
Anomalies in SMT Solving:

Di�culties in Modelling Combinatorial Problems

Alan M. Frisch1 and Miquel Palahí2

1 University of York, UK
2 Universitat de Girona, Spain

Abstract Much research on modelling combinatorial problems for a
solver compares alternative models of a problem in an attempt to under-
stand the characteristics of good models. The aim is to discover principles
and heuristics that in the future would guide someone to develop good
models or to select the more e�ective model from a set of alternatives. For
many years this methodology has been moderately successful in studying
modelling for SAT solvers and for �nite-domain constraint solvers.

Our attempts to apply this methodology to SMT solving have been
hindered by the apparently erratic behaviour of SMT solvers. This paper
presents four of the more extreme anomalies that we have encountered in
our work. Of course we label these phenomena as anomalies because we
we have no explanation for them and they run counter to our intuitions.
We bring these anomalies to light in an attempt to motivate the research
community to try to develop a better understanding of SMT solving and
modelling.

1 Introduction

SAT modulo theory (SMT) solvers combine the powerful technology of modern
SAT solvers with specialised reasoning that supports particular theories. SMT
was originally developed for veri�cation problems and has proven to be highly
e�ective in that domain. Some recent e�ort has been invested in solving com-
binatorial decision and optimisation problems with SMT, particularly exploiting
specialised reasoning over linear integer arithmetic.

The most signi�cant study [1] of using SMT for combinatorial problems de-
veloped an automatic system to translate constraint problem instances expressed
in FlatZinc to SMT. Over a suite of 294 instances of 32 problems the solve
times of the Yices 2 SMT solver�predominantly using QF_LIA, the theory of
quanti�er free linear integer arithmetic�were competitive with those of leading
�nite-domain constraint solvers.

The strong performance of the SMT solver is both striking and highly prom-
ising when one considers the context in which the comparison was made. Firstly,
the source language of the problem instances, FlatZinc, is designed primarily
with �nite-domain constraint solvers in mind; this could disadvantage the SMT



solver. Secondly, the e�orts of the Girona group focused mostly, though not ex-
clusively, on exploring the breadth of SMT's capabilities rather than on how best

to encode combinatorial problems in SMT.
The line of research we have been pursuing is complementary to that of the

Girona group. We aim to better understand how best to model combinatorial
problems in SMT, free from the language of FlatZinc and particular FlatZinc
problem encodings. Our work towards this goal has used two two methodologies
that have proven e�ective for both �nite-domain constraint solvers and SAT
solvers. One is to discover how best to encode particular problems and from this
draw generalisations that could be applied to modelling other problems. The
other approach is to consider how best to encode particular components that
commonly arise in combinatorial problems, such as �nite domains or certain
constraints. In both cases the goal is form general principles or patterns that
can be used in the future to build e�ective encodings of other problems.

Disappointingly and surprisingly our attempts to identify patterns and gen-
eralisations were hampered by erratic behaviour of SMT solvers. An encoding
that worked well for one solver would be poor for another. Changes to encod-
ings that practitioners of �nite-domain constraint programming would expect to
be improve performance, such as tightening bounds on the objective function,
sometimes proved to hamper performance.

This paper reports on the anomalous behaviour of SMT solvers using QF_LIA
that has impeded our progress towards constructing an understanding of how
best to model combinatorial problems for SMT solvers. The work reported here
is solely concerned with SMT using the QF_LIA theory and we refer to this
combination as SMT(qf_lia). We investigate four SMT(qf_lia) solvers and use
all with their default settings.

Problem instances and data associated with this research can be found at
http://www.cs.york.ac.uk/aig/constraints/SMT/.

2 Anomalies in Representing Finite Domains

The �rst two anomalies arise in representing �nite integer domains and consid-
ering two kinds of propagation.

Throughout we consider the representation of a variable x with domain D =
{d1, . . . , dn} where d1 ≤ d2 ≤ · · · ≤ dn. We use D to denote {d′|d1 < d′ <
dnandd

′ 6∈ D}.
To simplify the presentation we use the following schemas:

� ALO(x)
def

=
∨

d∈D x = d.

� BOUND(x)
def

= (d1 ≤ x ≤ dn).

� NEG(x)
def

=
∧

d∈D ¬(x = d).

