 61
6-3-7 150 159 174 172 181 128 162 169
6-4-4 22 23 24 22 31 22 23 21
6-4-5 139 106 121 131 136 129 127 125
8-4-4 67 61 61 69 109 62 71 67
8-4-5 431 407 420 375 652 446 425 472
8-4-6 2,235 2,507 2,155 2,521 2,645 2,290 2,728 2,483

Table 4.5: Average number of decisions (divided by 1000) for instances of the SGP using
mzn2smt translation and Yices2 SMT solver
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Instances AND AND OR OR ROR Alpha AlphaM Harvey
G-S-W CSE CSE

535 37 38 35 34 82 31 33 35
536 20 18 21 20 19 22 21 19
537 12 9 9 10 2 9 12 8
635 41 37 39 42 100 40 39 39
636 32 36 39 32 61 36 32 34
637 21 24 25 24 6 20 23 23
644 35 36 38 36 67 36 34 30
645 27 22 25 29 43 26 26 26
844 64 64 56 59 163 58 61 56
845 41 42 40 38 96 42 42 43
846 25 29 28 29 64 26 28 30

Table 4.6: Average number of decisions per millisecond for instances of the SGP using
mzn2smt translation and Yices2 SMT solver

4.1.2 SGP Results using Z3

Similar to SGP using Yices2, apart from the ROR and Harvey encodings, the results here

show similar performances of Z3 on all instances. The dominance of the ROR encoding

is much evident here. Z3 results also supports that ROR facilitates a faster decision rate.

CSE did not make a noticeable difference in cases of the AND and the OR. Constraint

reification slightly helped Harvey’s, but had contrary small effect on the others.

Instances AND AND OR OR ROR Alpha AlphaM Harvey No Lex
G-S-W CSE CSE
5-3-5 1.17 1.14 1.17 1.19 0.44 1.18 1.14 1.44 0.27
5-3-6 6.80 7.26 7.63 8.19 3.05 7.67 8.06 18.17 5.26
5-3-7 44.86 51.42 44.17 56.74 34.52 48.16 42.15 98.45 173.12
6-3-5 2.30 2.24 2.43 2.35 0.61 2.38 2.33 2.66 0.38
6-3-6 4.37 4.33 4.62 4.72 1.03 4.48 4.48 5.39 0.70
6-3-7 15.67 15.70 19.15 19.59 4.77 17.98 15.86 25.36 5.31
6-4-4 3.40 3.45 3.79 3.68 0.83 3.53 3.47 4.03 0.57
6-4-5 9.53 10.29 10.09 10.45 2.29 9.56 9.67 15.69 2.55
8-4-4 10.94 11.18 12.74 12.77 1.99 11.40 11.18 12.71 1.20
8-4-5 31.64 31.82 38.22 38.04 3.97 30.58 32.17 38.81 2.77
8-4-6 59.38 65.06 58.76 50.47 9.92 69.05 66.38 42.88 8.24

Arith-Mean 17.28 18.54 18.43 18.93 5.76 18.72 17.90 24.14 18.22
Geo-Mean 9.14 9.45 9.93 10.11 2.47 9.65 9.41 12.59 2.38

Table 4.7: Average solution time (in seconds) for instances of the SGP using the direct
translation and Z3 SMT solver
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Instances AND AND OR OR ROR Alpha AlphaM Harvey
G-S-W CSE CSE
5-3-5 1.36 1.31 1.70 1.83 1.32 1.32 1.38 2.15
5-3-6 13.33 14.39 16.26 17.22 13.15 14.99 16.55 37.22
5-3-7 113.56 132.28 114.73 148.88 176.81 117.69 107.17 196.62
6-3-5 2.13 2.01 2.84 2.36 1.90 1.89 2.22 3.14
6-3-6 3.53 3.34 4.65 4.77 3.51 3.47 3.71 5.64
6-3-7 22.68 22.65 34.05 32.32 17.83 26.35 22.98 47.79
6-4-4 2.29 2.30 3.66 3.22 2.57 2.32 2.43 3.78
6-4-5 7.47 8.31 9.60 10.38 6.24 7.53 7.95 17.98
8-4-4 4.94 5.01 8.64 8.80 5.77 4.86 5.08 8.78
8-4-5 18.96 20.52 35.14 34.69 11.70 17.41 21.56 35.85
8-4-6 56.55 49.70 64.47 68.98 37.27 47.00 49.42 80.34

