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Abstract

Satisfiability (SAT) solving technology has improved dramatically since the 1960’s. New tech-
niques have allowed industrial problems involving tens of thousands of variables and millions
of clauses to be solved, which is astounding given the difficulty of SAT. With these advances
in solving technology, the desire to use languages richer than propositional logic has grown.
Satisfiability Modulo Theories (SMT) builds on SAT by incorporating supporting theories for
concepts like arithmetic, arrays, bit-vectors and uninterpreted functions. SMT has already
enjoyed success in hardware and software verification tools, and more recently it has shown
promise for constraint satisfaction problems (CSPs.) Extensive research has been invested in
how best to attack constraint satisfaction problems with SAT, but this question has barely been
addressed for SMT. Hence, this project investigates a particular aspect of solving constraint
satisfaction problems, the encoding of problems into SMT compared to encodings of problems
into SAT. Sophisticated encodings are compared against simple encodings. These sophisticated
encodings are found to reduce search significantly in both SAT and SMT. Surprisingly, despite
the reduction in search causing a corresponding reduction in run-time for SAT, the same is
not observed in SMT. The experiments in this report suggest that the cost of this reduction
in search is greater in SMT than it is in SAT. The report concludes with suggestions based on
the experiments of when a sophisticated encoding is preferred in SMT, and puts forward some
suggestions for why the cost of reduced search is greater in SMT.
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1 Introduction

This project investigates the suitability of a particular technology (SMT) for tackling combinato-
rial optimisation (CO) problems. Despite the somewhat scholastically opaque name, CO appears
in many pragmatic problems, the rapid solution of which can be the keystone of a company’s
success.

With the availability and affordability of ever more sophisticated computing resources becoming
available year after year, and the bounding algorithmic advancements in CO software, many
industries and researchers are turning to systems that enable them to solve hard problems
in a declarative manner, relying on the sophistication of CO software and available computer
resources[1]. “Hard problems” typically means those problems which are NP-complete, and
the CO community has amassed general techniques for tackling such problems. The grand
challenge of such pursuits, termed the “Holy Grail” of programming[2], where one merely states
the problem and the computer solves it, efficiently, could be considered the limit point of all
research in this area.

From its humble description, propositional satisfiability (SAT) is one such technique that has
enjoyed many years of fruitful academic endeavour and industrial success[3, 4]. In SAT, one
expresses their problem as conjunctions of disjunctions of Boolean variables. While this may
sound intimidating and devoid of application, SAT is typically used as a destination for one of
Computer Science’s most fundamental ideas: problem reduction. Users reduce their problem of
interest or necessity into the SAT framework, and those many years of advancements in SAT
technology can be applied, frequently to the immense satisfaction of the user, relieved from the
burdensome proposition of having to implement a bespoke, efficient software for the task at
hand.

SAT, with its language of propositional logic, has been found somewhat restrictive by people
wishing to reduce ever more sophisticated problems into it[5]. SAT Modulo Theories (SMT)
is a generalisation of SAT that combines theories of linear integer arithmetic, equality and
uninterpreted functions, and several other formalisms into one coherent whole; allowing the user
to utilise a more expressive language to describe their problem. The increased generality of SMT
can come at cost to efficiency, and on the contrary, the ability to describe your problem at a
higher level of abstraction can allow the solver to exploit structure of the problem that a further
reduction into SAT may obfuscate. The various theories packaged by SMT have also enjoyed
success in industrial settings. The theory of equality and uninterpreted functions (EUF) has been
deployed in the verification of pipelined microprocessors[6], the theory of bit-vectors (BV(Z)) has
been deployed in the verification of register-transfer level (RTL) circuit designs[7], the theory of
arrays (AR(Z)) has been studied in the verification of software[8] and the list goes on. Needless
to say, SMT is a very general framework, with new theories being integrated as applications
call for them. This report will be primarily concerned with the theory of (quantifier-free)
linear-integer arithmetic (LIA) in SMT.

At yet a higher level of abstraction comes Constraint Programming (CP). In CP, the problem
to be solved and the means of solving it are decoupled from one another. The user specifies
their problem in (typically) a declarative manner, called the model, in which they must describe
the variables of the domain, the values applicable to those variables and the constraints among
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variables which must be accommodated for a solution to be of interest. The coupling of the
model is with a search procedure. The CP system considers the constraints and systematically
searches, with the use of logical inference procedures (termed propagators), for a solution that
satisfies the requirements ordained by the modeller. To be effective, these propagators must be
carefully constructed to make the most out of the information about the problem they are given.
They must reduce from the typically exponential amount of options those options which are
implied by the statement of the problem, and guide the search procedure to lucrative avenues,
not dead-ends. For these reasons, propagators have been extensively studied, and many efficient
algorithms now exist for their resolution[9].

When modelling in the declarative CP language, the modeller has at their disposal a collection
of general constraints. Such constraints have been made available due to years of modelling
experience where their utility has been verified. These constraints are often called global
constraints, and by issuing such global constraints, we can in effect describe yet a higher-
resolution picture of our problem to a solver, which ideally could utilise this information to
most intelligently conclude a solution rapidly. Capturing these commonly occuring patterns can
tremendously improve efficiency[10, 11].
Here then, are three approaches to solving these “hard problems.” SAT, SMT and CP. It

might seem that with more abstraction comes a longer time to find a solution, due to the
added sophistication of the abstractions. Such questions of efficiency are of course dependent
on a nexus of factors, and statements such as “SAT is faster than SMT which is faster than
CP” are not particularly meaningful. The more relevant question is: “When is one technique
more appropriate than another in a given situation?” In [12], benchmarks were carried out
demonstrating that SMT was a viable technology for the solution of CSPs. In particular, their
experiments showed that over a suite of constraint satisfaction problems, their translation of
these problems into SMT performed more favourably over a significant number of problems
that the state-of-the-art CP systems, despite little effort being expended on finding the best
encodings in SMT. Further evidence was provided by [13] who developed a compiler from CSPs
to SMT and demonstrated its excellent performance compared to specialised systems built for
CSPs. [13] explain that despite naïve encodings, their compiler still performs very well and
suggest that a study of appropriate encodings in SMT could help make the technology even
more competitive in CSPs. As applied to CO problems, the questions of when is SAT effective
and when is CP effective at solving CO problems has been extensively studied, but the same
question for SMT has barely been addressed.
This project investigates a small piece of this larger research question. In particular, the

effectiveness of constraint reformulation[2], also known as decomposition, in SMT. A reformulation
of a global constraint is its substitution with a simpler set of constraints that preserves the
logical meaning of the global constraint. Such decompositions have been found to be highly
effective in SAT and CP[14–17] for several reasons [18]

1. Global constraints, because of their need to be highly efficient, are often implemented
as a special built-in procedures of the solver being used. By using a reformulation, also
known as a decomposition, we can reuse existing infrastructure and thus obviate the need
to design and implement a special-purpose propagator.

2. Some decompositions are designed to simulate a special-purpose propagator[14]. By
decomposing the mechanics of such a propagator, its internal state can be exposed to
the rest of the problem, which can yield performance improvements because of the extra
information. It can also yield performance regressions, because of too much information.
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3. By decomposing a set of a global constraints, their internal states may be communicated
to another, and this added mutual information can again be a great help, or a monstrous
hindrance.

The decompositions of two global constraints are studied in this report. The “All Different”
(AllDifferent) global constraint and the “Global Cardinality Constraint” (GCC). The
decompositions of these two constraints have a parameter which can be altered to change their
behaviour. This parameter is called a Hall interval and will be introduced when required. The
change in behaviour is rather mysterious, with no previous experiments studying the change
of the parameter over the parameter’s entire domain for a given problem. In this report such
a study is carried out, but a theoretical explanation as to the reason for the observations has
escaped the author and hence is not presented.
The decomposition studied in this work for AllDifferent was found to perform very well

in SAT by [14]. The reason being that the decomposition is highly informative, reducing the
amount of search the SAT solver has to perform. This reduction in search is due to the extra
propagation entailed by the decomposition. However, while in SAT this extra propagation
appears to be handled expediently, my experiments suggest that in SMT the cost of propagation
is much higher than the cost in SAT.

This report also concludes with some observations of the effect that “more intelligent” propaga-
tors have on the problems studied in SMT. I conjecture that some measure of problem difficulty
should be developed in SMT and that the more intelligent propagators should be applied in
SMT only when the problem is, for some definition, very difficult.
The relevant background is presented in Chapter. 2. In Chapter. 3 formal accounts and

detailed discussions of all the decompositions studied are presented. Then, in Chapter. 4, the
decompositions introduced are experimentally studied over two problems selected to exercise
the decompositions of global constraints employed in them. Finally the conclusions of these
experiments are drawn in Chapter. 5, where future work is also considered.

9



2 Background

2.1 Satisfiability
Satisfiability is expressed in terms of propositional logic. Propositional logic is a language for
dealing with ‘propositions’, which are viewed as atoms impervious to being broken down for
further analysis. The language consists of primitive symbols and operator symbols. The primitive
symbols of interest in this report are propositional variables, which can refer to Boolean truth
values such as true (often denoted with the numeral 1), and false (often denoted with the numeral
0). The operator symbols of interest in this report are the logical NOT (¬), logical AND (∧),
logical OR (∨), logical implication ( =⇒ ), logical equivalence (⇐⇒ ), and finally parentheses
used for grouping. A formula is a syntactic notion that determines whether a string of symbols
has been constructed according to the rules of composition in propositional logic. There are two
rules which define propositional formulas recursively. In particular (1) each primitive symbol is
a formula, and (2) if φ and ψ for formulas, then so are ¬φ, φ ∧ ψ, φ ∨ ψ and φ =⇒ ψ. If these
topics are unfamiliar to the reader, then a reference on logic[19] should be consulted prior to
this report.

The propositional satisfiability problem (SAT) is that given a propositional formula F (b1, b2, . . . , bn)
in so-called conjunctive-normal form (CNF), which is a conjunction (∧) of disjunctions (∨) find
an assignment of Boolean values to b1, b2, . . . , bn such that F (b1, b2, . . . , bn) = 1, or prove that
no such assignment exists[20]. A Boolean value is either true (1) or false (0). For example, the
formula

F (b1, b2, b3) = (¬b1 ∨ ¬b2) ∧ (¬b2 ∨ b3) ∧ (b1 ∨ ¬b3) ∧ (x1 ∨ ¬x2 ∨ x3) (2.1)
is satisfiable under the assignment b1b2b3 = 101, if we rule out this solution, as in the formula

G(b1, b2, b3) = F (b1, b2, b3) ∧ (¬b1 ∨ b2 ∨ ¬b3) (2.2)

then we say that G is unsatisfiable, it has no satisfying assignments.
There are several other bits of nomenclature worth reviewing here. The terms bi above are

called variables. A variable can be written with different letters, so both x2 and ζ100 would be
considered variables. It also often convenient to denote variables by their numerical subscripts. So
‘x2’ might be denoted by ‘2’, and ‘¬b5’ might be denoted ‘¬5’. Such usage should be unambiguous
from the context, and the notation is mostly used for convenience of typing and economy of
space. A variable can be assigned a Boolean value, or a variable can be unassigned, that is,
having not yet been considered in the search for a solution. If all the variables in a formula
F have been assigned Boolean values, then we call this situation a complete assignment. If
only a strict subset of the variables have been assigned Boolean values, then we call it a partial
assignment.

A literal is a variable or its negation. So both b2 and ¬b2 are literals. As are 10 and ¬10.
A clause is a formula such as l1 ∨ . . . ∨ lm where each lk, 1 ≤ k ≤ m is a literal[21]. A formula

is in CNF if it is a conjunction of clauses. In other words, a formula is said to be in CNF when
it is composed a conjunction of zero or more clauses, where a clause is disjunction of zero or
more literals, where a literal is a boolean variable or its negation[20]. CNF is often referred to a
“Product of Sum” in the digital logic community.
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Example 1. The formula
(x ∨ ¬y) ∧ z (2.3)

is in CNF, but (x ∧ y) ∨ z and x ∧ ¬(y ∨ z) are not.
A CNF formula with zero clauses is logically equivalent to true. A CNF formula containing an

empty clause (i.e., with no literals) is unsatisfiable since this is an impossible requirement.

Using well known logical equivalences such as De Morgan’s laws, every propositional formula
can be converted into CNF, such a transformation allows us to deal with the satisfiability of a
set of clauses, rather than a general formula, which is an easier problem to deal with. The idea
of reducing formulas to ones with fewer connectives is commonly applied in automated logical
reasoning, which is discussed further in §2.4.1.
As a final notation example, clauses are often represented as sets of literals. Recalling how

variables such as ‘xj ’ can be written as ‘j’, a possible rewriting of Equation. 2.1 is

F (b1, b2, b3) = {{¬1¬2}, {¬23}, {1¬3}, {1¬23}} (2.4)

where the logical operators have been elided in the notation, the assumption being that this
set of sets is representing a formula in CNF.

SAT is a celebrated NP-complete problem[22, p. 260], but despite this very efficient procedures
exist to solve the problem in practice[20, 23], and some of these will be discussed in §2.3. Because
of these advances, SAT solvers have been used in a wide variety of practical applications often
providing remarkable performance improvements[24]. For vivid examples of encoding interesting
puzzles and practical problems such as graph colouring, factoring integers, fault testing circuits,
bounded-model checking and digital tomography, see §7.2.2.2 of [25].

Solving SAT problems is the duty of SAT solvers. In this report I will be using the Z3 theorem
prover, which comes with a state-of-the-art SAT solver built in. A language is required to
issue SAT problems to the SAT solver. A standard input language by the name of DIMACS is
commonly used in the SAT community.

A variation on the SAT problem that will be considered in this report is the Pseudo-Boolean
Satisfiability problem (PB-SAT). PB-SAT can be viewed as a generalisation of clauses in
SAT[26]. In PB-SAT, the clauses are linear combinations of boolean variables with integer
coefficients. In particular, a PB-clause looks like

C1b1 + C2b2 + . . .+ Cn−1bn−1 ./ Cn (2.5)

where bi ∈ {0, 1} and ./∈ {<,>,≤,≥,=}. Analogously to the SAT problem, PB-SAT problems
are solved by PB-SAT solvers. Also analogously to the SAT problem, a language is required
to issue PB-SAT problems to a PB-SAT solver. For lack of a standard name for this format,
in this report I shall overload the meaning of PB-SAT to refer both to this generalisation of
propositional clauses and to refer to a specific file format used for issuing PB-SAT problems to
PB-SAT solvers. This use should be unambiguous from context.