In all the experiments of Anomalies 1 and 2 we have used the following
four SMT(qf_lia) solvers: Yices 1.0.35 [6], Yices 2.1.0, Z3-4.1 [5] and Math-
Sat 5.1.10 [2]. The input formulas for the �rst three solvers are written using



SMT-Lib 1.2 and using SMT-Lib 2 for the fourth. The experiments were run on
a cluster of Intel R© XeonTMCPU@3.1GHz machines, with 8GB of RAM, under
64-bit CentOS release 6.3 (kernel 2.6.32).

2.1 Anomaly 1

Anomaly 1 arises in a test to measure how fast di�erent �nite domain repres-
entations are in recognising unsatis�ability when all of the domain values are
eliminated.

Here we consider the domain of variable x to be the contiguous set of values
1..n. The domain values are all eliminated by asserting the following formula:

UNSAT_ALL(x)
def

=
∧
d∈D

¬(x = d)

We conjoin this with each of three domain representations resulting in three
test cases

1. ALO(x) ∧ UNSAT_ALL(x)

2. BOUND(x) ∧ UNSAT_ALL(x)

3. BOUND(x) ∧ALO(x) ∧ UNSAT_ALL(x)

We measured the solve time of each of these formulas on each of the four
SMT(qf_lia) solvers. Each of Figures 1�4 shows the run time as a function of
domain size, n, of one solver on the three domain encodings. The �rst three of
these �gures show that each of Yices 1, Yices 2 and MatSat 5 perform similarly
on the three encodings. Indeed, in each case two of the curves overlay each
other almost perfectly. MathSat 5 is remarkable in that the solve time is almost
independent of both domain size and encoding.

The anomaly occurs with Z3; as domain size increases the bounds-only en-
coding performs far worse than the other two encodings, which behave almost
identically. Notice that the scale in Fig. 4 goes over 100 seconds, whereas the
scales in the other plots go to only 10 seconds. More remarkably, with the bounds-
only representation Z3 performs search. For example, with domain size 10000
it reports having made 5843 decisions and 5460 con�icts, while in the ALO
representations does not report any information about decisions or con�icts.

In contrast, the other solvers don't report having made any decision as ex-
pected, but they report di�erent number of con�icts. On all problem instances
Yices 1 reports 1 con�ict, Yices 2 does not report any statistic when the instance
is unsatis�able and MathSat 5 reports 1 con�ict with the bounds-only represent-
ation and 0 con�icts in the ALO representations. Finally, MathSat 5 is the only
solver reporting calls to theory solvers, calling 5001 times the linear arithmetic
theory with the domain size 10000. A summary of the reported con�icts and
calls to the linear arithmetic theory solver by the SMT solvers can be found in
Table 1.



100 1,000 10,000

0.01

1

100

Domain size (n)

T
im
e
(s
)

ALO with and without bounds

Bounds only

Figure 1. Anomaly 1: Yices 1

1,000 10,000

0.01

1

100

Domain size (n)

T
im
e
(s
)

ALO only

Bounds with and without ALO

Figure 2. Anomaly 1: Yices 2

10 100 1,000 10,000

0.01

1

100

Domain size (n)

T
im
e
(s
)

Bounds only and ALO only

Bounds + ALO

Figure 3. Anomaly 1: MathSat 5

10 100 1,000 10,000

0.01

1

100

Domain size (n)

T
im
e
(s
)

ALO with and without bounds

Bounds only

Figure 4. Anomaly 1: Z3

2.2 Anomaly 2

Anomaly 2 arises in a test to measure how fast di�erent domain representations
are in recognising that a variable has a particular value because all but one of
it's domain values are eliminated.

Here we consider the domain of variable x to be the �rst n odd natural
numbers, {1, 3, 5, . . . , 2n − 1}. All but one of the domain values are eliminated
by asserting the following formula:

ONLY 1(x, v)
def

=
∧

d∈D\{v}

¬(x = d)

We have evaluated the performance of four solvers in determining the satis-
�ability of ONLY 1(x, dn) when conjoined with each of four domain represent-



Bounds ALO Bounds + ALO

Yices 1 1 1 1

Yices 2 n/a n/a n/a

Z3 5460 n/a n/a

MathSat 5 1 (5001) 0 (0) 0 (0)

Table 1. Anomaly 1: Number of con�icts and number of calls to the linear arithmetic
theory solver (between parenthesis) for instance with domain size 10000 for each SMT
solver. n/a means that the solver has not reported any information.

ations. Anomaly 2 arises in the conjunction with one particular domain repres-
entation

BOUND(x) ∧NEG(s) ∧ONLY 1(x, dn)

This formula has been solved with each of the four SMT(qf_lia) solvers. The
resulting solve times as a function of domain size, n, are shown in Figure 5. Here
we see that Yices 2 and MathSat 5 scale very well with increasing n. In contrast,
the solve time of Yices 1 increases rapidly with increasing n and if n is 13,000
or more the solver encounters a memory over�ow.