Table 4.8: Average number of decisions (divided by 1000) for instances of the SGP using
the direct translation and Z3 SMT solver

Instances AND AND OR OR ROR Alpha AlphaM Harvey
G-S-W CSE CSE

535 1 1 1 2 3 1 1 1
536 2 2 2 2 4 2 2 2
537 3 3 3 3 5 2 3 2
635 1 1 1 1 3 1 1 1
636 1 1 1 1 3 1 1 1
637 1 1 2 2 4 1 1 2
644 1 1 1 1 3 1 1 1
645 1 1 1 1 3 1 1 1
844 1 1 1 1 3 1 1 1
845 1 1 1 1 3 1 1 1
846 1 1 1 1 4 1 1 2

Table 4.9: Average number of decisions per millisecond for instances of the SGP using the
direct translation and Z3 SMT solver

Instances AND AND OR OR ROR Alpha AlphaM Harvey No Lex
G-S-W CSE CSE
5-3-5 1.16 1.19 1.28 1.27 0.43 1.26 1.17 1.35 0.27
5-3-6 8.40 7.62 7.63 8.23 3.56 10.13 7.70 10.41 5.26
5-3-7 44.20 42.19 53.84 54.60 29.89 41.99 49.93 53.69 173.12
6-3-5 2.31 2.28 2.51 2.44 0.60 2.43 2.36 2.57 0.38
6-3-6 4.58 4.51 4.92 4.86 1.05 4.60 4.52 5.02 0.70
6-3-7 16.46 16.50 20.12 18.05 5.08 17.03 15.88 20.16 5.31
6-4-4 3.37 3.41 3.71 3.78 0.87 3.55 3.40 3.71 0.57
6-4-5 9.77 9.74 11.29 11.65 2.43 10.73 9.81 10.39 2.55
8-4-4 11.02 11.02 12.65 13.49 2.10 12.10 11.85 12.16 1.20
8-4-5 31.81 31.46 39.30 39.33 4.04 31.11 31.61 34.75 2.77
8-4-6 65.38 69.76 46.14 52.66 10.68 66.54 67.83 57.28 8.24

Arith-Mean 18.04 18.15 18.49 19.12 5.52 18.32 18.73 19.23 18.22
Geo-Mean 9.50 9.43 10.21 10.38 2.53 9.97 9.61 10.56 2.38

Table 4.10: Average solution time (in seconds) for instances of the SGP using the mzn2smt
translation and Z3 SMT solver
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Instances AND AND OR OR ROR Alpha AlphaM Harvey
G-S-W CSE CSE
5-3-5 1.23 1.27 1.95 1.86 1.24 1.38 1.29 1.83
5-3-6 16.67 14.83 15.80 17.37 15.54 20.11 14.90 20.86
5-3-7 100.71 97.57 133.10 139.69 145.75 96.25 119.15 125.43
6-3-5 1.99 2.06 3.09 2.81 1.77 1.96 2.14 2.60
6-3-6 3.38 3.56 5.24 4.97 3.45 3.48 3.57 4.48
6-3-7 23.81 24.28 36.47 30.91 19.56 25.99 24.02 35.19
6-4-4 2.19 2.16 3.47 3.59 2.40 2.50 2.33 3.15
6-4-5 7.94 7.59 11.89 12.56 6.28 8.53 7.78 9.13
8-4-4 4.93 4.87 8.98 10.90 5.54 5.26 5.21 6.94
8-4-5 20.25 18.83 35.88 35.83 11.07 17.15 17.80 24.99
8-4-6 50.73 47.27 73.33 67.63 38.04 49.24 48.99 63.10

Table 4.11: Average number of decisions (divided by 1000) for instances of the SGP using
the mzn2smt translation and Z3 SMT solver