In this report, I will be using an off-the-shelf tool called MiniSat+ to perform the translation
from PB-SAT problems to equisatisfiable SAT problems. MiniSat+ translates problems
expressed in PB-SAT into propositional CNF formulae. The first step in this translation is
to normalise the PB-SAT constraints. For example, coefficients are divided by their greatest
common divisor, and trivial propagations are performed: if there exists a formula of the form
x > 1, then MiniSat+ will immediately return unsatisfiable, since no 0/1-variable x can be
greater than 1. Furthermore, from constraints such as 2x+y+z >= 3, MiniSat+ will propagate
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that x = 1, since if x = 0, then y + z >= 3, which is clearly not possible for the 0/1-variables y
and z.
Once normalisation has been performed, MiniSat+builds a binary decision diagram (BDD).

This BDD can then be converted into what is called a reduced boolean circuit (RBC), which
can be represented as another tree-like structure whose nodes are logical operators like AND,
OR and ITE (if-then-else). The nodes of the RBC are then converted in SAT using a known
technique called the Tsietin encoding[27]. Further details of how MiniSat+works can be found
in [26].

2.2 Satisfiability Modulo Theories
SMT is the problem of deciding the satisfiability of a first-order formula with respect to some
decidable first-order background theory T [5]. Propositional satisfiability is therefore a special
case of SMT, where T is a so-called “empty theory”, since propositional logic is subsumed by
SMT. In SMT, we might be interested in solving formulas like

Example 2.

g − b ≥ 7 ∧ (2.6)
F (G(read(A, g))) + g2 = G(b− 4) ∧ (2.7)
F (b+ g − 1) 6= 0 (2.8)

where theories such as (linear) arithmetic (2.6), arrays and non-linear arithmetic (2.7),
uninterpreted functions (2.8) and propositional logic (∧) are all at play in composition. A
detailed walk-through of how an SMT solver might accomplish this is given in section §2.4.2.

2.2.1 Example Encoding
To ground the discussion of SMT, I shall encode a simple scheduling problem suggested to me
by my supervisor, Alan Frisch. The problem will demonstrate using one particular background
theory available in SMT, the linear integer arithmetic theory (LIA).

In this problem we have five tasks each with an associated duration, or time to complete. For
this example, we will have {A : 2, B : 1, C : 2, D : 2, E : 7, F : 5} meaning that task A requires
two time units to complete. To make the problem more interesting, there are some constraints
on the order in which we may execute these tasks:

• Tasks A and C may not overlap.

• No two of tasks B,D or E can overlap.

• Tasks D and E must be completed before task F starts.

• Task A must complete before B starts.

We can introduce integer variables X,Xt, where X will hold the time at which task X starts,
and Xt will hold the (constant) time task X requires to complete.

The overlapping constraints are quite easy to encode in SMT. If task A may not overlap with
task C, then one of two conditions must be true:
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1. Task A must complete before task C.

2. Task C must complete before task A.

Expressing this as a disjunction of linear inequalities is sufficient,

A+At ≤ C ∨ C + Ct ≤ A (2.9)

In an analogous manner, the remaining constraints from the problem specification can be
expressed,

B, D and F can not overlap
B +Bt ≤ D ∨D +Dt ≤ B
B +Bt ≤ E ∨ E + Et ≤ B
D +Dt ≤ E ∨ E + Et ≤ D
D and E must complete before F
D +Dt ≤ F ∧ E + Et ≤ F
A must complete before B
A+At ≤ B

(2.10)

If we presented the above constraints to an SMT solver, we would likely not receive a
satisfactory result. We must also ensure that the start times are non-negative and that our
domains are appropriately constrained. For each variable X, we must say that X ≥ 0. If End is
the end time of the schedule, then for each variable X and its corresponding end-time Xt, we
must post that X ≤ End −Xt.

The mathematics presented here are actually rather close to a concrete implementation ready
for consumption by an off-the-shelf SMT solver. There are some syntactic differences, however.
I will be using the SMT solver packaged with the Z3 theorem prover in my experiments, and
like several other solvers, one of the formats it accepts problem descriptions in is defined by a
project called SMT-LIB2[28].
In the SMT-LIB2 format, expressions are entered using parenthesised prefix notation, the

same notation used in the Lisp programming language. The concrete encoding into SMT-LIB2
of the formulas in Equations. 2.9 2.10 is,
(set-logic QF_LIA)
(set-option :produce-models true)

(declare-fun A () Int)
(assert (>= A 0))
(declare-fun At () Int)
(assert (= At 2))
(declare-fun B () Int)
(assert (>= B 0))
(declare-fun Bt () Int)
(assert (= Bt 1))
(declare-fun C () Int)
(assert (>= C 0))
(declare-fun Ct () Int)
(assert (= Ct 2))
(declare-fun D () Int)
(assert (>= D 0))
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(declare-fun Dt () Int)
(assert (= Dt 2))
(declare-fun E () Int)
(assert (>= E 0))
(declare-fun Et () Int)
(assert (= Et 7))
(declare-fun F () Int)
(assert (>= F 0))
(declare-fun Ft () Int)
(assert (= Ft 5))

(declare-fun End () Int)
(assert (= End 14))

(assert (or (<= (+ A At) C) (<= (+ C Ct) A)))
(assert (or (<= (+ B Bt) D) (<= (+ D Dt) B)))
(assert (or (<= (+ B Bt) E) (<= (+ E Et) B)))
(assert (or (<= (+ D Dt) E) (<= (+ E Et) D)))
(assert (and (<= (+ D Dt) F) (<= (+ E Et) F)))
(assert (<= (+ A At) B))
(assert (<= A (- End At)))
(assert (<= B (- End Bt)))
(assert (<= C (- End Ct)))
(assert (<= D (- End Dt)))
(assert (<= E (- End Et)))
(assert (<= F (- End Ft)))

(check-sat)

(get-value (A B C D E F))

The first line of this listing sets the background logic to be used by Z3. In this case, quantifier-
free linear integer arithmetic (QF_LIA) has been selected. The second line asks Z3 to keep the
model it generates for subsequent printing. The first block of code is declaring the function
symbols of our problem. The domains of these symbols must be nonnegative, and furthermore,
the time required for each task is asserted. The End function symbol is what must be minimised
in this problem. The next block encodes the constraints of this example, and finally Z3 can be
asked check whether the program is satisfiable and if it is, to print out the values of starting
times for each variable A through F (formally called the model).
If this code is saved in a file called alan.smt2, then a command such as z3 alan.smt2 will

give us an answer:
sat
((A 0)
(B 9)
(C 2)
(D 0)
(E 2)
(F 9))

Z3 has found a solution in which task A starts at time zero, B at time 9 and so on. This is
the minimal make-span (difference between end time and start time) of the problem as specified
above, which can be verified by replacing (assert (= End 14)) with (assert (= End 13)).
With this replacement, Z3 will respond unsat, for unsatisfiable, meaning there exists no model
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that satisfies the formula.

2.3 Solving SAT

Fundamentally, to solve the SAT problem for some formula F (x1, . . . , xn) a complete assignment
α must be found in the search space of 2n complete assignments such that α satisfies F . A
simple way of achieving this would be to evaluate F (x1, . . . , xn) for each of the 2n complete
assignments over x1, . . . , xn until either an assignment that makes F equal true is found, or there
are no further complete assignments to explore. An improvement to this scheme is backtracking,
which may find satisfying assignments much faster, but falls back to simple enumeration to prove
unsatisfiability. An algorithm is shown in Algorithm. 1. This algorithm works by branching
on the assignments to literals. Formulas in this algorithm are represented as sets of clauses.
So x ∧ (¬y ∨ z) is represented as {{x}, {¬y, z}}, and for computational reasons, we normally
assign a unique integer to each variable, and represent a variable’s negation by the negative
of its associated integer, such as {{1}, {−2, 3}}. If the formula is the empty set, then we have
satisfied every clause and return true. If the empty set is contained in the formula, then a clause
could not be satisfied and false is returned. The Eval function deletes literals that have been
assigned false from every clause they appear in, and removes clauses containing a literal that
has been assigned true. After the termination checks, we pick an unassigned literal from the set
of clauses, and branch on the result of recursively calling the Backtrack function with the
resulting assignment. An example run of this algorithm is shown in Fig. 2.1, where the formula
to check for satisfiability is F = (1 ∨ ¬2) ∧ (1 ∨ 3) ∧ (¬1 ∨ ¬3) ∧ (3 ∨ 4) ∧ (¬4 ∨ ¬1). In this
example, Choose-Next-Literal simply picks the first unassigned variable in the set of clauses,
but in general the goal is to chose a variable which simplifies the problem instance as much as
possible[29]. A common heuristic in this spirit is to choose the most constrained variable first.

Algorithm 1 A simple backtracking algorithm for SAT
1: function Backtrack(assignment, F )
2: nextF ← Eval(assignment, F )
3: if nextF = ∅ then
4: return true
5: end if
6: if ∅ ∈ nextF then
7: return false
8: end if
9: l ← Choose-Next-Literal(nextF)

10: if Backtrack(Add(assignment, l), nextF) then
11: return true
12: else
13: return Backtrack(Add(assignment, ¬l), nextF)
14: end if
15: end function

The backtracking algorithm in Algorithm. 1 is far from optimal. There are various optimisations
that can be made. The DPLL-procedure[30] incorporates a couple of heuristics to the Backtrack
algorithm that greatly improve search times. The DPLL-procedure extends the Backtrack
algorithm with two further checks before branching on a literal,
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Figure 2.1: A run-through of the backtracking algorithm. Negative numbers represent negated
literals. Dashed lines represent choice points unexplored. The blue sets represent the
current assignment. Note that the traversal is left-to-right depth-first. This pattern of
backtracking through previous assignment is referred to as chronological backtracking,
the word “chronological” appealing to exploration of events as they happened in the
past. This method of backtracking is contrasted with non-chronological backtracking,
which will be described later in this section.
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• Unit clause elimination. A unit clause is a clause which contains only one literal
{p}. In this case, the algorithm recurs with the current assignment extended by p. The
propagation of this rule, that is, its repeated application, is referred to as unit propagation
or Boolean constraint propagation (BCP).

• Pure literal elimination. A literal p is called pure in a formula F if there is no additional
occurrence of its negation ¬p in F . If F contains a pure literal, the algorithm recurs with
the current assignment extended by p.

Pure literal elimination is rarely implemented as check in this recursive procedure due to
efficiency reasons[31, p. 943]. It is often implemented as one of the pre-processing steps SAT
solvers perform before the actual search. Moreover, a distinction between how literals are given
values must now be drawn. Either a value for a variable is explicitly chosen in the branching
stage, or a variable’s value is forced by the two heuristics mentioned above, such a forced variable
is commonly called an implied variable. An assignment of the first variety is called a decision
assignment. The implicit search tree may now be decorated with such decision assignments.
When a conflict (an unsatisfiable clause) is detected, instead of weaving back up the tree in a
left-to-right depth-first manner as done in the Backtrack algorithm, the algorithm jumps back
up the tree to the last decision assignment. This technique is called backjumping[31], and also
speeds up the search process for practical problems.

Example 3. To demonstrate the DPLL-procedure, I will walk through the example given for
the Backtrack algorithm above using notation developed in [31]. In this notation, a state of
the search process is denoted by M‖F , where M is a (partial) assignment and F is a formula
in CNF. States are related to one another by a relation, denoted ⇒. We transition between
states using one of the four rules in the DPLL procedure. These rules are Decide, UnitPropagate,
PureLiteral, and Backtrack, corresponding to the stages of the algorithms presented above. A
decision assignment for a variable x is denoted xd.

∅‖1 ∨ ¬2,¬1 ∨ ¬3, 3 ∨ 4,¬4 ∨ ¬1⇒ (Decide)
1d‖1 ∨ ¬2,¬1 ∨ ¬3, 3 ∨ 4,¬4 ∨ ¬1⇒ (UnitPropagate)

1d¬4‖1 ∨ ¬2,¬1 ∨ ¬3, 3 ∨ 4,¬4 ∨ ¬1⇒ (UnitPropagate)
1d¬43‖1 ∨ ¬2,¬1 ∨ ¬3, 3 ∨ 4,¬4 ∨ ¬1⇒ (UnitPropagate)
¬1d‖1 ∨ ¬2,¬1 ∨ ¬3, 3 ∨ 4,¬4 ∨ ¬1⇒ (Backtrack)

¬1d¬2‖1 ∨ ¬2,¬1 ∨ ¬3, 3 ∨ 4,¬4 ∨ ¬1⇒ (UnitPropagate)
¬1d¬23‖1 ∨ ¬2,¬1 ∨ ¬3, 3 ∨ 4,¬4 ∨ ¬1 (Final state)

Note here that only made two decision assignments on variable 1. The rest of the decisions
were inferred by the heuristics. Also notice how the application of the Backtrack rule jumped
past two assignments, an example of backjumping.
The satisfying assignment in this example is {¬1,¬2, 3}, as before with the Backtrack

algorithm.