The main anomaly here is that the solve time of Z3 does not increase mono-
tonically with n. Furthermore, Z3 performs search in solving this simple problem
and the metrics that quantify this search also do not increase monotonically. As
shown in Figure 6, their non-monotonic behaviour tracks that of the runtime
measurement. In contrast, the three other solvers report a constant number of
con�icts and decisions; on all instances Yices 1 and Yices 2 report 0 con�ict
and MathSat 5 reports 1 con�ict. MathSat makes 2n + 3 calls to the QF_LIA
theory solver on instances with domain size n; the other solvers do not report
this statistic.

3 Anomalies in representing the Pedigree Reconstruction

Problem

The second two anomalies arise in representing the Pedigree Reconstruction
Problem (PRP)[4], which involves identifying relatives amongst a group G of
individuals from genetic marker data.

In particular, the goal here is to �nd the maximum likelihood pedigree. A
pedigree for G assigns to each individual i in G a parent set, which takes one of
three forms:

� j, k, where i, j and k are distinct members of G. This indicates that the
parents of i are j and k.

� j, where i and j are distinct members of G. This indicates that j is a parent
of i and the other parent of i is not in G.

� ∅, which indicates that neither parent of i is in G.



0 2 4 6 8 10 12 14 16

0

500

1,000

1,500

2,000

2,500

Domain size (n) (x103)

T
im
e
(s
)

Yices 1

Yices 2

Z3

MathSat 5

Figure 5. Anomaly 2

For each member i ∈ G, the genetic markers of the members of G determine
a probability distribution over all possible parent sets of i. In typical problem
instances most potential parent sets of i have probability zero.

The probability of a pedigree is the product of the probability that each i ∈ G
has the parent set assigned by the pedigree.

Every assignment of individuals to parent sets is not a valid pedigree. Sexual
reproduction imposes two constraints:

acyclicity: No individual can be an ancestor of itself, and

gender consistency: The two parents of an individual have opposite gender.
The genetic marker data does not identify the gender of the individuals, so
gender consistency requires that a gender could be assigned to each indi-
vidual so that the parents of every individual have opposite genders. As an
example, an assignment in which a and b have a child, b and c have a child,
and a and c have a child is not gender consistent.

Summing up, the pedigree reconstruction problem is: Given G a �nite set of
individuals and for each i ∈ G a probability distribution over all possible parent
sets of i, �nd a maximum likelihood assignment A of a parent set to each i ∈ G
such that A is acyclic and gender consistent.

Following Cussens [4] we simplify our model by assuming that we are given
not the probability of each parent set but rather the log of that probability. This
enables us to use a linear objective function: the sum of the logarithm of the
probability of each assigned parentset. This value is to be maximised.

Table 2 shows the basic model written in SMT(qf_lia) of the PRP. The
model represents the individuals of G by the integers 1..n. For each individual



0 2 4 6 8 10 12 14 16

0

200

400

600

Domain size (n) (x103)

Time (s)

Con�icts ×0.035
Restarts ×14

Figure 6. Z3 statistics in function of domain size (n). The number of decisions are not
shown because the decisions ×0.033 curve will look indistinguishable to the con�icts
×0.035 curve.

i the instance speci�es the probability distribution over the possible parent sets
of i by three parameters.

� ki is the number of possible parent sets of i that have non-zero probability
� ppsi[1..k − i] is an array whose elements are the ki parent sets i that have
non-zero probability.

� logLikelihoodi[1..ki]is an array such that element j is the log of the probab-
ility that i has parentset ppsi[j].