Instances AND AND OR OR ROR Alpha AlphaM Harvey
G-S-W CSE CSE

535 1 1 2 1 3 1 1 1
536 2 2 2 2 4 2 2 2
537 2 2 2 3 5 2 2 2
635 1 1 1 1 3 1 1 1
636 1 1 1 1 3 1 1 1
637 1 1 2 2 4 2 2 2
644 1 1 1 1 3 1 1 1
645 1 1 1 1 3 1 1 1
844 1 1 1 1 3 1 1 1
845 1 1 1 1 3 1 1 1
846 1 1 2 1 4 1 1 1

Table 4.12: Average number of decisions per millisecond for instances of the SGP using
mzn2smt translation and Z3 SMT solver
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4.2 The Balanced Incomplete Block Design

The Balanced Incomplete Block Design is a classic combinatorial problem and it has some

applications in design theory [5] [57]. The BIBD is the problem of finding a design of

v distinct objects into b blocks in which each block has exactly k distinct objects, every

object appears in r blocks and each two distinct objects appear together in λ blocks [48].

An instance of the BIBD is donated (v, b, k, r, λ).

The BIBD MiniZinc model that we used is a part of the MiniZinc benchmark suite [1].

We modified the model by removing its symmetry breaking constraints and adding ones

based on the Lex ordering constraint. The model uses a 0/1 [v, b] matrix to hold the block

designs. One possible solution for the instance (7,7,4,4,2) could be represented by the

following matrix, where columns are Blocks and rows are Objects. A value of 1 represents

the occurrence of an Objectv in a Blockb while 0 represents its absence.

Block1 Block2 Block3 Block4 Block5 Block6 Block7

0 1 1 0 0 1 1 Object1

0 1 0 1 1 0 1 Object2

1 0 1 0 1 0 1 Object3

0 0 1 1 1 1 0 Object4

1 0 0 1 0 1 1 Object5

1 1 0 0 1 1 0 Object6

1 1 1 1 0 0 0 Object7

The model implements the BIBD by using three constraints that represent the three

BIBD rules mentioned earlier. Assuming M [, ] is the BIBD matrix, since M [, ] is a 0/1

matrix the BIBD rule of each Blockb has exactly k distinct Objects could be modelled as

every column must sum to k.

1 ≤ Block ≤ b (

v∑
Object=1

M [Object, Block]) = k

Likewise, the second rule which states that every object must appear in r blocks

becomes every row must sum to r.
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1 ≤ Object ≤ v (
b∑

Block=1

M [Object, Block]) = r

The last rule, which restricts the number of Blocks that each two Objects could appear

together to λ is modelled as the dot product of every pair of distinct rows must equal to

λ.

1 ≤ Oa < Ob ≤ v (
b∑

Block=1

(M [Oa,Block]×M [Ob,Block])) = λ

It is also worth mentioning that the values of both b and v can be obtained from k, r

and λ using the formulas:

b =
λ× v × (v − 1)

k × (k − 1)

r =
λ× (v − 1)

k − 1

To break row and column symmetries in the BIBD model we used two Lex constraints

, one on each two neighbouring rows (Objects) and similar one for columns (Blocks).

Lex constraint on Object:

1 ≤ Object ≤ v − 1 [M [Object, Block] | Block ∈ 1..b] ≤lex

[M [Object+ 1, Block] | Block ∈ 1..b]

Lex constraint on Blocks:

1 ≤ Blocks ≤ b− 1 [M [Object, Block] | Object ∈ 1..v] ≤lex

[M [Object, Block + 1] | Object ∈ 1..v]
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4.2.1 BIBD Results using Yices2

Similar to the SGP, the results of the BIBD using Yices2 are arranged in four tables, two for

timings for the directly translated instances and their corresponding numbers of decisions,

and likewise two for the mzn2smt translation. Here the difference in performances are much

apparent. From Tables 4.13 and 4.16, ROR’s lead is much evident in both. Constraint

reification helped in some cases of Harvey and OR, but its effect was opposite in cases of

Alpha and OR CSE, it also seems that using constraint reification along side CSE reduced

the performance of both AND and OR. Like in SGP results, here too, the ROR encoding

in general had fastest decision rates.