It has been estimated that SAT solvers spend more than 90% of their run-time in the BCP
step[23]. It is therefore not hyperbolic to say that optimising this procedure is of great importance.
The reason so much time is spent in BCP can be seen by asking the question: “How does the
solver find out when a clause becomes unit?” A naïve approach would be as follows: every time
an assignment is made, the solver scans each clause in the database to see if the assignment
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caused it to become unit. Since there can be millions of clauses in a given problem, this is clearly
not a winning strategy. The Chaff solver employed an optimisation referred to as watched
literals[23] to address this need for optimisation. For each clause in the problem, two literals are
selected to play the role of watched literals. Note that all clauses of interest in this optimisation
must be of length greater than two, since unit clauses are exactly what BCP removes. The two
literals are chosen from those variables which are either currently unassigned or false. Hence,
when one of these two watched literals becomes true, two possibilities remain: either the clause is
still not unit, in which case another unassigned or false variable is selected to join the remaining
watched literal, or the clause has indeed become unit and the variable implying this unit clause
removal is the remaining watched literal. This scheme has several other algorithmic pleasantries
that all competitive modern SAT solvers enjoy. This optimisation does not effect the search
space explored by the SAT solver, only the time efficiency of the SAT solver. I thought the
reader may find it interesting to see just one of many clever implementation tricks employed to
make SAT solvers so useful for many practical problems.
A common technique that does alter the search space explored by SAT solvers is conflict

driven clause learning[20] (CDCL). The fundamental trick here is to exploit the structure of
BCP. When BCP is applied to a formula, often several variables will become assigned, and
certain clauses will become satisfied. Some clauses will also become unsatisfied and hence conflict
with the current assignment. This process implying (through BCP) variables’ assignments and
the status of previously unresolved clauses reveals a graph. The edges in such a graph encode
which variables’ assignments were implied from other assignments, and through which clauses
the implications arose.

Example 4. (Adapted from [32].) In this example, I will show how a clause can be learnt
from a conflict, so as to avoid making the same mistake in the future. As Santayana once said:
“Those who cannot remember the past are condemned to repeat it.”

Consider the formula,

φ = ω1 ∧ ω2 ∧ ω3 ∧ ω4 ∧ ω5 ∧ ω6

= (x1 ∨ x31 ∨ ¬x2) ∧ (x1 ∨ ¬x3) ∧ (x2 ∨ x3 ∨ x4) ∧ (¬x4 ∨ ¬x5)
∧ (x21 ∨ ¬x4 ∨ ¬x6) ∧ (x5 ∨ x6),

(2.11)

and assume that the assignment x21 = 0 was decided at level 2 of the backtracking search
(denoted x21 = 0@2), that x31 = 0@3 and that the current assignment decision x1 = 0@5. What
will happen next? To find out, BCP must be applied. Running through each clause, the following
assignments are implied,

x1 = 0@5 =⇒
BCP

x2 = 0@5 (ω1)

x3 = 0@5 (ω2)
x4 = 1@5 (ω3)
x5 = 0@5 (ω4)
x6 = 0@5 (ω5).

The bracketed ωi expressions denote in which clause the implication was made. Note that if
BCP is applied a decision level d, then all implied decisions are also considered to be made a
decision level d, not d + 1 as you might possibly expect. This set of implicates has caused a
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Figure 2.2: The implication graph after applying BCP to Equation. 2.11. An arc from a decision
node xi to a decision node xj with edge label ωk means that xj was inferred from xi
in clause ωk. The circled node on the far right is the conflict clause κ = (x5 ∨ x6).

conflict. For ω6 = (x5∨x6) to be true, at least one of x5 and x6 must be true, but the implications
have made both of them false. The conflict clause in this case is denoted κ = (x5 ∨ x6). The
graph structure of this example is shown in Fig. 2.2
Consider what can be deduced from this conflict. Recall the conflicted clause κ = (x5 ∨ x6).

The way in which a new clause is learned from this conflicted clause is to repeatedly apply an
operator that transforms the conflicted clause, by following the reverse implications starting
from κ into a clause that will ensure the search never considers this erroneous partial assignment
again,

(x5 ∨ x6)→
ω4

1 (¬x4 ∨ x6)→
ω5

2 (¬x4 ∨ x21)→
ω3

3

(x3 ∨ x2 ∨ x21)→
ω2

4 (x1 ∨ x2 ∨ x21)→
ω1

5 (x1 ∨ x31 ∨ x21).

This set of steps is showing what the reverse traversal through the implication graph of Fig. 2.2
looks like. Starting from the conflict, κ, each literal in the clause is replaced by the negation of
all the literals that implied it. The result of applying this process until a fixed-point is reached
is (x1 ∨ x31 ∨ x21). This is the learnt clause; after being added to the clause database, the search
can never explore this dead-end again.

The learnt clauses may be later deleted by a clause deletion policy, since some instances can
cause the solver to learn a vast number of clauses which may become a burden on the SAT
solver’s memory limitations. The conflict clauses can also be used to speed-up backtracking.
By considering the level at which the conflict was originally initiated, the solver can non-
chronologically backtrack to this epoch[20]. This overview of CDCL was necessarily brief, for
more detail and an excellent historical perspective, see §2.2.3 of [33].

Finally, most contemporary SAT solvers also incorporate randomness in their search procedures[33].
The randomness can be employed in the choice of which variable to branch on next (the branching
heuristics), or more commonly, when to stop exploring the current assignment and start afresh;
known as a random restart. The random restart works by defining a particular cut-off depth
in the backtracking search. If the solver backtracks to depths beyond the cut-off point, it
will randomly restart itself with a different assignment, keeping the clauses learnt from the
previous forays. This strategy has been shown to be very effective at reducing search times[34]
and the method can be implemented to ensure that the completeness guarantee of DPLL is
maintained.[35]
The SAT solver used in this report for conducting experiments in §4.1 is part of the Z3

theorem prover system. This SAT solver is state-of-the-art and incorporates CDCL, BCP and
non-chronological backtracking, amongst other techniques not covered in this report[36].
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Figure 2.3: The Eager approach to solving SMT.

2.4 Solving SMT

There are two general approaches to solving an SMT problem. In the first, so called “Eager
Approach”, the problem of solving in some background-theory is reduced to that of solving
an equisatisfiable propositional formula which SAT technology can handle. In the second so
called “Lazy Approach”, the formula in some background-theory is abstracted to a formula
which contains only Boolean variables. SAT technology can then find models for these Boolean
variables, and the validity of these models is verified by the underlying decision procedure the for
original terms of the background theory. An overview of Eager approach is depicted in Fig. 2.3
and an overview of the Lazy approach is depicted in Fig. 2.4.

2.4.1 Eager SMT Approach

A surprisingly large amount of reduction can be performed on a formula in some variant of
first-order logic to achieve an equisatisfiable formula in propositional logic. For this reason, early
approaches to SMT solving focused on the translation to SAT. This was attractive because so
much research had already been invested into SAT technology, and efficient decision procedures
for the various background theories in SMT had not yet been developed.

One such reduction that can be performed is called Ackermann’s reduction[37]. This reduction
was first presented in [38], but I do not have access to this work. This procedure reduces formulas
with uninterpreted function symbols to formulas of equality logic. The reason for performing this
reduction is to make the decision problem easier. For example, proving the equivalence of two
functions F (x, y) = x ∗ 1/y and G(x, y) = x/y over 64-bit integers x and y is computationally
very difficult. We can abstract the details of these functions into “uninterpreted functions” FUF
and GUF and then just impose functional consistency requirements which state that the function
returns the same output for the same inputs. Such abstractions as part of a larger model can
turn an intractable search problem into a tractable one. The general idea of the reduction is to
take a formula FUF with uninterpreted functions in it and convert it to a formula FE with the
uninterpreted functions removed . Using notation in[37], the reduction looks like,

FE := FCE → flatE ,

where FCE are the functional consistency constraints and flatE is a so-called “flattening” of
FUF where the uninterpreted function symbols have been replaced by newly generated variables.
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Figure 2.4: The Lazy approach to solving SMT.

Example 5. Consider the following formula,

FUF := (x 6= z) ∧ (G(x) 6= G(y)) ∧ (G(y) = G(z))

In this example we have four uninterpreted function symbols (two of which are the same). For
each of these distinct occurrences, a new variable is introduced. For this example: g1 = G(x),
g2 = G(y) and g3 = G(z).
The flattening of FUF is,

flatE := (x 6= z) ∧ (g1 6= g2) ∧ (g2 = g3)

and now functional consistency constraints are imposed,

FCE :=
(x = y =⇒ g1 = g2) ∧
(x = z =⇒ g1 = g3) ∧
(y = z =⇒ g2 = g3)

The result of applying Ackermann’s reduction is that FUF is valid if, and only if, FE is valid,
where

FE := FCE → flatE .

The nice property about the result of applying the Ackermann reduction (or any reduction
that removes uninterpreted function symbols) is that the resulting formula is in the language of
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equality over symbols, and hence satisfies the small model property, which using the definition of
R. Ramanujam[39] states that “a formula α is satisfiable iff it is satisfiable in a model whose size
is bounded by some (at most) exponential function of |α|.” Using this property, a finite domain
can be constructed such that the original formula is valid iff it is valid over all interpretations of
this finite domain. It is this insight, and a common trick of letting each Boolean domain variable
range over [1..n], where n is the number of arguments taken by the function being operated on
by the Ackermann reduction, that drives the so-called “Small Domain Instantiation” method for
deciding formulas in equality logic by reduction to SAT.

Small Domain Instantiation[40]. Given a formula φ in equality logic, the Small Domain
Instantiation method first maps each variable xi ∈ φ into a finite set of integers. This mapping
is denoted by R(xi). The goal is to minimise the size of this set of integers. The constraint
on what this set of integers can be is that the original formula φ must be satisfiable if and
only if φ is satisfiable over an interpretation with respect to R(xi), for i ∈ [1, n]. The intended
meaning here is that φ is satisfied iff φ is satisfied after replacing each variable xi ∈ φ with every
k ∈ R(xi), its finite domain. With these finite domain so constructed, they are encoded into a
suitable enumerated type (for example, a bit vector). With such an encoding, a binary decision
diagram Bφ may be constructed. Formula φ is satisfiable iff Bφ is not identical to 0.

Binary decision diagrams (BDDs) are beyond the scope of this report, but they are introduced
in[41]. In brief, they are concise graphical models of Boolean functions. The important point
here is that testing whether a BDD for a formula F is not identical to 0 is equivalent to asking
whether F is satisfiable. The equivalence is explained in more detail in[42, §6]. The Small
Domain Instantiation as explained here is not small at all. I have simplified the presentation by
using a trivial upper bound on the size of the set of integers to which each variable is mapped,
that being n, the number of variables in the formula being reduced. [40] introduce a more
sophisticated approach that shrinks this bound, and research in this area is concerned with
further shortening the size of this set of integers.
What has been achieved here? From a formula φ with uninterpreted function symbols and

equality, this exposition of the Eager Approach has reduced, through the use of Ackermann’s
reduction, φ to a formula φ′ with uninterpreted function symbols removed, and finally the small
domain instantiation method has reduced φ′ to a object in a SAT-equivalent formalism, which
can be solved using well established techniques.
The small domain instantiation method is just for reducing the formulas in the theory of

uninterpreted functions with equality to SAT. There are several other theories that must be
reduced. Propositional logic is not expressive enough for representing many real-world problems[5],
and furthermore, eager encodings often result in more deduction steps than necessary[43]. This
is because we have to encode the entire formula in one pass, and such an approach often
encodes more than is required to show that a formula is unsatisfiable. The eager approach is
not useless, and is used by the Uclid system, which has enjoyed success in the verification of
pilelined microprocessors. However, eager approaches to theories involving arithmetic suffer
from exponential encodings, and as such Uclid has been dominated by DPLL-based lazy SMT
methods[5, 31] as described in §2.4.2.

2.4.2 Lazy SMT Approach

The lazy SMT approach[5] combines the success of DPLL-based SAT solvers with theory specific
decision procedures. This approach frequently outperforms the eager approach, even by orders
of magnitude[31], this is one of the reasons why most modern SMT-solvers use the lazy approach
rather than the eager approach.
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One reason why the lazy approach is efficient is that it works using layers of increasing
complexity. The lowest layer in this framework is a DPLL procedure, as described in §2.3. If
this layer can not find a satisfiable assignment, the lazy approach will immediately fail. Further
layers are added on this propositional DPLL layer, incrementally considering harder decision
problems. Hence, the more expensive decision procedures are called upon only when necessary
by the current sub-problem being analysed. This approach was a precursor to what is now
referred to as the DPLL(T ), and is described more rigorously in [44].
In the lazy approach, the DPLL-algorithm described in §2.3 is extended to communicate

directly with a theory solver (T -solver), this extension is denoted DPLL(T )[31]. The DPLL(T )
procedure is general, any T -specific decision procedure can be plugged in and used, provided
that it meets some implementation-defined interface for doing so. Contrast this with the ad-hoc
nature of the eager approach. An overview of the approach is shown in Fig. 2.3. The conversation
between the SAT solver and the theory-specific solver is orchestrated by two functions. The
first function T2B transforms a T -formula F containing T -terms into a Boolean formula F bool

containing only propositional atoms. This mapping is called abstraction. The second function
B2T is the inverse of T2B, mapping a Boolean formula back into its T -formula. This mapping
is called refinement.

Example 6. Consider the T -formula φ in a combination of the theories of arrays and linear
arithmetic,

φ := (read(a, x1) = x3)
∧ (A1 ∨ ¬A2 ∨ 3x3 ≤ x1)
∧ (¬(3x3 ≤ x1) ∨ 2x1 + 5x3 = 21 ∨A3).

The result of abstraction is,

T2B(φ) := B1

∧ (A1 ∨ ¬A2 ∨B2)
∧ (¬B2 ∨B3 ∨A3).

Note how the two occurrences of 3x2 ≤ x1 have been assigned the same Boolean variable
B2. Two T -terms are considered the same if they are syntactically identical[5], not if they are
logically identical, so 2x1 = 10 and x1 = 5 would not be assigned the same Boolean variable.

With reference to Fig. 2.4, the SAT-solver receives a Boolean abstraction and then uses a
backtracking algorithm such as the one in Algorithm. 1 to present an assignment of the Boolean
variables. Assume the first assignment is

µ := {B1,¬A2, B3}.