For each individual i the model has a decision variable parentseti such that
assigning it p indicates the decision to assign individual i the parentset ppsi[p].
The decision variable globalV alue is the objective value to be maximised. It
is the sum of values of localV aluei (1 ≤ i ≤ n)�see constraint (c3)� where
localV aluei is constrained by (c5) to be equal to logLiklihoodi[parentseti]. Con-
straints (c1) and (c4) bound the parentseti and globalV alue variables, in e�ect
giving each a �nite domain. Constraint (c2) imposes an upper bound on the
localV aluei variables; the use of a lower bound is an issue discussed below.

Acyclicity is enforced by associating a generation number, the decision vari-
able geni, with each individual i. The generation number of an individual is
constrained to be one greater than the maximum generation number of its par-
ents. This is stipulated in (c7) if i has two parents and in (c8) if i has one parent.
Constraint (c6) bounds each geni, giving it a �nite domain.

Finally, gender consistency is enforced by associating a gender, the boolean
decision variable femalei with each individual. The only constraint is that if an
individual has two parents then those parents must have opposite gender. This
is stipulated in the last conjunct of (c7).



Given

n: positive integer
ki: positive integer (1 ≤ i ≤ n)
ppsi[1..ki] : set maxsize 2 drawn from 1..n (1 ≤ i ≤ n)
logLikelihoodi[1..ki]: positive integer (1 ≤ i ≤ n)

Decision Variables

parentseti: int (1 ≤ i ≤ n)
geni: int (1 ≤ i ≤ n)
localV aluei: int (1 ≤ i ≤ n)
globalV alue: int
femalei:bool (1 ≤ i ≤ n)

Constraints

(c1) 1 ≤ parentseti ∧ parentseti ≤ ki (1 ≤ i ≤ n)
(c2) localV aluei ≤ maxj∈1..ki logLikelihoodi[j] (1 ≤ i ≤ n)
(c3) globalV alue =

∑n
i=1 localV aluei

(c4) globalV alue ≥ 0 ∧ globalV alue ≤
∑n

i=1 maxj∈1..ki logLikelihoodi[j]
(c5) not (parentseti = j) ∨ localV aluei = logLikelihoodi[j] (1 ≤ i ≤ n, 1 ≤ j ≤ ki)
(c6) 0 ≤ geni ∧ geni ≤ n (1 ≤ i ≤ n)
(c7) (not(parentseti = r) ∨ geni − genp ≥ 1) ∧

(not(parentseti = r) ∨ geni − genp′ ≥ 1) ∧
(not(parentseti = r) ∨ geni − genp = 1 ∨ geni − genp′ = 1) ∧
(not(parentseti = r) ∨ not(femalep = femalep′))

(1 ≤ i ≤ n, 1 ≤ j ≤ ki, ppsi[j] = {p, p′})
(c8) not (parentseti = r) ∨ geni − genp ≥ 1 (1 ≤ i ≤ n, 1 ≤ j ≤ ki, ppsi[j] = {p})

Objective

maximize globalV alue

Table 2. Basic SMT(qf_lia) model of the pedigree reconstruction problem



The basic model imposes used upper and lower bounds on the variables
parentset and gen, but only an upper bound on the variable localV alue. This
is because during our experiments we have detected surprising behaviour when
we use a lower bound on that variable. Therefore, to study this behaviour, we
have de�ned two variants of constraint (c2):

� (c2+) when in addition to (c2) we also use the tighter lower bound:

localV aluei ≥ min
j∈1..ki

logLikelihoodi[j]

� (c20) when in addition to c2 we also use a weaker lower bound:

localV aluei > 0

In some of the experiments we extended the model to use three additional
constraints to represent the domain of the variables:
(c9) DomainALO(parentset):

∨
j∈1..ki

parentseti = j (1 ≤ i ≤ n)
(c10) DomainALO(gen):

∨
j∈0..n(geni = j) (1 ≤ i ≤ n)

(c11) DomainALO(lc):
∨

j∈1..ki
localV aluei = logLikelihoodi[j]

To simplify our study we replace the PRP optimisation problem with the
corresponding decision problem. In particular, from each PRP instance we gen-
erate the hardest satis�able instance and the hardest unsatis�able instance. We
precompute the global value, c∗, of the optimal solution and create two bench-
mark problem instances: a satis�able instance in which the objective is replaced
with the constraint globalV alue ≥ c∗ and an unsatis�able instance in which the
objective is replaced with the constraint globalV alue > c∗.

Notice that in both the satis�able and unsatis�able instances the constraints
(c10) and (c11) are implied. To fully appreciate Anomaly 4 it is important to
bear in mind that because these are implied constraints they prune no solutions.