Instances AND AND OR OR ROR Alpha AlphaM Harvey No Lex
r, v, λ CSE CSE
7-3-2 0.11 0.13 0.26 0.24 0.11 0.12 0.10 0.18 0.08
8-4-3 0.39 0.30 0.84 0.80 0.31 0.28 0.29 0.69 0.16
8-4-4 0.28 0.38 0.41 0.34 0.07 0.23 0.11 299 300
9-3-1 0.22 0.19 0.45 0.44 0.10 0.18 0.18 0.29 0.04
11-5-2 1.29 1.27 10.40 4.59 1.48 1.04 1.08 1.91 0.34
13-3-1 17.1 14.2 31.7 35.6 11.9 16.5 20.3 24.5 9.96
13-4-1 3.13 3.53 6.86 6.72 2.63 3.88 4.97 2.25 0.29

Arith-mean 2.23 2.87 7.28 6.96 2.38 3.18 3.86 47.12 44.41
Geo-mean 0.79 0.78 1.90 1.64 0.57 0.71 0.67 2.73 0.76

Table 4.13: Average solution time (in seconds) for instances of the BIBD using the direct
translation and Yices2 SMT solver

Instances AND AND OR OR ROR Alpha AlphaM Harvey
r, v, λ CSE CSE
7-3-2 1,481 1,453 3,380 3,387 2,764 2,201 2,939 2,693
8-4-3 2,356 2,410 6,051 5,927 4,071 2,555 2,704 5,314
8-4-4 1,087 1,232 2,310 2,203 577 956 289 233,823
9-3-1 1,532 1,639 4,641 4,330 2,822 2,016 1,987 3,293
11-5-2 2,847 2,717 9,123 8,861 6,421 3,124 4,172 6,472
13-3-1 25,950 25,316 84,718 81,233 44,060 30,539 33,849 68,440
13-4-1 4,224 4,446 13,444 13,213 8,427 6,021 7,401 10,024

Table 4.14: Average number of decisions for instances of the BIBD using the direct trans-
lation and Yices2 SMT solver
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Instances AND AND OR OR ROR Alpha AlphaM Harvey
r, v, λ CSE CSE
7-3-2 13 11 13 14 25 18 29 15
8-4-3 6 8 7 7 13 9 9 8
8-4-4 4 3 6 6 8 4 3 1
9-3-1 7 9 10 10 16 11 11 11
11-5-2 2 2 1 2 4 3 4 3
13-3-1 2 2 3 2 4 2 2 3
13-4-1 1 1 2 2 3 2 1 4

Table 4.15: Average number of decisions per millisecond for instances of the BIBD using
the direct translation and Yices2 SMT solver

Instances AND AND OR OR ROR Alpha AlphaM Harvey No Lex
r, v, λ CSE CSE
7-3-2 0.11 0.11 0.27 0.25 0.10 0.16 0.19 0.19 0.08
8-4-3 0.34 0.30 0.55 0.76 0.30 0.29 0.53 0.38 0.16
8-4-4 0.26 0.31 0.46 0.37 0.08 0.34 1.03 0.22 300
9-3-1 0.21 0.20 0.40 0.48 0.16 0.23 0.33 0.30 0.04
11-5-2 1.12 1.38 3.72 3.73 1.28 1.33 1.51 7.52 0.34
13-3-1 13.23 16.90 28.60 32.77 10.30 56.87 19.09 23.72 9.96
13-4-1 4.07 4.52 9.45 21.69 2.82 3.05 3.38 3.98 0.29

Arith-mean 2.76 3.39 6.21 8.58 2.15 8.89 3.72 5.18 44.41
Geo-mean 0.74 0.80 1.60 1.91 0.55 0.97 1.19 1.18 0.76

Table 4.16: Average solution time (in seconds) for instances of the BIBD using mzn2smt
translation and Yices2 SMT solver

Instances AND AND OR OR ROR Alpha AlphaM Harvey
r, v, λ CSE CSE
7-3-2 1,456 1,450 3,784 3,812 5,507 1,962 1,914 2,493
8-4-3 2,407 2,182 5,077 5,806 8,235 2,582 3,398 2,983
8-4-4 864 1,066 2,335 2,320 682 1,036 2,788 436
9-3-1 1,573 1,520 4,007 4,571 6,495 2,074 2,296 3,107
11-5-2 2,590 2,926 8,416 9,044 15,607 3,168 4,203 5,869
13-3-1 24,013 26,956 70,828 83,951 91,073 29,703 35,521 44,136
13-4-1 4,398 4,960 14,919 25,726 22,862 5,111 5,654 11,060