The refinement of this assignment now passed to the T -solver,

B2T (µ) := {(read(a, x1) = x3),¬A2, 2x1 + 5x3 = 21}

The T -solver then uses its decision procedures for the theory of arrays and linear arithmetic to
decide whether this set of formulas is satisfiable. If they are, then the result is true, otherwise we
inform the SAT-solver that this Boolean abstraction is not satisfiable and then the SAT-solver
either presents us with another Boolean assignment, or determines that no more assignments
are possible, resulting in false being returned.
I have mentioned in passing how SMT often solves problems involving a “combination” of

theories. Modern techniques for combining theories follow the theoretical work described in
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[45]. One problem with this combination is that of theory-propagation. Recall that SAT-solvers
employ heuristics to figure out how to proceed, such as how many times a variable occurs in
distinct clauses, or whether a variable appears only positively, etc. Such decisions can be made
in part because of the consistent nature of the representation, namely, propositional logic. The
matter is complicated when using combined theories in SMT[46]. Consider the combination
of the array theory and the linear arithmetic theory, how can solving a sub-goal in theory of
arrays help the solver learn something about solving another sub-goal in theory of arithmetic,
even if both sub-formulas contain the same variables? This is one potential drawback of the
lazy approach compared to eager approaches, but it is noted in[5] that such drawbacks are often
compensated for by other benefits of the lazy approach.

2.5 Constraint Programming

Constraint programming (CP) is a programming paradigm. Other examples of programming
paradigms are procedural programming (C), functional programming (Haskell) and logic pro-
gramming (Prolog). There are various constraint programming languages in which it is relatively
easy to describe and solve constraint satisfaction problems (CSPs) in a declarative manner.
What, then, is a CSP?

A constraint satisfaction problem (CSP) is a triple 〈X ,D, C〉[47] where X is an n-tuple of vari-
ables X = 〈x1, x2, . . . , xn〉, D a corresponding n-tuple of finite domains1 D = 〈D1, D2, . . . , Dn〉
such that each xi takes its value from the corresponding Di. The notation min(X) will be used
to denote the minimum element in the domain of variable X, and the maximum will be denoted
as max(X). C is a t-tuple of constraints C = 〈C1, C2, . . . , Ct〉[47].Let V = v1, v2, . . . , vk be a
finite sequence of variables, then a constraint C on V is defined as a subset of the Cartesian
product of the domains of the variables in V [48]. More formally, C ⊆ D1 ×D2 × . . .×Dk. This
is often written as C(V). Constraints constrain the domain Di from which the variables take
their values. When a constraint C equals D1 ×D2 × . . .×Dk and is non-empty, the constraint
C is said to be solved.
Let P = 〈X ,D, C〉 be a CSP. A tuple (d1, . . . , dn) ∈ D1 ×D2 × . . . ×Dn is said to satisfy a

constraint C ∈ C if (d1, . . . , dn) ∈ C. If no such tuple satisfies a constraint C, the the constraint
C is said to be inconsistent. A tuple (d1, . . . , dn) is called a solution to P if and only if it satisfies
every constraint in C[49]. A CSP is consistent if a solution exists for the CSP.

A distinction is often made in the literature between unary constraints, binary constraints and
n-ary constraints. A unary constraint is a constraint over one variable, a binary constraint is
over two variables, that is, C(V) where |V| = 2, and an n-ary constraint if over n variables. Such
distinctions are unnecessary in theory, but the terms are occasionally convenient when referring
to certain constraints. One final piece of terminology related to constraints is that of a global
constraint. Some authors define this as being an n-ary constraint where n > 2[50, 51], but the
definition used in this report, following [52], is to define it as a constraint which encapsulates
other constraints, for example by expressing the global constraint as a conjunction of constituent
constraints. Global constraints are heavily used in CP, and will be the focus of this report.
Examples of global constraints are the “All Different” constraint introduced in §2.5.2 and the
“Global Cardinality Constraint” intrduced in §2.5.2. Global constraints can in a loose sense
provide more information about the structure of the problem being solved than single constraints
alone. This higher-resolution picture of the problem structure is often found to improve solve
times dramatically. A small example demonstrating this is presented in §2.5.1.

1In this report only finite-domain CSPs are considered, infinite-domain CSPs do also exist.
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Given an abstract description of a problem to be attacked by CP, the constraint programmer
must reformulate the abstract problem in a CSP. That is, the constraint programmer must
find appropriate variables, domains and constraints that when solved yield a solution to the
original problem. This is often a highly non-trivial task, and the process of reformulation is
called modelling. Models are expressed in a modelling language. In this report, I have used the
MiniZinc language which is a medium-level declarative modelling language[53]. The solver I
have coupled with this modelling language is the G12 finite domain solver[54]. MiniZinc was
chosen because of its easy-to-use declarative modelling language and large library of built-in
global constraints.

What has this got to do with SAT or SMT? SAT and CSPs are two closely related problems
with several interesting mappings between the two formalisms[55–57]. The most obvious of
which is that both SAT and CSP are NP-complete problems, and hence by definition must be
translatable to one-another in polynomial time. It stands to reason therefore that advancements
in either SAT or CSP solving technology is of mutual benefit.
A popular encoding of CSP into SAT is the direct encoding [56]. For each CSP variable Xi,

propositional variables xik are introduced, where k ∈ {1 . . .m} and m = |D(Xi)|. If xik = 1 in
the SAT encoding, then variable Xi takes value k in the CSP encoding. Furthermore, to ensure
that each CSP variable Xi is actually given a value, clauses such as xi1 ∨ xi2 ∨ . . . ∨ xim are
posted. For this clause to be satisfied, at least one of xik must be true, that is, the CSP variable
Xi must take at least one value. If we wish that each CSP variable Xi may take only one value,
then we can enforce this with a binary clique of inequalities over the corresponding propositional
variables: ¬xij ∨ ¬xik for all i, j and k such that j 6= k. This ensures that only one of xik can
be true.

The literature contains many encodings of CSP into SAT, and [56] lists several of them. The
above discussion should have made it clear how a CSP can be viewed as a SAT problem; and
hence, it should be now be clear how we might view it as an SMT problem. CSPs can be solved
using either SAT, SMT or CP systems. The choice of which to use is application-specific and
beyond the scope of this report. Solving CSPs using SAT and/or CP has been extensively
studied, but the problem has barely been addressed for SMT.

CSPs nearly2 always have an element of search in them. In the most abstract sense, we define
a finite-domain for each of our variables Xi, and ask the computer to find a subset of these
domains that satisfy the constraints we have specified.
Example 7. To make these formalisms more palpable, consider a rather contrived example
which will hopefully demonstrate how a model of a “real-world” scenario can be formulated as a
CSP.

Imagine that you own a pottery. Each day, your pottery gets a number of requests for ceramic
objects. You have a potting wheel and an oven. While clay is baking in the oven, you can be
throwing clay on the wheel in parallel. For each request that comes in, an expected time of
completion is given for both stages in the potting process, and as the benefactor of the pottery,
you’re interested in minimising the time taken to complete all the requests. Your first set of
variables might be Tsr which represent the estimated time stage s takes for request r,

{Tsr|s ∈ {Wheel,Oven}, r ∈ Requests} ⊆ X.

The corresponding domain for Tsr would just be a finite set of integers. This is what you already
know, you also make some variables that the constraint programming system will assign values

2Some CSPs can be solved without any search and just by inference. An example is the Sudoku problem, where
AllDifferent constraints can reduce the domain of each variable to a single value, or determine that no
such assignment exists by propagation alone, with no search
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Figure 2.5: An example constraint network

to; these are the variables whose values you wish to find out. In this case, you want to know
when you should start each stage of production for each request, let Ssr represent the start time
of stage s for request r,

{Ssr|s ∈ {Wheel,Oven}, r ∈ Requests} ⊆ X.

The corresponding domain for Ssr is trickier and must be bounded for finite-domain CSP
models. This can be done by choosing the upper bound to be U = ∑

s,r Tsr, which would be
the time taken if you just sequentially performed all the requests, one at a time. Specifically,
D(Ssr) = {1, . . . , U}. This is safe, but it is hoped that the constraint system will be able to find
a sequence of actions that reduce this trivial upper bound.
Less formally now, some constraints over Ssr can be formulated, which are members of C,

• You can’t mould two different clays at the same time on the wheel

• A maximum of 2 distinct clays can be baked in the oven at the same time

• You must mould a clay before you bake it

• A clay must rest for M minutes after moulding before it is baked.

and so on. These constraints will squash the domains for each start time Ssr. To pick an
appropriate set of domains, you must instruct the system to make a choice. You want to
minimise the end time of all these jobs, so you introduce a new variable end, that represents
this,

constraint ∀s, r Ssr + Tsr ≤ end.

A constraint that end is less than 6-pm must also be added, so that you can eventually go
home! Finally, the system can be asked to satisfy these constraints by minimising the end
variable. The result will be an assignment to each of the variables Ssr, or a message stating that
no assignment exists for this set of requests, indicating that you can’t do this much work in one
day.

2.5.1 Consistency
We can view CSPs as constraint graphs. In such a graph, a node represents a variable, and an
arc represents a binary constraint, which is simply a constraint between two variables. Such
graphs can be generalised to contain hyper-edges which then represent constraints between more
than two variables, but I shall ignore this in the presentation. The notation used is shown in
Fig. 2.5. Boxes represents domains of variables, and arcs between the boxes represent (binary)
constraints.
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Figure 2.6: Overview of Arc Consistency ArcAB means arc consistency has been performed from
A to B in the diagram. In the first transition, the only value in DA that satisfies CAC
is 5, and therefore DA = {5}. Skipping ahead to the second-to-last diagram, DA has
become empty, now there are no solutions to the constraints, and this information is
eventually propagated around the network until all domain become empty.

The reason these constraint graphs have been introduced is to talk about how certain constraints
can be verified as being locally consistent with the domains of our variables. Such consistencies
are local because the checks in this section work constraint by constraint, rather than checking
the consistency of the entire CSP in one fell swoop.

Arc Consistency. A constraint C on variables xi and xj is arc consistent from xi to xj if
every value x ∈ Di takes part in some solution of C. A constraint C between xi and xj is arc
consistent, written AC(C), if it is both arc consistent from xi to xj and from xj to xi. A CSP
is arc consistent if every binary constraint is arc consistent.

There are various algorithms for achieving arc consistency[58] and an optimal bound of Θ(ed2)
where e is the number of constraints in a CSP, and d is an upper bound on the size of a variable’s
domain. To give a demonstration of how domains can be reduced (and in this example, a CSP
proven unsatisfiable), arc consistency has been performed between several pairs of variables in
turn, shown in Fig. 2.6. The drawing finishes when we reach a so-called fixed-point where no
further changes to the domains of any variable occur. This is not demonstrating any particular
consistency algorithm, just the mechanics of performing arc consistency.

Generalised Arc Consistency. A binary constraint C(x1, x2, . . . , xk) is generalised arc
consistent from x1 if and only if every value in the domain of x1 takes part in some solution of C.
A constraint C on a set X of variables is generalised arc consistent, written GAC(C), if and only
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if it is generalised arc consistent from every xi ∈ X . A CSP is generalised arc consistent if and
only if for every C ∈ C, GAC(C) is true. This is called hyper-arc consistency, domain consistency
or generalised arc consistency by various authors. In this report, the property is referred to as
GAC. Note that GAC really is a generalised notion. A binary constraint is arc consistent if
and only if it is generalised arc consistent. Checking GAC is in general NP-hard[59], which is
why several other weaker forms of consistency (defined below) are used by the community, since
enforcing GAC for all constraints is often too expensive.

It is important to realise that a CSP exhibiting GAC does not in general mean that the CSP
is consistent. For example, the CSP depicted in Fig. 2.7 is GAC but not consistent. Consider
x1 and x2: if x1 = 1, then x2 = 2 satisfies 6= (x1, x2), similarly, if x1 = 2, then x2 = 1 satisfies
6= (x2, x1). Hence 6= (x1, x2) is arc consistent. The same holds for 6= (x1, x3) and 6= (x2, x3).
However, the CSP is clearly not consistent. In essence, an attempt is being made to solve an
instance of the graph-colouring problem in which the graph has a clique of three nodes with two
colours.

Figure 2.7: A CSP that is GAC but not consistent.

A slight extension to the situation shown in Fig. 2.7 which demonstrates the potential
effectiveness of global constraints over binary constraints is shown in Fig. 2.8. It was mentioned
in §2.5 that global constraints can evince a deeper structure of the problem being solved than
binary constraints. In Fig. 2.8, notice that arc consistency on the binary constraints can not
remove any values from any variables’ domain, since all values are mutually consistent. However,
imagine there exists a global constraint called All Different (see §2.5.2) that parametrises the
three disequalities. By reasoning globally across all three binary constraints, an appropriate
propagation algorithm can efficiently deduce that x3 = 3, as required.

GAC is a very expensive level of consistency to maintain, especially on arithmetic CSPs, that
is, CSPs with arithmetic constraints. For example, imagine applying GAC to a constraint such
as 430A−103B+9C+17D = 213, where the domains of A, B, C and D are all {1, 2, . . . , 10000}.
In general, is it NP-hard to decide if these arithmetic constraints are GAC[60]; the same hardness
as solving the whole CSP.
For these reasons, two relaxations of GAC designed for use in arithmetic constraints were

developed: bounds and range consistency.
Bounds consistency[50]. A constraint C(x1, x2, . . . , xn) (n > 1) is bounds consistent

(BC) if and only if for all i ∈ {1, 2, . . . , n} and each value di ∈ {min(D(xi)),max(D(xi))},
there exist integer values dj ∈ [min(D(xj)),max(D(xj))] for all j ∈ {1, 2, . . . , n} \ i such that
(d1, d2, . . . , dn) ∈ C. There are some subtle differences in definitions of bounds consistency
throughout the literature, [59] explain the differences, using their taxonomy, the flavour of
bounds consistency used in this report is bounds(Z). While there may be dramatic differences

28



Figure 2.8: A consistent CSP which demonstrates the effectiveness of global constraints versus
binary constraints.

between these flavours of bounds consistency when applied to linear constraints (bounds(D)
and bounds(Z) are NP-complete, whereas bounds(R) is only linear time), the definitions are
equivalent for the propagators studied in this report.

Range consistency[50]. Range consistency (RC) is a stronger form of consistency than
BC, but a relaxation of GAC. Specifically, a constraint C(x1, x2, . . . , xn) (n > 1) is RC if
and only if for all i ∈ {1, 2, . . . , n} and for all values di ∈ D(xi), there exist integer values
dj ∈ [min(D(xj)),max(D(xj))] for all j ∈ {1, 2, . . . , n} \ i such that (d1, d2, . . . , dn) ∈ C. Note
that instead of considering the bounds {min(D(xi)),max(D(xi))} as in BC, we consider the
entire domain.