All of our experiments use the same suite of 100 PRP instances generated
randomly by pedsim [3], con�gured to use genetically realistic random distribu-
tions. Such instances are known to be harder to solve than those generated using
random distributions. All of our instances contain 46 individuals.

In all the experiments of Anomalies 3 and 4 we have used the same four
SMT(qf_lia) solvers used in Anomalies 1 and 2. But the experiments were run
on a slightly di�erent computer, Intel R© CoreTM i5 CPU@2.66GHz, with 3GB of
RAM, under 32-bit openSUSE 11.2 (kernel 2.6.31).

3.1 Anomaly 3

Anomaly 3 arose through a surreptitious observation. Solve time can be reduced
if we replace constraint (c3) with

(c3′) globalV alue2 =

n∑
i=1

localV aluei ∧ globalV alue2 = globalV alue

where globalV alue is a new integer variable.



This anomaly only appears in MathSat 5 and Yices 1 solvers when we are
also using (c2+) instead of (c2), and in the case of Yices 1 when we are also using
ALO for the variables (constraints (c9), (c10) and (c11)). It appears only in the
satis�able instances and it does not appear in the unsatis�able ones. Table 3
and Table 4 show the mean time and median time with and without the extra
variable. In both cases the extra variable reduces the median time about 20%.

Mean time (s) Median time (s)

non ex. 5.1283 2.085

extra 4.0067 1.56

Table 3. Anomaly 3: MathSat 5 solves
the 100 instances about 20% faster
with an extra variable in the basic
model with tighter lower bound.

Mean time (s) Median time (s)

non ex. 1.2569 1.005

extra 1.0584 0.82

Table 4. Anomaly 3: Yices 1 solves the
100 instances about 20% faster with an
extra variable in the basic model with
tighter lower bound and ALO.

One would expect that adding this extra variable would have only a trivial
a�ect on solution time. However, the two scatter plots, Figure 7 and Figure 8,
show that the e�ect of adding an extra variable can drastically increase or de-
crease the solving time of an instance. More precisely, in Figure 7 when adding
the extra variable there is a variability on solving one instance from 52.9 times
faster (decreasing the solving time from 35.92 to 0.68) to 32.4 times slower (in-
creasing the solving time from 0.86 to 27.87). In Figure 8 this variability is
smaller, ranging from 4.6 times faster (decreasing the solving time from 5.1 to
1.11) to 2.0 times slower (increasing the solving time from 1.51 to 3.02).

3.2 Anomaly 4

The last anomaly arises in test to measure in the basic model which way to
represent the lower bound is the best for Z3 solver: without any lower bound
(c2), with a tighter lower bound (c2+) or with a lighter lower bound (c20). Again
the �rst impression is that c2+ has to be the best option, but in practise the
best option is c2, that is not using any lower bound. This is shown at Table 5
where we can see the mean and median times of solving the 100 instances for the
three experiments. The �rst two columns are the solving times for the satis�able
instances and the two last columns are the times for the unsatis�able instances.
We can see that solving the basic model with c2 is about 5 to 6 times faster than
with c2+ or c20 in the satis�able case. A similar phenomenon happens with the
unsatis�able instances, where the basic model with c2 is about 3 to 4 times faster
then the other two representations.

We want to note that this anomaly disappears if we add ALO to represent
localV alue variable domain (adding constraint c11).

Finally, we present four scatter plots comparing c2 with c2+ and c20 in Fig-
ure 9 and Figure 10 respectively for the satis�able case and in Figure 11 and



1 10 100

1

10

100

With extra variable
Time (s)

W
it
h
o
u
t
ex
tr
a
va
ri
a
b
le

T
im
e
(s
)

Figure 7. Anomaly 3: scatter-plot of
MathSat 5 with and without extra vari-
able in the basic model with tighter
lower bound. 57 blue crosses and 43 red
crosses.

0.1 1 10

0.1

1

10

With extra variable
Time (s)

W
it
h
o
u
t
ex
tr
a
va
ri
a
b
le

T
im
e
(s
)

Figure 8. Anomaly 3: scatter-plot of
Yices 1 with and without extra variable
in the basic model with tighter lower
bound and ALO. 53 blue crosses, 43 red
crosses and 12 black crosses.