Table 4.17: Average number of decisions for instances of the BIBD using mzn2smt trans-
lation and Yices2 SMT solver

Instances AND AND OR OR ROR Alpha AlphaM Harvey
r, v, λ CSE CSE
7-3-2 7 7 9 8 34 9 6 8
8-4-3 2 2 1 2 6 2 2 1
8-4-4 1 1 1 1 1 1 1 1
9-3-1 1 1 1 1 2 1 1 1
11-5-2 1 1 1 1 7 1 1 1
13-3-1 32 34 44 44 166 31 30 37
13-4-1 43 47 57 106 233 34 32 64

Table 4.18: Average number of decisions per millisecond for instances of the BIBD using
mzn2smt translation and Yices2 SMT solver
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4.2.2 BIBD Results using Z3

Z3 did not perform well on most of the instances of the BIBD and Lex. Most the results in

tables 4.19 and 4.16 are time-outs (>300 seconds). Using Harvey encoding on the directly

translated instances, Z3 performed much better than the all the other encodings, though

this was not the same on the mzn2smt translated instances. There are no decision tables

here because the solver did not provide decisions count for the timed-out results. From

the instances 7-3-2, 8-4-3 and 9-3-1 in both tables, constraint reification helped the AND

and the OR but had an opposite effect on their CSE variants.

Instances AND AND OR OR ROR Alpha AlphaM Harvey No Lex
r, v, λ CSE CSE
7-3-2 77.5 46.6 69.8 21.6 118 104 61.5 0.44 2.87
8-4-3 300 221 264 178 230 250 148 0.76 5.16
8-4-4 300 300 300 300 300 300 300 300 300
9-3-1 234 155 236 91.3 157 121 38.2 0.60 4.76
11-5-2 300 300 300 300 300 300 300 2.45 8.05
13-3-1 300 300 300 300 300 300 300 13.26 174.02
13-4-1 300 300 300 300 300 300 300 2.65 16.25

Arith-Mean 258 232 252 213 243 239 206 45.7 73.02
Geo-Mean 238 200 231 161 230 220 161 3.49 17.40

Table 4.19: Average solution time (in seconds) for instances of the BIBD using the direct
translation and Z3 SMT solver

Instances AND AND OR OR ROR Alpha AlphaM Harvey No Lex
r, v, λ CSE CSE
7-3-2 43.71 82.62 45.71 51.40 24.13 1364 13.81 52.73 2.87
8-4-3 262 287 174 223 182 164 117 138 5.16
8-4-4 300 300 300 300 300 300 300 300 300
9-3-1 175 191 91.3 103 123 72.2 42.3 35.1 4.76
11-5-2 300 300 300 300 300 284 299 295 8.05
13-3-1 300 300 300 300 300 300 300 300 174.02
13-4-1 300 300 300 300 300 300 300 300 16.25

Arith-Mean 240 251 216 225 218 222 196 203 73.02
Geo-Mean 207 232 179 192 171 199 127 154 17.40

Table 4.20: Average solution time (in seconds) for instances of The BIBD using the
mzn2smt translation and Z3 SMT solver
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4.3 Long Vectors Instances

Our plan was to test the inference capabilities of the eight encodings by running unsatisfi-

able instances of both the SGP and the BIBD problems, but we could not manage to find

suitable such instances. Apart from the instance 8-4-4 of the SGP, all the unsatisfiable

instances we tested for both problems were either very easy and solved in a negligible

time, or very hard which made them impractical to use in the benchmarks. So we made

our own unsatisfiable instances as a simple model that enforces the Lex constraint on two

vectors, A and B, of a length n, both have the same integer domain of values of 1 to 4.

We made the model unsatisfiable by making Lex fail at the last two items of both vectors,

as shown in (4.2) and (4.3) in the following model.