To summarise the various consistency notions described in this section, a partial order � will
now be defined over them. Let P and P ′ be two CSPs, and let |P | = |⋃iD(Xi)| be the size of
the combined variables’ domain in the CSP. Then P � P ′ if and only if |P | ≤ |P ′|. It can now
be proven that GAC(P ) � RC(P ) � BC(P ).
To prove GAC(P ) � RC(P ), consider the constraint X = 2Y + Z where D(X) = {3, 4},
D(Y ) = {1, 3} and D(Z) = {1, 3}. This is RC since X = 3 is satisfied by Y = 1, Z = 1 and
X = 4 is satisfied by Y = 1, Z = 2 where 2 ∈ [1, 3]. X = 4 is not valid for GAC however, since
there does not exist values for Y ∈ {1, 3} or values for Z ∈ {1, 3} to make 2Y + Z = 4.
To prove RC(P ) � BC(P ), consider the constraint X 6= Y where D(X) = {1, 2, 3} and
D(Y ) = {2}. This is BC since for x1 = min(D(X)) = 1, there exists a value 2 ∈ D(Y ) such
that x1 6= 2. Similarly for x3 = max(D(X)) = 3. However, this constraint is not RC, since we
consider all domain values of X, not just its bounds, and for x2 = 2 ∈ D(X), there does not
exist a corresponding value y ∈ D(Y ) such that x2 6= y.

The inequalities above follow from the arguments for GAC(P ) � RC(P ) and RC(P ) � BC(P )
since the transitivity of ≤ implies the transitivity of �.

2.5.2 Global Constraints

This section motivates two examples of global constraints studied in Chapter. 4, the “all
different” (AllDifferent) and “global cardinality” (GCC) constraints. Also discussed are the
propagator algorithms for the AllDifferent and GCC constraints from which the respective
decompositions in [14] are directly derived.
The propagator algorithms utilise the notion of a Hall interval. Therefore, a Hall interval is

first defined.
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Hall intervals are exploited in [61] to develop a propagation algorithm for AllDifferent that
maintains RC. They are also exploited in [62] develop a propagation algorithm for AllDifferent
that maintains BC.
Consider a problem with variables X1, X2, . . . , Xn. A Hall interval is an interval of k values

from D(X1) ∪ D(X2) ∪ . . . ∪ D(Xn) which forms of superset of the domains of k variables.
Formally, an interval [l, u] is a Hall interval if and only if |{i|D(Xi) ⊆ [l, u]}| = u− l + 1.

Example 8. In this example the Hall intervals for the set variables depicted in Fig. 2.9 are
identified.

Figure 2.9: Fictitious setup demonstrating Hall intervals.

The boxes indicate which Hall intervals exist in this example. The blue box is a Hall interval
of size 1, since exactly one variables’ (X6) domain is contained in the set of domain values {V1}.
Similarly, the red box is a Hall interval of size 3, since exactly three variables’ (X1, X2 and X5)
domains are contained in the set of domain values {V2, V3, V4}.

All Different

The AllDifferent constraint takes a set of variables {xi}, each with a corresponding finite
domain, and says that for each pair of variables xi and xj , where i 6= j that xi 6= xj . In
other words, AllDifferent(x1, x2, . . . , xn) is logically equivalent to ∧1≤i<j≤n xi 6= xj [63]. The
AllDifferent constraint is one of the most frequently used global constraints in constraint
programming due its wide applicability. For instance, [64] use the AllDifferent constraint to
optimally schedule air traffic flows. In their work, n aircraft wish to travel to and from a set of
destinations along the straight-line paths (termed “flows”) between those locations. Since more
than one aircraft might be travelling in the same flow, a set of flight levels are provided. These
are horizontal levels vertically separated by about 2000ft, allowing multiple aircraft to travel
along the same straight line. If ri are variables representing the route for aircraft ni and Li are
variables representing the level at which aircraft ni flies in, then part of the model looks like,

∀i, j 1 ≤ i < j ≤ n intersect(ri, rj) =⇒ Li 6= Lj , (2.12)
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Figure 2.10: The picture on the left shows some fictitious flight routes represent by solid lines.
Points of intersection imply that aircraft travelling along the intersecting routes must
be in different vertical levels. The picture on the right represents the corresponding
level constraints as local disequalities.

meaning that if two routes intersect, then the airplanes must be in different horizontal levels
Li, Lj to avoid a collision. An example flight network given in [64] is shown in Fig. 2.10.

In the constraint network on the right of Fig. 2.10, the only constraints are local disequalities.
The method of [64] was to find all maximal cliques in such a constraint network and then post
an AllDifferent over that clique. Such a method was found to enormously cut down on the
search required to prove optimality of the scheduled flight networks. For example, in Fig. 2.10,
the maximal clique is just {L1, L2, L3, L4}, from which an AllDifferent constraint can be
posted: AllDifferent(L1, L2, L3, L4). Once that constraint is posted, the disequalities can be
removed, since they are subsumed by AllDifferent.
As another example, AllDifferent was employed by [65] as part of the solution to the

problem of scheduling personnel in a work rota, in particular, it was used to constrain that no-one
can work two jobs simultaneously. Another reason why AllDifferent is so widely known by
the constraint programming community is because many global constraints can be expressed
as generalisations or extensions of the AllDifferent constraint. The Global Cardinality
Constraint is one such constraint of this type, and it will be explained in §2.5.2. Other examples
of global constraints that can be considered extensions of AllDifferent include sort, diffn
and cycle[50]. For an encyclopedic overview of the AllDifferent constraint, consult the
entry in the Global Constraint Catalogue [66].

Hopefully the reader is convinced that AllDifferent is a widely useful constraint with many
applications. It is therefore important to have an efficient algorithm for such a frequently used
constraint. There exist propagator algorithms for AllDifferent enforcing GAC[10], RC[61]
and BC[62, 67, 68]. The decomposition for AllDifferent presented in [14] is inspired by the
propagator algorithm in [61], and so it is this algorithm briefly considered in this report. It
might be unclear why the decomposition selected achieves mere RC instead of the stronger GAC.
Why not just decompose the GAC propagator? By an intriguing result, there does not exist a
polynomial size decomposition of the AllDifferent constraint that maintains GAC[69]. This
means that it would be intractable to try and use such a decomposition for non-toy problems.

Example 9. Before getting to the meat of the algorithm, an illustration of what a RC propagator
(or decomposition) must do is first presented. This example is taken from [14], however, they
have not correctly enforced RC, in this example, RC is correctly applied. Consider the setup in
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Table. 2.1.

1 2 3 4 5
X1 * *
X2 * * * *
X3 * *
X4 * * * *
X5 *

Table 2.1: Set of variables

First off, [1, 1] is a Hall interval since X5 is the only variable whose domain in completely
contained in this interval. Therefore, no other variables can take support in this domain, in
particular, we can remove 1 from X2’s domain. The situation now as depicted in Table. 2.2.

1 2 3 4 5
X1 * *
X2 * * *
X3 * *
X4 * * * *
X5 *

Table 2.2: The state after 1 has been removed from X2’s domain.

From Table. 2.2 the next Hall interval to be seen is [3, 4]. Exactly two variables, X1 and X3,
take their support in this Hall interval of size 2. So again, no other variables can take a value in
this interval. Hence, the values 3 and 4 must be removed from the domains of X2 and X4, and
the situation is now as depicted in Table. 2.3.

1 2 3 4 5
X1 * *
X2 *
X3 * *
X4 * *
X5 *

Table 2.3: The state after 3 and 4 have been removed from X2 and X4’s domain.

From Table. 2.3, a new Hall interval, [1, 1] has shown up. In particular, X2 is the only variable
whose domain is not contained in this interval. Hence, all other variables must take their values
outside of this interval. Therefore, we must now remove 2 from X4’s domain, finally yielding the
situation in Table. 2.4.

The domains in Table. 2.4 are now RC. This example has demonstrated the sort of reasoning
employed by the RC propagator algorithms in [61] and [62], as well as the result after applying
GAC to the decomposition presented in [14].

Pseudo code for the algorithm proposed in [61]3 is shown in Algorithm. 2. This algorithm works
3The description here is based on pseudo-code from [70], since I could not obtain access to [61]. The pseudo-code
has been significantly modified since it did not appear correct, or I misunderstood its purpose. I have an
implementation in Python available for inspection[71]
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1 2 3 4 5
X1 * *
X2 *
X3 * *
X4 *
X5 *

Table 2.4: The state after 3 and 4 have been removed from X2 and X4’s domain.

by first sorting the variables in two ways: by their maximum domain values and their minimum
domain values. We can explicitly store these two sorted instances, or, as in Algorithm. 2,
implicitly store them in the looping constructs. The iteration order ensures that Hall intervals
are detected from right-to-left, from smallest to largest. The inner-loop in lines 6–23 is detecting
the Hall intervals in the domains and removing those values from which a variable must not
take support from its domain. [61] proved that this algorithm is optimal for RC.

Algorithm 2 A propagator algorithm that achieves RC.
1: function Leconte-Alldiff-RC([X1, X2, . . . , Xn]) return The Xi with RC domains.
2: while Fixed-point over Xi not reached do
3: for Xj in decreasing order of max(D(Xj)) do
4: count← 0
5: k ← NIL.
6: for Xi in decreasing order of min(D(Xi)) do
7: if k is not NIL then
8: D(Xi)← D(Xi) \ [min(k),max(D(Xj))]
9: end if

10: if max(D(Xi)) ≤ max(D(Xj)) then
11: count← count + 1
12: if count = max(D(Xj))−min(D(Xj)) + 1 then
13: k ← D(Xi)
14: end if
15: end if
16: end for
17: if k is not NIL then
18: for Xi such that max(D(Xj)) < max(D(Xi)) do
19: if min(k) ≤ min(D(Xi)) then
20: Remove min(k) from D(Xi)
21: end if
22: end for
23: end if
24: end for
25: end while
26: end function
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Figure 2.11: Example of the sorts of GCC involved in scheduling problems.

Global Cardinality

Like AllDifferent, GCC has numerous applications, particularly in scheduling problems[72].
The example given in [72] is that a crew-scheduling problem. In this problem, a set A of activities
is given, which denote the shift a worker is assigned to. Three shifts occur in each day of the
week. Three of the shifts are morning, day and night. Also given is a set P of persons that can
be scheduled to work, and a set W denoting the days of the week.

The sorts of constraints involved in scheduling problems like this are of the following form: A
person p ∈ P must work at least j day shifts per week and at most k day shifts per week. Or
there must be at least m night shifts on a Wednesday and at most n night shifts on a Wednesday.
A pictorial description of such a scenario is shown in Fig. 2.11. The obvious local constraints
for such a scenario are of the form atleast(n, Night, Wednesday) and atmost(m, Night,
Wednesday). But for the same reasons as were outlined in §2.5.1, a GCC can filter the domains
of such a problem more effectively with its global approach.

For an encyclopedic overview of the GCC constraint, consult the entry in the Global Constraint
Catalogue [73].

More formally, the GCC can be specified as follows: given a set of variables X = {x1, . . . , xm}
where each xi takes its values from a subset of V = {v1, . . . , vn}, the GCC constrains the number
of times some value vi can be assigned to a variable in X to be between li and ui, where L is the
set of lower bounds {l1, . . . , ln} and U is the corresponding set of upper bounds {u1, . . . , un}. In
other symbols, GCC may be written as,

GCC(X,V, L, U) ≡
∧

s∈[1,n]
ls ≤

m∑
i=1

[xi = vs] ≤ us (2.13)

Where [B] is the Iverson bracket notation, meaning [B] is one if B is true, and zero otherwise.
As a quick example, GCC({x1, x2, x3}, {1, 2, 3}, {1, 2, 0}, {2, 3, 3}) would be equivalent to,

(1 ≤ [x1 = 1] + [x2 = 1] + [x3 = 1) ≤ 2)∧
(2 ≤ [x1 = 2] + [x2 = 2] + [x3 = 2] ≤ 3)∧
(0 ≤ [x1 = 3] + [x2 = 3] + [x3 = 3] ≤ 3)

(2.14)

34



Example 10. The GCC is rather subtle, so in this example several sets of bounds are shown
and the question of whether they are satisfiable or unsatisfiable is explored, so as to give a
flavour of the nature of GCC constraints. Consider the set of variables in Table. 2.5,

1 2 3
X1 * *
X2 *
X3 * * *
L l1 l2 l3
U u1 u2 u3

Table 2.5: Set of variables

Scenario 1: L = {0,2,0},U = {3,2,3}. The lower bounds for our three variables are 0, 2,
and 0 respectively. The upper bounds are 3, 2, and 3 respectively. Said another way, this set
of bounds is enforcing that between 0 and 3 variables can take the value 1, exactly 2 variables
take the value 2, and between 0 and 3 variables take the value 3. This case is easily seen to be
satisfiable. X2 has to equal 2 as before, but since there must be exactly two variables taking the
value 2, one of X1 or X3 must take value 2. Assume that X3 = 2. Now there are no choices and
is must be the case that X1 = 1. Hopefully it is clear that AllDifferent is just GCC with
li = 1 and ui = 1 for all value of i. Hence GCC is a generalisation of AllDifferent.

Scenario 2: L = {1,2,1},U = {2,3,1}. It is immediately seen that this is not a satisfiable
case. Notice that ∑i li = 4, which is larger than the number of variables in the problem, and
hence unsatisfiable.

Scenario 3: L = {2,0,1},U = {2,3,3}. This case is more subtle. Since there must be two
variables taking the value 1, X1 = X3 = 1 is forced. But now is must also be the case that
at least one variable takes the value 3. The only candidate for this is X3, but the assignment
X3 = 1 has already been forced. Hence this case is unsatisfiable.

Scenario 4: L{0,0,0},U = {3,0,3}. This case is slightly pathological, but important to
realise. It is requested that no variable take a value of 2. Unfortunately, X2 can only take the
value 2. It is forbidden for a variable to have no viable, hence this is also unsatisfiable.

Hopefully this example has made clear the sort of reasoning employed by the GCC.

2.5.3 Symmetry

In Chapter. 4 an encoding of a problem in SMT is presented which makes use of symmetry
breaking constraints. This section very briefly motivates the need for such constraints and what
they do.

To pictorially motivate what is meant by symmetry, consider the 8 symmetric solutions of the
8-queens problem depicted in Fig. 2.12. From this example, it is easier to see that by “symmetry”
the meaning is an “operation which changes the positions of the pieces, but whose end-state
obeys all the constraints if and only if the start-state does”[74]. The symmetries dealt with
in this report are called static symmetry breaking constraints. They are static because the
constraints are posted statically, along with the other constraints of the problem being modelled,
as opposed to being dynamically generated by the solver and they break symmetry in the sense
that for the constraint to be satisfied, only one solution in a class of symmetric solutions can be
used. Another example of a problem with inherent symmetry is the AllDifferent constraint.
In AllDifferent(X1, X2, X3), where each Xi has a domain of {1, 2, 3}, there is no requirement
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Figure 2.12: The 8-fold symmetry of the square. This is an example of one solution to the
8-queens problem. In this problem, 8 queens must be placed on a chessboard such
that no two queens attack one another. The symmetry operators are the identity,
rotation by 90◦, 180◦ and 270◦ and reflection vertically, horizontally and diagonally.
Figure taken from [75].

as to which value a variable must take. In terms of the search space, there are 3! = 6 complete
assignments that satisfy this constraint. The symmetries can be broken by adding a second
constraint of the form X1 < X2 < X3 which forces the assignment X1 = 1, X2 = 2 and X3 = 3
to be made.
This presentation of symmetry was necessarily brief as symmetry considerations are not the

focus of this report, but the concept is lightly used in Chapter. 4. [74] give a comprehensive
introduction to the topic.
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3 Decompositions

Decompositions, also referred to as reformulations[2] are translations of constraints into sets of
simpler constraints that preserve logical equivalence at the very least, and typically in addition
ensure that a certain level of consistency is achieved on the set of simpler constraints. The
motivation for a decomposition is described in Chapter. 1. In this report decompositions that
provide a less powerful consistency guarantee than built in propagators are studied; a natural
question is therefore: when are decompositions not appropriate? It turns out that there are
several constraints that are not effectively decomposable[76], meaning that their decompositions
can not be bounded by a polynomial in size, and hence are not practical for large instances.
There are therefore limits to the approach of reformulation. For the cases where reformulation is
theoretically sensible, this report is concerned with the practical benefits of such reformulations
in SMT.

In what follows, decompositions of the AllDifferent and GCC constraints will be presented.
Each decomposition will come with a code name, introduced in bold font at the start of the
decompositions’ explanation. The code names are used in Chapter 4, where experiments are
undertaken to compare the performance of the encodings introduced in this section.
Then, for each decomposition introduced, the concrete SAT encodings are presented in §3.3

and concrete SMT encodings are presented in §3.4 for the decompositions introduced.

3.1 AllDifferent Decompositions

BI. For AllDifferent there is at least one very obvious decomposition: decompose AllDif-
ferent(X1, X2, . . . , Xn) into a clique of binary disequalities, namely,

AllDifferent(X1, X2, . . . , Xn) ≡
n∧
i=1

Xi 6= Xj j ∈ [i+ 1, n]. (3.1)

DI. This encoding, suggested to me by my supervisor, is a variation of BI wherein pairwise
inequalities are encoded as disjunctions of negated equalities over the intersection of two variables’
domains. For example, consider three variables X1, X2 and X3 with corresponding domains
D(X1) = {1, 2},D(X2) = {2} and D(X3) = {1, 2, 3}. Now consider the pairwise intersection of
the variables’ domains. D(X1)∩D(X2) = {2}, D(X1)∩D(X3) = {1, 2} and D(X2)∩D(X3) = {2}.
From this, we can assert the following, which is equivalent to the pairwise clique, but more
informative:

¬(X1 = 2) ∨ ¬(X2 = 2)
¬(X1 = 1) ∨ ¬(X3 = 1)
¬(X1 = 2) ∨ ¬(X3 = 2)
¬(X2 = 2) ∨ ¬(X3 = 2)

(3.2)

This encoding, while it may seem quite ridiculous at first sight, has some interesting solving
statistics which will be explored in Chapter. 4.

37



HI(RC) ([14]). A far more sophisticated encoding than BI is now presented. The general
idea is to decompose the logic of Algorithm. 2. In particular, this decomposition simulates the
search for Hall intervals and the corresponding pruning of domains.

Let n be the number of variables Xi in our problem. Let d be the maximum value any variable
can take and then for 1 ≤ l ≤ u ≤ d and u− l < n, post the following constraints:

Ailu = 1 ⇐⇒ Xi ∈ [l, u] for i ∈ [1, n] (3.3)
n∑
i=1

Ailu ≤ u− l + 1 (3.4)

Less formally, Equation. 3.3 is a channelling constraint between the original variables Xi

and the variables Ailu, and Equation. 3.4 is counting how many variables take support inside
each interval [li, ui]. When the number of variables taking a support in [li, ui] becomes equal to
u − l + 1, then the remaining unset variables Ailu will be forced to zero, and the channelling
constraints will take care of setting the corresponding Xi variables. Clearly this decomposition
introduces O(n2d) extra variables Ailu. [14] prove that enforcing GAC on Equations. 3.3 3.4
enforces RC on the original AllDifferent constraint, which is quite remarkable given the
simplicity of this decomposition.

HI(BC) ([14]) HI(RC) can be easily converted in a decomposition achieving the weaker BC
guarantee. New variables Bij are introduced for the truth of Xi ≤ j. It was shown in [14] that
enforcing BC on this version of the decomposition enforces BC on the original AllDifferent.
Specifically, Equation. 3.3 is rewritten into,

Bil = 1 ⇐⇒ Xi ≤ l (3.5)
Ailu = 1 ⇐⇒ Bi(l−1) = 0 ∧Biu = 1, (3.6)

where Equation. 3.6 is defined for l > 1. When l = 1, define by convention that Bi(l−1) = 0
(that is, false.) In summary, HI(BC) is defined as,

Bil = 1 ⇐⇒ Xi ≤ l (3.7)
Ailu = 1 ⇐⇒ Bi(l−1) = 0 ∧Biu = 1 (3.8)
n∑
i=1

Ailu ≤ u− l + 1. (3.9)

3.2 GCC Decomposition
EHI(RC) ([14]). This is an extension of the HI(RC) decomposition which is inspired by
another propagator algorithm for GCC acheiving bounds consistency[77]. The decomposition as
described in [14] for GCC is a straight-forward generalisation of the HI(RC) decomposition, so
its connection with the propagator algorithm was not presented in §2.5.2.

Let n be the number of variables Xi in our problem. Let d be the maximum value any variable
can take. Now introduce O(d2) variables, Nlu, to represent the number of variables whose
domains are subsets of the interval [l, u]. It is immediately seen that ∑u

i=l li ≤ Nlu ≤
∑u
i=l ui

and that N1d = n. Now post the following constraints for 1 ≤ l ≤ u ≤ d, 1 ≤ k ≤ u,
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Ailu = 1 ⇐⇒ Xi ∈ [l, u] for i ∈ [1, n] (3.10)

Nlu =
n∑
i=1

Ailu (3.11)

N1u = N1k +N(k+1)u. (3.12)

As before, the constraints in Equation. 3.10 are channelling constraints between the variables
Ailu and the original variables Xi. The constraint in Equation. 3.11 counts the number of
variables taking support in each interval [l, u] and the constraint in Equation. 3.12 provides an
interaction constraint between the Nij variables by expressing the count of each interval [1, u]
in terms of the counts for sub-intervals [1 + k, u] for k ∈ [0, u − 1]. It was shown in [14] that
enforcing GAC on Equation. 3.10 and BC on Equations. 3.11 3.12 achieves RC on the original
GCC problem.

EHI(BC). As with the HI(RC) decomposition, Equation. 3.10 can be reformulated using
Equations. 3.5 3.6 to achieve BC, then it was also shown in [14] that enforcing BC on this
reformulation of EHI enforces BC on the original GCC problem. Specifically, the decomposition
for EHI(BC) is,

Bil = 1 ⇐⇒ Xi ≤ l (3.13)
Ailu = 1 ⇐⇒ Bi(l−1) = 0 ∧Biu = 1 (3.14)

Nlu =
n∑
i=1

Ailu (3.15)

N1u = N1k +N(k+1)u. (3.16)

3.3 SAT Encodings

The encodings into SAT are indirectly achieved by first encoding in PB-SAT and then using
MiniSat+ to translate the PB-SAT into SAT as described in §2.1.

Encoding BI into SAT. This encoding was not part of my experiment in SAT, since [14]
demonstrated that the HI(RC) encoding performed more favourably than BI in SAT. Hence
the obvious encoding of BI into SAT is not covered in this report.

Encoding HI(RC) into PB-SAT. Despite [14] presenting the RC decomposition of AllD-
ifferent they did not explain how it can be encoded into SAT as stated. In particular, it was
not clear to me how Equation. 3.3 could be encoded. In [14], they included a “hack” to increase
propagation in which a direct encoding is employed with literals Zij for the truth of Xi = j and
clauses of the form (Ailu = 0) =⇒ (Zij = 0), j ∈ [l, u]. They claim (without proof) that this
moves the consistency of the decomposition between BC and RC. Their experiments suggest
this version of the decomposition reduces the number of decisions taken dramatically, and that
the runtime is also much better than BI in SAT. Given these results, experiments in SAT for
this decomposition are not conducted in this report. Experiments on this encoding in SMT will
be conducted (see the next section).

Encoding HI(BC) into PB-SAT. First consider the constraints in Equations. 3.5 3.6.
since Xi ≤ l ≡

(∑l
k=1 xik ≥ 1

)
, then is should be clear that in PB-SAT, Equation. 3.5 can be
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encoded as

(Bil = 1 ⇐⇒ Xi ≤ l) ≡
(
Bil −

l∑
k=1

xik = 0
)

(3.17)

Example 11. It must be ensured that when a variable Xi takes a value k less than the lower
bound of an interval, that Bik = 1. This is just what Equation. 3.17 is doing. Consider a
problem with three variables X1, X2 and X3, each with the same domain D(Xi) = {1, 2, 3}, and
hence d = 3. Then the bound constraints for this example are,

B11 − x11 = 0
B12 − x11 − x12 = 0

B13 − x11 − x12 − x13 = 0
B21 − x21 = 0

B22 − x21 − x22 = 0
B23 − x21 − x22 − x23 = 0

B31 − x31 = 0
B32 − x31 − x32 = 0

B33 − x31 − x32 − x33 = 0

It is important to keep in mind that our variables can only take on values of zero or one. So
in the first line above, if x11 = 1, then variable X1 has taken the value one, and hence B11 must
equal one. Similarly, in the third line above, if any of x11, x12 or x13 are set true, then B13 must
equal one. Also recall the constraint that ∑i xki = 1, for any variable Xk. This means that only
one of x11, x12 or x13 can be equal to one.

In a similar vein, Equation. 3.6 may be encoded as

(
Ailu = 1 ⇐⇒ Bi(l−1) = 0 ∧Biu = 1

)
≡
(
Ailu +Bi(l−1) −Biu = 0

)
. (3.18)

This is only valid for l > 1. If l = 1, then let Bi(l−1) = 0.
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Example 12. Encoding the interval constraints for the above three-variable example, I get:

A111 −B11 = 0
A112 −B12 = 0
A113 −B13 = 0

A122 +B11 −B12 = 0
A123 +B11 −B13 = 0
A133 +B12 −B13 = 0

A211 −B21 = 0
A212 −B22 = 0
A213 −B23 = 0

A222 +B21 −B22 = 0
A223 +B21 −B23 = 0
A233 +B22 −B23 = 0

A311 −B31 = 0
A312 −B32 = 0
A313 −B33 = 0

A322 +B31 −B32 = 0
A323 +B31 −B33 = 0
A333 +B32 −B33 = 0

The first line is stating that for the variable A111 to be true (that is, the numeral 1,) there
must be variable taking a value less than or equal to 1 (B11.) Since 1 is the minimum domain
value, the “less than or equal to” is actually strict equality. The fifth line is stating that for the
variable A123 to be true, some variable must take a value less than or equal to 2 (B12) but not
less than 1 (B11).

Finally, the constraint in Equation. 3.4 can be directly posted into PB-SAT.
If it is the case that some of our variables do not have a domain of {1, 2, . . . , d}, that is, a

domain spanning the largest space in our model, then we can greatly improve unit propagation
by further specifying which values our variables can not take. For example, assume that a
variable X1 has domain D(X1) = {1, 2}, then we can assert that x13 = 0.

Encoding EHI(RC) and EHI(BC) into SAT. Although [14] introduced these decompo-
sitions for the GCC constraint, they did not run any experiments in their paper testing the
encoding. This is most likely because the encoding is not suitable for PB-SAT, which was
the formalism of choice in their paper. To see why, note that the Nij variables in the EHI
decomposition are not 0/1-variables in general. However, such a generalisation is not a problem
for SMT’s linear-integer arithmetic theory. Therefore, a SAT encoding of this decomposition
will not be considered in this report.

3.4 SMT Encodings

In §3.3 it was explained that the EHI(RC) and EHI(BC) decompositions are not suitable for
SAT. They are suitable for SMT, and in this section SMT encodings used to experiment with
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varying the Hall interval sizes for problems with GCC constraints will be described. Also shown
in this section is how the BI, DI, HI(RC) and HI(BC) decompositions are encoded into SMT.

Encoding BI into SMT. There is nothing fancy about this encoding, a list of (assert (not (= Xi Xj)))
are posted in SMT-LIB2.

Encoding DI into SMT. This is also an unceremonious encoding, A direct transliteration
into SMT-LIB2.

Encoding HI(RC) into SMT. HI(RC) uses pseudo-boolean variables, that is, variables
whose value is zero or one. In SMT, the closest data type to this is the integers. I expected that
explicitly asserting the valid domain members, such as xij = 0 ∨ xij = 1 would be a benefit to
the LIA theory, but it turns out that such restrictions do not help this theory at all. The SMT
translation of [14] using a direct encoding performs very poorly compared to SAT.