A ≤lex B (4.1)

1 ≤ i ≤ n− 1 A[i] = 4 (4.2)

B[n] = A[n]− 1 (4.3)

4.3.1 Long Vectors Results

Results for the Long Vectors tests are arranged in four tables (4.21, 4.22, 4.23 and 4.24)

representing results for two SMT solvers, Yices2 and Z3, using the mzn2smt and the direct

translations. Looking at the results in general, it is clear that the increasing formula size

negatively affected the performance in the cases of AND, OR and ANDOR, and caused the

Out-of-Memory problem. Common sub-expression elimination greatly helped in reducing

formula size thus eliminated the Out-of-Memory problem, as it is clear in tables 4.25 and

4.26. Apart from AND CSE in Yices2 results, constraint reification had unfavourable effect

on all encodings, and magnified the Out-of-Memory problem in AND, OR and ANDOR

because of the additional variables the constraint reification introduces. The source of

Out-of-Memory problem was the mzn2fzn tool that we used in our mzn2smt translation

pipeline.
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Vector AND AND OR OR ROR Alpha AlphaM Harvey ANDOR
Size CSE CSE
500 0.29 0.13 0.25 0.09 0.01 0.02 0.01 0.02 0.49
1000 1.30 0.60 1.02 0.35 0.02 0.03 0.02 0.04 2.07
2000 5.99 3.27 4.11 1.40 0.05 0.07 0.04 0.08 8.40
2500 9.98 5.69 6.50 2.16 0.05 0.08 0.05 0.09 15.91
3000 15.40 9.25 9.25 3.08 0.07 0.10 0.07 0.12 20.80

Average 6.59 3.79 4.23 1.42 0.04 0.06 0.04 0.07 9.54

Table 4.21: Average solution time (in seconds) for unsat instances of Lex between two
vectors using the direct translation and Yices2 SMT solver

Vector AND AND OR OR ROR Alpha AlphaM Harvey ANDOR
Size CSE CSE
500 0.17 0.09 0.26 0.12 0.11 0.10 0.08 0.02 0.33
1000 OOM 0.32 OOM 0.48 0.42 0.36 0.30 0.04 OOM
2000 OOM 1.26 OOM 2.03 1.73 1.71 1.19 0.07 OOM
2500 OOM 1.99 OOM 3.44 2.94 3.07 2.18 0.09 OOM
3000 OOM 3.00 OOM 5.89 4.73 5.09 3.09 0.11 OOM

Average 1.33 2.39 1.99 2.06 1.37 0.07

Table 4.22: Average solution time (in seconds) for unsat instances of Lex between two
vectors using mzn2smt translation and Yices2 SMT solver

Vector AND AND OR OR ROR Alpha AlphaM Harvey ANDOR
Size CSE CSE
500 0.53 0.14 0.34 0.05 0.10 0.33 0.05 0.11 0.63
1000 2.03 0.42 1.35 0.09 0.16 1.26 0.10 0.21 2.62
2000 7.68 1.40 4.73 0.14 0.21 4.19 0.16 0.38 9.27
2500 12.46 2.41 8.70 0.20 0.28 7.95 0.23 0.54 18.18
3000 31.39 3.57 13.34 0.24 0.33 11.87 0.27 0.64 27.86

Average 10.82 1.59 5.69 0.14 0.21 5.12 0.16 0.38 11.71

Table 4.23: Average solution time (in seconds) for unsat instances of Lex between two
vectors using the direct translation and Z3 SMT solver

Vector AND AND OR OR ROR Alpha AlphaM Harvey ANDOR
Size CSE CSE
500 0.35 0.17 0.21 0.08 0.27 0.39 0.07 0.12 0.42
1000 OOM 0.58 OOM 0.15 0.99 1.44 0.13 0.23 OOM
2000 OOM 2.67 OOM 0.34 4.10 5.98 0.26 0.50 OOM
2500 OOM 4.56 OOM 0.49 6.57 10.13 0.32 0.60 OOM
3000 OOM 17.39 OOM 0.63 9.55 14.21 0.39 0.74 OOM

Average 5.07 0.34 4.30 6.43 0.24 0.44

Table 4.24: Average solution time (in seconds) for unsat instances of Lex between two
vectors using mzn2smt translation and Z3 SMT solver

44



4.3.2 Instances and Encoding Size

From the Long Vectors results, it is clear that formula size played a major rule in affecting

the performance of both solvers on some instances, this becomes more apparent with

each increment in instances size. The smallest and with the best results is the formula

that produced by the directly translated ROR encoding. Though this does not affect

all encodings by the same factor. It seems that the AND encoding is more sensitive to

formula size than the others, for instance a directly translated OR encoding performs twice

as better as a formula of the same size of a directly translated AND. This is interesting

because the AND encoding is closer to the natural SAT’s CNF than the OR which is

basically a Disjunctive Normal Form (DNF). Both the AND and the OR have a quadratic

formula growth.