Instead of using variables xij for each value in each variables’ domain (i.e., the direct encoding),
the LIA theory can be exploited more effectively if instead variables xk for k ∈ [1, d] are considered.
The domain constraints then become xk ≥ 1 ∧ xk ≤ d. It is this encoding that will be used in
the SMT experiment.
Now the HI(RC) decomposition must be encoded into SMT. Firstly Equation. 3.3 must be

decomposed into SMT. There are two ways to achieve this in SMT-LIB2. One is by rewriting
the biconditional,

(Ailu = 0 ∨ (Xi ≥ l ∧Xi ≤ u)) ∧
(Ailu = 1 ∨ (Xi < l ∨Xi > u))

(3.19)

and decomposing Equation. 3.19 directly into SMT-LIB. The alternative method is to use the
ite (if-then-else) procedure exposed in Z3. Specifically, I post

(assert (=Ailu (ite (and (>= Ailu l ) (<= Ailu u )) 1 0))) (3.20)

in SMT-LIB2. Both of these decompositions perform similarly. Equation. 3.20 was selected
since it is slightly easier to target programmatically.
As with the SAT encoding, Equation. 3.4 can be decomposed directly into SMT.
Encoding EHI(RC) and EHI(BC) into SMT. The only new bits in these decompositions

are the constraints in Equations. 3.11 3.12, both of which are trivially encoded in SMT-LIB2.
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4 Comparison of Encodings

In this chapter the performance of the decompositions presented in Chapter. 3 for the AllDif-
ferent and GCC constraints are examined.
The questions the experiments in this report are designed to answer are,

1. Is it practically feasible to use decompositions with consistency as strong as BC and RC in
SMT?

2. When is it appropriate to use a BC decomposition versus a RC decomposition in SMT?

3. How does varying the Hall interval size effect the conflicts, decisions, propagations and
run-time in SAT & SMT?

4. Are decompositions which theoretically espouse improvements really better than simpler
local encodings in SMT?

To try and answer these questions, two problems to apply decompositions of the AllDifferent
and GCC constraints have been selected,

• Sudoku. Sudoku is a natural candidate for testing the AllDifferent constraint. The
Sudoku problem can be solved using AllDifferent alone (see §4.1). The limitation of
this choice is that the effects of different decompositions of constraints interacting with
one another are not studied.

• Covering Arrays. The Covering Array Problem will be described in §4.2, it was chosen
because in addition to GCCs playing a vital role in the Covering Array Problem, several
other constraints are used and their interaction can be studied, at least for this one problem.

For both problems the Hall size is varied over the appropriate range and data are collected to
find out what effect the larger Hall interval sizes have. In addition, both RC and BC encodings
of the AllDifferent and GCC encodings are deployed to see how they compare to each other
for these problems.

The experiments were conducted on a computer with two Intel Xeon E5520 processors, both
clocked at 2.27GHz with 8 MiB cache sizes. This computer had 16GiB of RAM. The operating
system was Ubuntu 12.04 LTS 64-bit edition. It should be noted that this computer is a shared
resource of the Computer Science undergraduates, and hence experiments were occasionally
conducted under heavy load from the many users. Therefore, wall clock time is not measured,
rather the “user” time is measured using the GNU/Linux time command. User time measures
the total number of CPU-seconds that the process used directly. I used MiniSat+ version 1.0,
and Z3 version 4.3.2.
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Figure 4.1: Overview of Sudoku terminology.

4.1 AllDifferent constraint

The requisite Sudoku terminology is presented in Fig. 4.1. For an N × N Sudoku problem,
sometimes referred to as an order-

√
N Sudoku problem, we have N rows, columns and regions

each containing N cells. The values given to cells in the problem are called clues. Each cell in
each of these rows, columns and regions must take on a distinct value from [1, N ], that is, they
must be AllDifferent.

My variables are Xij representing the cell at row i and column j on the Sudoku board. The
domain of each variable is D(Xij) = [1, N ] and the constraints are AllDifferent’s over the
variables in each row, column and region.

A representative sample of “hard” Sudoku problems was required. Preliminary experiments
suggested that benchmarking over an adequately (> 20) representative sample of order-4 Sudoku
problems would require too much time in SMT. It was feasible however in SAT. So in addition
to the order-4 problems, a large sample of order-3 Sudoku problems were curated for comparing
SAT and SMT. The order-3 Sudoku instances were curated from [78], who compiled a list of
minimum instances with 18 clues. A minimum instance is one in which no clues can be removed
leaving the puzzle with only one solution. The order-4 Sudoku instances were curated from [79].
The Sudoku node in Fig. 4.2 denotes these files.

To adequately test different encodings of the AllDifferent constraint, a framework was
designed to decompose Sudoku problems into both SAT and SMT. An overview of the entire
framework is shown schematically in Fig. 4.2. Two translator programs were written that take
as input a Sudoku file, and produce as output a file in the SMT-LIB2 language and a file
in the PBO file format language respectively. Z3 directly supports input in the SMT-LIB2
language. The PBO file needs to be translated into the DIMACS format before it can be fed
to Z3’s SAT solver. This translation is performed by MiniSat+.
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Sudoku

PBOSMT2

CNF

MiniSat+

Z3

Figure 4.2: Overview of how the instances were generated. The blue boxes represent file format
in the tool-chain, and the red boxes represent solver programs. The source node of a
dashed line represents the input to the target node. Notice that I am using an off-
the-shelf translator to minimise the PBO file format into CNF. A brief introduction
to this tool is given in §2.1. The solid lines represent translators that I wrote for
this project. The source code is available at [80]

4.1.1 SAT Experiment
To explore the effect of the Hall interval size in SAT, experiments were run on both order-3 and
order-4 boards for Sudoku. The results of the order-3 Sudoku experiments are shown in Figs. 4.3
(conflicts),4.4 (decisions),4.5 (propagations),4.6 (run-time). The results of the order-4 Sudoku
experiments are shown in Figs. 4.7 (propagations),4.8 (time). Not shown for the order-4 Sudoku
experiments are the conflict and decision statistics. The reason is nearly all boards produced
zero conflicts and one decision (with a few small exceptions.) This is a remarkable property
of the encoding using MiniSat+’s minimisation procedure: for the order-4 board, most were
solved with unit propagation alone!
What is clear from these experiments in SAT is that the detection of larger Hall intervals

provides far more propagation, and correspondingly fewer decisions being made. This was
already demonstrated in [14] for the decomposition between BC and RC (see §3.3), but the
experiments confirm the trend for HI(BC). This does seem to correlate with a slightly increased
run-time, as the cost of propagation is noticeable but scales well in SAT. Is is also clear that
smaller Hall intervals produce more conflicts, which in turn reduces run-time. I conjecture this
is due to the CDCL SAT implementation in Z3.

4.1.2 SMT Experiment
Only the HI(BC) decomposition was considered in my SAT experiment. In these SMT
experiments, I will be examining both HI(BC) and HI(RC), the latter of which has not yet
been experimented with to the best of my knowledge. To answer the question about how these
more sophisticated decompositions compare and interact with simpler, more local encodings, I
will also be experimenting with the BI and DI both in isolation of and in combination with
HI(BC) and HI(RC).

The results of the BI experiment are shown in Table. 4.1 and the results of the DI experiment
are shown in Table. 4.2. It is interesting that despite the BI decomposition entailing a large
number of propagations, DI still pips BI on run-time because the cost of propagation in SMT
has slightly dominated for these order-3 Sudoku problems. Another factor in favour of DI is its
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Figure 4.3: Conflicts recorded over the 87 order-3 Sudoku instances. Detecting smaller Hall
intervals appears to generate more conflicts, which when taken into account with
the run-time (see Fig. 4.6), helps the solver. I would conjecture this is due the
conflict-driven clause learning. There is also a noticeable trend that increasing the
Hall interval size reduces the number of conflicts; this can be neatly contrasted with
the extra propagation larger Hall intervals entail (see Fig. 4.5.)

Figure 4.4: Decisions recorded over the 87 order-3 Sudoku instances. Decisions almost inversely
correlate with propagations, as I would expect. Larger Hall intervals provide more
information to the solver and hence require it to make less decisions of its own.
Clearly decisions are not that expensive given the run-time results in Fig. 4.6.
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Figure 4.5: Propagations recorded over the 87 order-3 Sudoku instances. There is a clear trend
of larger Hall intervals entailing more propagation, as was noticed in [14]. There is a
noticeable, almost negligible, increase in run-time (see Fig. 4.6); propagation in SAT
can be seen to scale very well with time taken.

Figure 4.6: Time taken recorded over the 87 order-3 Sudoku instances. Generally, larger Hall
intervals require more time. There is however a strange ridge at Hall sizes of 7. I
can not explain this behaviour, since the other statistics I collected demonstrated
nothing unusual about the Hall size of 7.
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Figure 4.7: Propagations recorded over 25 order-4 Sudoku instances. It is more easily noticeable
how larger Hall intervals yield far more propagations. In fact, for several of the
instances unit propagation was sufficient to satisfy the instance alone. It is also again
evident that extra propagation does not effect runtime in a significant manner.

Figure 4.8: Time taken recorded over the 25 order-4 Sudoku instances. The differences in solve
time are barely noticeable, despite enormous amount of extra propagations as the
Hall sizes increase.
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Statistic Median Standard Deviation
Conflicts 101 0.3
Decisions 1992 318.84

Propagations 13294 1995
Time (seconds) 0.505 0.1862

Table 4.1: Experiment results over the 87 order-3 Sudoku instances using the BI decomposition.

Statistic Median Standard Deviation
Conflicts 101 0.6
Decisions 3479 598.61

Propagations 1518.5 285.03
Time (seconds) 0.225 0.059

Table 4.2: Experiment results over the 87 order-3 Sudoku instances using the DI decomposition.

heavy use of logical operators. It was demonstrated in [12] that introducing clauses instead of
expressing disjunctions arithmetically benefits SMT.
The results of the combination experiments for BC are shown in Fig. 4.9 and those for the

RC experiments are shown in Fig. 4.10. The combination of BI and HI(BC) is denoted
HI(BC)+BI, and similarly for the other 3 combinations. The A decomposition is combination
of HI(BC), DI and BI, and similarly for HI(RC).
I was shocked by the order of magnitude differences in decisions and propagations between

SAT and SMT. In SAT, with the HI(BC) decomposition, the number of decisions was on the
order of 50; in SMT the number of decisions with the HI(BC) decomposition was on the order
of 5000. Similarly, in SAT the number of propagations was on the order of 30,000; in SMT the
number of propagations was on the order of 3000. It is not clear what has caused this order of
magnitude switch in statistics with the two technologies.
My conclusions from these experiments are as follows,

• Larger Hall intervals invariably imply longer run-times. The trend is exacerbated when
using a more consistent decomposition.

• Combination decompositions appear to have pleasant linearity properties, in that they
subtractively decide and additively propagate.

• Combination decompositions seem to dampen the cost of propagation in more consistent
decompositions, for reasons that are not clear to me. Perhaps there are other factors I
have not measured in these experiments causing this observation.

• The cost of propagation in SMT appears to be comparatively high compared to the cost in
SAT. When choosing a decomposition, you must be careful to avoid the cost of propagation
dominating in the search for a solution to your problem.

• I conjecture that the choice of when to use a more consistent decomposition depends on
some measure of “problem difficulty”.

• Most disappointingly (or most encouraging, depending on your persuasion,) with the
caveat that my experiments were run on a set of fairly small Sudoku instances, these
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more sophisticated decompositions do not perform competitively with the simpler local
decompositions of DI and BI.

4.2 Global Cardinality Constraints
In this section experiments are conducted with the EHI(BC) and EHI(RC) decompositions
in SMT. These decompositions will be compared by application to the Covering Array problem.
The questions (further) addressed by these experiments are what effects larger Hall interval

sizes have in SMT on a much harder problem than Sudoku, and when is it appropriate to use a
more consistent decomposition in SMT.

Covering Arrays. A covering array CA(t, k, g) of size b and strength t, is a k × b array
A = (ai,j) over Zg = {0, 1, 2, . . . , g − 1[81], where g is the alphabet size. CA(t, k, g) has the
property that for any t distinct rows 1 ≤ r1 ≤ r2 ≤ . . . ≤ rt ≤ k, and any member (x1, x2, . . . , xt)
of Ztg there is at least one column c such that xi = ari,c for all 1 ≤ i ≤ t. In general finding
optimal covering arrays is NP-complete[81].

Example 13. Consider the covering array in Fig. 4.11. This example is CA(3, 5, 2) and b = 10.
In fact, to simplify the task in this evaluation, the strength will always be t = 3. Two coverings
are shaded in this figure. For each cover, you can run your finger down the rows and count off
the g-ary numbers from 0 to g3 (those in Ztg.) There are

(5
3
)

= 10 such coverings in this array of
10 rows, only two are shown in Fig. 4.11.

In [82], a CP model for generating covering arrays was presented. For my experiments in this
section, I have implemented the constraints described in [82] in MiniZinc1. Inspired from my
MiniZinc model, I wrote another translator tool2 which would take parameters (k, g, b) (recall
that t is fixed at 3 in these experiments) and generate SMT-LIB2 code to decide if the problem
was satisfiable. In this section I will describe the CP model used for solving the Covering Array
problem, and in §4.2.1 I will describe the SMT translation for this model into SMT-LIB2.
The model in [82] uses two matrices of decision variables,

• A test vector matrix I will denote by X (b× k) where Xij is the value of the variable in
row i and column j, with the meaning that if Xij = m, then the value of parameter j in
test vector i is m. The domain of m is [0, g − 1].

• A channelling matrix I will denote by Y (b ×
(k

3
)
). The channelling matrix is cleverly

designed to express the coverage constraints on X, those being that every subset of 3
parameters must be combined in all possible g3 ways.

The construction of the channelling matrix Y is rather subtle. Using the setup in Fig. 4.11 as
a running example, there are 10 triples of parameters representing the columns of Y . Hence
each variable Yij represents a tuple of 3 variables in X. For example, Yrt = 5 with t = 〈1, 3, 5〉
implies that Xr1 = 1, Xr3 = 0 and Xr5 = 1 since 510 = 1012. The domain of a value Yij is
[0, 23 − 1] = [0, 7].

I have defined the variables used and their domains, now for the constrains over these variables.
The details of why these constraints are posted are beyond the scope of this report but can be
looked up in [82],

1Source code available from https://github.com/switicus/constraints/blob/master/cover_test.mzn
2Source code available from https://github.com/switicus/smt_research/blob/master/ex/cover_test/cover_test.py
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Figure 4.9: HI(BC) decomposition applied to the 87 order-3 Sudoku instances. Conflicts are
not displayed since all decompositions produced around 101 conflicts. Compared
to the SAT results on these Sudoku instance, it is amazing to me that there are
orders of magnitude difference between the number of decisions and the amount of
propagation performed by the two technologies. Clearly SAT has exhibited better
run-time for this problem. It is not obvious from these statistics what exactly is
causing the one decomposition to exhibit a better run-time than another. HI(BC)
has performed most favourably on its own in this experiment, exhibiting the most
decisions taken and the fewest propagations. It is also interesting that combination
decompositions subtractively combine their decompositions, yet additively combine
their propagations. Furthermore, despite DI performing slightly more favourably
that BI in isolation, clearly BI is a better team-player than DI in this experiment.
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Figure 4.10: HI(RC) decomposition applied to the 87 order-3 Sudoku instances. Conflicts are
not displayed since all decompositions produced around 101 conflicts. An interesting
observation here is how the slightly increased propagation has killed the run-time
for the HI(RC) decomposition in isolation. Apart from this drastic difference
between HI(RC) and HI(BC), many of the characteristics exhibited in Fig. 4.9
are exhibited here. I will conjecture that these Sudoku instances are just not “hard”
enough for RC’s strength to be of use.

Figure 4.11: Example of a CA(3, 5, 2) with b = 10. The shaded region show two coverings. The
remaining

(5
3
)
− 2 = 8 coverings are not shown.
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• The channelling constraint linking the variables between Y and X. Specifically,

Yrc = g2Xrt1 + gXrt2 +Xrt3 , (4.1)

where ti denotes the ith element of the tuple t.

• The coverage constraint. For each column, c, of the channelling matrix, I post,

GCC(c, [0, 1, . . . , 7], 1, b− gt + 1). (4.2)

This model works correctly, but it works slowly due to the symmetry inherent in this problem.
I have added symmetry breaking constraints to my MiniZinc model and I have translated these
symmetry breaking constraints into SMT. In doing so, I now have several decompositions of
constraints working together.

• An obvious constraint we can post that will cut out useless search is that of enforcing the
first row of X to be full of zeros, i.e., X1c = 0 for c ∈ [1, 2, . . . , b].

• There are in fact symmetries in the test vectors of the array X. In particular, we can
swap values in any column with one another and still have a valid solution. [82] suggested
letting nis denote the number of occurrences of values s in column i for 1 ≤ i ≤ k
and 0 ≤ s ≤ g − 1 and then imposing an order ni0 ≤ ni1 ≤ . . . ≤ ni(g−1). I encoded
this using the Exactly global constraint[9] (called Count-Eq in MiniZinc) which in
Exactly(N, [X1, X2, . . . , Xn], V ) states that the value V must occur exactly N times in
the Xi. Explicitly, assuming that we having counter variables ni for i ∈ [1, 2, . . . , g] with
constraints such that ni ≤ ni+1 for i ∈ [1, 2, . . . , g − 1] then for each column c of X and
for each s ∈ [0, 1, . . . , g − 1] I post Exactly(ns+1, c, s).

• A final source of symmetry discussed in [82] is that permuting the rows and/or columns of
X in a given solution yields another valid solution, so we would like to break this symmetry
as well. A common way of achieving this is to use the global lexicographic ordering
constraints introduced in [51] on all pairs of rows and columns in X. When two vectors x
and y of n variables 〈x0, x1, . . . , xn−1〉 and 〈y0, y1, . . . , yn−1〉 are lexicographically ordered
(denoted by x ≤lex y) it ensures that: x0 ≤ y0; x1 ≤ y1 when x0 = y0; x2 ≤ y2 when
x0 = y0 and x1 = y1; . . . ; xn−1 ≤ yn−1 when x0 = y0, x1 = y1, . . . , and xn−2 = yn−2[51].
MiniZinc by default posts the lexicographic orderings between all pairs of adjacent rows
and columns, which, interestingly, for X achieves the same propagation guarantees as
posting them for all pairs of rows and columns since the variables of X have 0/1-values[51],
however in general this decomposition will hinder propagation.

4.2.1 SMT Experiment
In this section I will describe the encoding in SMT of the CP model presented in §4.2. Experiments
shall be conducted on various instances of the Cover Array problem, and conclusions from these
experiments will be drawn.
The variables of both the X and Y matrices are straightforwardly encoded as integers with

domains [0, g − 1]. Similarly, Equation. 4.1 is trivial to express in SMT when using the linear
integer arithmetic theory.
To encode the test-vector symmetry breaking constraints I need a decomposition of Ex-

actly(N, [X1, X2, . . . , Xn], V ). To encode this in SMT, I introduce a count variable which
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denotes the number of variablesXi taking on value V . This is achieved by count = ∑n
i=1[Xi = V ]

where the Iverson bracket is again implemented using the handy ite procedure. Given the
count, the Exactly constraint can be completed by asserting that N = count.

The final constraint I needed to encode for this problem was the lexicographic constraint over
a matrix. I decomposed the lexicographic ordering constraints using an alternative arithmetic
encoding given in [51]. In particular x ≤lex y is encoded as

gn−1x0 + gn−2x1 + . . .+ g0xn−1 ≤ gn−1y0 + gn−2y1 + . . .+ g0yn−1. (4.3)

It is mentioned in [51] that as g and the length of the vectors n grows, this decomposition
may not be suitable since some systems have machine-limited integer sizes. Z3 does not suffer
from this problem as it utilises “bignum” packages on the platforms it supports. This constraint
is posted for all pairs of adjacent rows and columns. MiniZinc uses a different decomposition
for the lexicographic constraint, also described in [51],

{x0 ≤ y0, x0 = y0 =⇒ x1 ≤ y1, x0 = y0 ∨ x1 = y1 =⇒ x2 ≤ y2, . . . ,

x0 = y0 ∧ x1 = y1 ∧ . . . ∧ xn−2 = yn−2 =⇒ xn−1 ≤ yn−1}
(4.4)

Three instances of the Covering Array problem were selected for my SMT experiment.
CA(g = 2, k = 4, b = 10), CA(g = 2, k = 5, b = 12), and CA(g = 2, k = 7, b = 11). They are in
increasing order of difficulty, with the final one being an unsatisfiable instance.
The results of the CA(g = 2, k = 4, b = 10) experiment are shown in Fig. 4.12, the results

of the CA(g = 2, k = 5, b = 12) experiment are shown in Fig. 4.13 and the results of the
CA(g = 2, k = 7, b = 11) experiment are shown in Fig. 4.14. Each problem was solved 10 times,
and the median value of these runs, along with error bars of one standard deviation are presented
in the timing results.
My conclusions from these experiments are as follows,

• Detecting larger Hall intervals again correlates with longer run-times.

• I conjecture that the conflicts induced by a decomposition can seriously hamper run-time,
indirectly through extra propagation from the learnt clauses.

• The conjecture that for more consistent decompositions to be useful, they need to be
applied to “hard” problems was supported. Unfortunately, experiments on even harder
Covering Array problems, particularly those for which g > 2, where EHI(RC) might
perform much better than EHI(BC), took longer than the 2 minute time-out I enforced.

• It was hard to pry out anything meaningful about how the various constraint decompositions
in this problem interacted with one another. I suspect the conflicts inducing large amounts of
propagation may be partly explained by the internals of the global constraint decompositions
interacting with one another, but this is hard to demonstrate experimentally, or to prove
theoretically.

• While it is not fair to make a comparison of my SMT encoding’s performance to the
performance of my CP model using the MiniZinc solver, it was non-the-less of note how
large the performance gap is due to the sophistication of CP technology.
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Figure 4.12: EHI(BC) and EHI(RC) decompositions of GCC applied to CA(g = 2, k = 4, b =
10). The x-axis measures Hall interval size. Time is measured in seconds. The
EHI(RC) decomposition has more of everything, and a highly curious peak in
each graph for Hall intervals of size 5. It must be the case that size 5 Hall intervals
interact uniquely on this particular problem. For this problem, the difference in
entailed propagation is very large, notice that the propagation y-axis is a log scale,
despite the extra propagation, the run-time is scaling more favourably for this
Covering Array problem that it did for Sudoku. This being a “harder” problem
supports my original conjecture that the more consistent decomposition starts to
pay for itself as the problem gets harder. I further conjecture that the better scaling
run-time has a lot to do with the conflicts encountered with EHI(RC) because
CDCL is so effective.
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Figure 4.13: EHI(BC) and EHI(RC) decompositions of GCC applied to CA(g = 2, k = 5, b =
12). The x-axis measures Hall interval size. Time is measured in seconds. There
are two highly curious peaks for this problem, one at 4 and one at 7. There
seems to be no rhyme or reason to where one of these mountainous Hall sizes will
present themselves in a given problem. The conflicts generated at Hall sizes of 4
and 7 must have entailed many learnt clauses that cause the extra propagation
and correspondingly increased run-time. The jumps for this problem are far more
vicious than those of Fig. 4.12, which I conjecture is why, despite this being a harder
instance of the Covering Array problem, the RC decomposition performs much
worse than the BC decomposition than that observed in the easier problem shown
in Fig. 4.12.
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Figure 4.14: EHI(BC) and EHI(RC) decompositions of GCC applied to the unsatisfiable
CA(g = 2, k = 7, b = 11). The x-axis measures Hall interval size. Time is measured
in seconds. This set of charts are particularly interesting, and support my conjecture
that RC decompositions become more useful as the problem gets, for some definition,
harder. The curious peaks in this instance have actually switched from EHI(RC)
to EHI(BC). It’s as though the two decompositions’ characteristics have been
swapped. The peaks for the BC decomposition are at Hall sizes of 3 and 6 this
time, and for these problems, the RC decomposition has a lower run-time.
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5 Conclusion

This project has investigated the effectiveness of reformulations of the AllDifferent and
GCC global constraints in SAT and SMT. Despite the HI(BC) and HI(RC) decompositions
being found to perform well in [14], it was shown in this report that the improvements do not
translate into SMT, at least for the problems considered here. Even though it was confirmed that
increasing the size of Hall intervals in HI(BC), HI(RC), EHI(BC) and EHI(RC) reduces
the amount of search required in SMT, as it does in SAT, the experiments suggest that the
reason these decompositions perform poorly in SMT is because of the higher cost of propagation
as compared to SAT.

Therefore, if a problem is to be deployed in SMT, the modeller must carefully experiment with
the decompositions selected to make sure their propagation does not dominate in the search for
a solution to the problem. The allure of blindly employing the most consistent decomposition to
all problems must be avoided. Measures of problem difficultly should be used to assess what level
of consistency is appropriate. These measures of difficultly are likely going to be informal, but
the importance of experimentation with the consistency levels of decompositions in SMT seems
more important than the same considerations in SAT. The guidance from the experiments in
this report would be to prefer simple, local encodings at first and only when it can be measured
that the traversal of the search space is becoming a bottleneck should the modeller consider
employing a more consistent decomposition. This advice mirrors the concept of premature
optimisation in software engineering.

A further caveat to these decompositions is the unpredictability of conflicts. I have conjectured
that bursts of extra propagation are induced by many conflict clauses being generated from the
decompositions. This pattern appears exacerbated when decompositions are composed. Due to
the seemingly high cost of propagation in SMT, this pattern is particularly pernicious. This
observation seems to be a contradiction to [12] who conjectured and statistically supported that
the greater the Boolean component, the better the SMT solver is expected to perform.

Another modelling observation is that the direct encoding performed terribly in SAT modulo
LIA for the experiments considered in this report. Is is far better to use single variables
constrained over the entire domain than Boolean variables denoting individual values in a
domain.
An unexpected discovery, somewhat unrelated to the main thread of my report, was a very

effective decomposition for Sudoku using the MiniSat+ to translate into SAT, and then Z3 to
solve the resulting SAT problem. This decomposition proved to be the fasted method I came
across in the SAT, SMT and CP communities. Given the sophistication of global constraints
and symmetry breaking constraints in CP, I was surprised to find that this decomposition into
SAT performed so well.

This project has presented more questions that it has answered, and a new avenue for research
has suggested itself. A problem I routinely faced was not having a deep enough understanding
of the internals of SMT solvers and their associated theory procedures. There are many moving
parts in such a system, and a “black-box” understanding of the various components will only take
the analysis so far. I would like to spend some time studying and perhaps trying to implement
an SMT solver with an emphasis on helping the experimenter understand what is going on rather
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than being a competitive system in terms of run-time and number of features. A limitation
of this report was my shallow understanding of SMT solvers, which I would like to rectify in
the future so as to give myself a better chance at understanding the effects of decompositions
interacting with one another.

5.1 Further Work
There are likely opportunities available in developing new encodings for common global constraints
using the primitives available in SMT-LIB. There has been little work invested into developing
specialised encodings for SMT.

Some constraints are not effectively decomposable, and for those, it is likely that an encoding,
in SAT or SMT, would not be profitable. Instead propagation algorithms are developed. However,
there are a number of constraints that are effectively decomposable [76], including the Sequence,
Precedence, Roots, Slide and Table constraints. An investigation of novel SMT encodings
for any one of these constraints would be interesting in comparison to encodings used for SAT.
In [18], decompositions of many effectively decomposable constraints were analysed. A project
wishing to complete a systematic evaluation in SMT would be at a great advantage starting
with the work in [18].

There appears to be much work left to do investigating the implementation of global propa-
gation algorithms in SMT. A propagator for AllDifferent was developed in [83] and shown
experimentally to perform very favourably when compared to state-of-the-art SAT propagation
algorithms. It seems inevitable that other global constraints can be efficiently implemented in
SMT.

One last scrap of an idea for further work is to explore the effect of lazy clause generation, as
introduced in [17] and [16], more closely in SMT. This seems like a particularly prudent strategy
in SMT due to the higher cost of propagation identified in this report.
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