Vector AND AND OR OR ROR Alpha AlphaM Harvey ANDOR
Size CSE CSE
500 125 2 125.75 2 1 4 2 1 251
1000 500 5 501.50 5 2 8 4 2 1002
2000 2001 10 2003.00 10 4 17 8 4 4004
2500 3126 12 3128.75 12 5 22 10 5 6255
3000 4501 15 4504.50 15 6 26 12 6 9006

Average 2051 9 2053 9 4 16 7 4 4104

Table 4.25: Number of occurrences of atoms (divided by 1000) for the instances of Lex
between two vectors using the direct translation
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Vector AND AND OR OR ROR Alpha AlphaM Harvey ANDOR
Size CSE CSE
500 128 4 257 6 6 9 5 4 386
1000 506 8 1015 13 12 18 10 8 1521
2000 2012 17 4030 26 24 36 20 16 6043
2500 3141 22 6287 33 30 45 25 20 9429
3000 4519 26 9045 39 36 54 30 24 13564

average 2062 16 4127 23 22 32 18 14 6189

Table 4.26: Number of occurrences of atoms (divided by 1000) for the instances of Lex
between two vectors using mzn2smt translation

4.4 BIBD All Solutions Benchmarks

After testing the encodings on large instances of two vectors, we decided to run further

tests on hard instances of a problem. We choose to do this by trying to find all solutions

for instances of the BIBD. This done by modifying our benchmarking script to run the

Yices2 to solve an instance in a loop, and after each run that results in a solution the script

feeds back the inverted solution to the instance to rule out that solution, this continues

till the solver gives unsat, which means that all solutions has been found.

Tables 4.27 and 4.30 show the timing for those instances where Yices2 was able to

find all solutions without timing-out. On the instance 13-3-1 Yices2 was unable to find all

solutions before the time-out (300 seconds), so instead of the timings, we reported number

of solutions found using each encoding in tables 4.28 and 4.31. As expected, without

symmetry breaking finding all solutions would take longer time in most cases. Here, table

4.29 shows number of solutions found by Yices2 in around 300 seconds.

The results reflect close performances between AND, AND CSE, Alpha and AlphaM,

with a marginal lead for AND in some cases. Apart form the cases of OR and ROR,

the mzn2smt translation didn’t improve performance compared to the direct translation.

Table 4.29 reflects the variation of difficulty levels between the instances we used.
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Instances AND AND OR OR ROR Alpha AlphaM Harvey
r, v, λ CSE CSE
7-3-2 6.32 6.24 10.07 9.49 10.21 6.24 7.91 6.53
8-4-3 103.24 113.87 153.62 149.29 157.15 105.22 105.24 155.31
9-3-1 2.68 2.15 3.78 3.98 3.41 2.50 2.31 2.58
11-5-2 1.29 1.27 10.40 4.59 1.48 1.04 1.08 1.91
13-4-1 26.21 34.38 88.41 53.47 52.05 34.86 30.18 52.60

Arith-Mean 27.95 31.58 53.26 44.16 44.86 29.97 29.34 43.79
Geo-Mean 9.00 9.22 22.19 16.90 13.33 9.02 9.11 12.13

Table 4.27: Average solution time (in seconds) for finding all solutions for instances of the
BIBD using the direct translation and Yices2 SMT solver

Instances AND AND OR OR ROR Alpha AlphaM Harvey
r, v, λ CSE CSE

Solutions in
300s for 13-3-1 14 13 12 13 15 17 15 12

Table 4.28: Average number of solutions found in 300 seconds for the instance 13-3-1 of
the BIBD using the direct translation and Yices2 SMT solver

Encoding 7-3-2 8-4-3 9-3-1 11-5-2 13-3-1 13-4-1
No Lex 641 309 426 148 14 62

Table 4.29: Number of solutions found in 300 seconds for instances of the BIBD without
Lex constraint and using Yices2 SMT solver

Instances AND AND OR OR ROR Alpha AlphaM Harvey
r, v, λ CSE CSE
7-3-2 8.07 9.27 12.57 11.71 12.23 10.87 11.70 8.54
8-4-3 153.13 147.29 146.95 181.68 152.31 169.34 200.76 168.04
9-3-1 3.82 2.99 4.32 4.36 2.60 3.79 4.25 3.21
11-5-2 1.12 1.38 3.72 3.73 1.28 1.33 1.51 7.52
13-4-1 28.67 72.94 58.85 86.18 38.20 56.74 31.33 81.09

Arith-Mean 38.96 46.77 45.28 57.53 41.32 48.41 49.91 53.68
Geo-Mean 10.87 13.27 17.72 19.72 11.88 13.94 13.65 19.49

Table 4.30: Average solution time (in seconds) for finding all solutions for instances of the
BIBD using the mzn2smt translation and Yices2 SMT solver

Instances AND AND OR OR ROR Alpha AlphaM Harvey
r, v, λ CSE CSE

Solutions in
300s for 13-3-1 14 14 15 14 15 14 14 13

Table 4.31: Average number of solutions found in 300 seconds for the instances 13-3-1 of
the BIBD using the mzn2smt translation and Yices2 SMT solver
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Chapter 5

Evaluation and Conclusions

Contrary to expectations, the results show that when searching for a single solution, not

using any of the eight Lex encodings (No Lex) is better on most of the instances of the SGP

and the BIBD we used. But still, using Lex would perform better in solving unsatisfiable

instances or when all possible solutions were required as we saw in all solutions tests. In

many cases, it is difficult to know whether an instance of a problem is satisfiable or not,

this makes it difficult to have prior knowledge of the instances which would perform better

without symmetry breaking using Lex. For that, we decided to evaluate the encodings by

the differences their performances ignoring the performance of the No Lex.

The results, in general, show that the Recursive OR encoding has the best results on

most of the tables. However, all the encodings preformed differently on different instances

of the same problem, and even sometimes on different samples of the same instance. For

example, on the SGP, the Recursive OR encoding did very well on 7 out of the 10 instances,

but it was 100 times worse than its nearest competitor on one of those instance of the

problem, it is also did not perform as well in all solutions test. This behaviour promotes

the idea of using special algorithms for Lex [6] instead of the decomposition to tackle

symmetry. Also, apart from the solving time, both SMT solvers did not produces statistics

for most of the unsat long vectors instances we used, that is why there are no tables for

number of decisions for the long vectors instances. The improvement in performance in

the case of Harvey encoding when using the mzn2smt translation and Yices, supports

Bofill’s observation [12] that more logical component over theory in a formula helps to

improve solving time, though this true only in case of Yices2 but not with Z3 as it is clear

from tables 4.19 and 4.20, this implies that this behaviour is dependant on the solving

algorithm. The Out-of-Memory problem in the results demonstrated the limitations that
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the AND, OR and the ANDOR encodings have when dealing with relativity sizeable

problems. Finally, in the majority of cases, the performance of the directly translated

instances was better than those ones which went through Bonfill’s fzn2smt translator.

5.1 Future Work

Without closely examining how SMT solvers approach the solving process, it is hard to

get enough explanations from the results alone. A future line of research could be to study

how SMT solvers internally handle each encoding, this can be done by examining the code

of some the open source SMT solvers and by building a framework that monitors a solver

during runtime. Alongside this, doing more benchmarks using different CSP problems and

SMT solvers could help to find clearer patterns from the results.
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Abbreviations

BCP Boolean Constraints Propagation

BIBD Balanced Incomplete Block Design

CDCL Conict Driven Clause Learning

CNF Conjunctive Normal Form

CSE Common Sub-expression Elimination

CSP Constraint Satisfaction Problems

DNF Disjunctive Normal Form

DPLL Davis, Putnam, Logemann and Loveland

GAC Generalised Arc Consistency

ROR Recursive OR

SB Symmetry Braking

SGP Social Golfer Problem
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