Satis�able Unsatis�able

Mean time (s) Median time (s) Mean time (s) Median time (s)

c2+ 29.94 31.73 37.28 35.60

c20 35.43 34.64 41.47 38.76

c2 7.06 5.59 12.61 9.68

Table 5. Anomaly 4: Z3 solves the satis�able instances about 5 to 6 times faster in the
basic model without any lower bound compared to using any lower bound, and about
3 to 4 times faster for the unsatis�able instances.

Figure 12 respectively for the unsatis�able case. What is interesting of these
plots is that in all the cases c2 is better in all the instances (specially for the
unsatis�able case). More precisely, c2 is better than c2+ between 1.18 and 18.90
times in the satis�able case and between 1.38 and 9.46 times better in the un-
satis�able case, and c2 is better than c20 between 1.17 and 22.56 times in the
satis�able case and between 1.54 and 9.71 times better in the unsatis�able case.

4 Conclusions

The behaviours of the SMT(qf_lia) solvers presented in this paper are anom-
alous in that they contradict our expectations, which have been formed from
our experience with modelling problems for CP solvers. In Anomaly 1 we see
that a simple, obvious representation of �nite domains is problematic for one
SMT(qf_lia) solver, though not for three others.

Anomaly 2 arises in considering parameterised problem instances in which
solving larger instances requires a superset of the reasoning involved in solving



20 40 60

20

40

60

Solve time using c2+

Time (s)

S
o
lv
e
ti
m
e
u
si
n
g
c2

T
im
e
(s
)

Figure 9. Anomaly 4: scatter-plot of
Z3 with tighter lower bound (c2+) and
without lower bound (c2) in the basic
model for the satis�able case.

20 40 60

20

40

60

Solve time using c20

Time (s)
S
o
lv
e
ti
m
e
u
si
n
g
c2

T
im
e
(s
)

Figure 10. Anomaly 4: scatter-plot of
Z3 with lower bound greater than 0
(c20) and without lower bound (c2) in
the basic model for the satis�able case.

20 40 60

20

40

60

Solve time using c2+

Time (s)

S
o
lv
e
ti
m
e
u
si
n
g
c2

T
im
e
(s
)

Figure 11. Anomaly 4: scatter-plot of
Z3 with tighter lower bound (c2+) and
without lower bound (c2) in the basic
model for the unsatis�able case.

20 40 60

20

40

60

Solve time using c20

Time (s)

S
o
lv
e
ti
m
e
u
si
n
g
c2

T
im
e
(s
)

Figure 12. Anomaly 4: scatter-plot of
Z3 with lower bound greater than 0
(c20) and without lower bound (c2) in
the basic model for the satis�able case.



smaller instances. Nonetheless, for one solver the solution time is not monotonic
in the size of the problem instance.

In Anomaly 3 a trivial change to a model, that would have little to no e�ect
on a CP solver, can greatly reduce the solve time of one instance while greatly
increasing that of another instance. Though we would expect any change in
performance to be a very small negative one, we see an average improvement of
20% with two of the solvers.

Finally, Anomaly 4 is perhaps the most ba�ing to anyone trying to build
better models. Here we see a case where tightening bounds on a variable impedes
performance even in unsatis�able instances.

In seeking an explanation of these anomalies one must start with the obser-
vation that the behaviour of SMT solvers can be chaotic; a small change in the
model can result in a large, seemingly random change in the behaviour of the
solver. For example, it is well known that changing the order of the constraints
in an SMT model can greatly increase or decrease the solution time.

This chaos is certainly present in Anomaly 3 where we see the addition of
an extra variable can greatly increase or decrease solution time. However, we
believe that beneath the noise there is still a signi�cant di�erence in the average
solution time. To assert this with greater con�dence we would need to gather a
large sample size and conduct a statistical test.

It is di�cult to see how chaos could play a signi�cant role in the other an-
omalies, especially so in Anomoly 4 where the tighter bounds increases solution.
This increase is observed on 100 out of 100 satis�able instances and 100 out
of 100 unsatis�able instances. And this behaviour is repeated for two forms of
tighter bounds. So the phenomenon is robust, being observed 100 times out of
100 in each of 4 di�erent settings. The anomaly arises in spite of chaos, not
because of chaos.

Perhaps there are explanations for all these behaviours, but, from what we
currently know, developing an understanding of what makes a good SMT(qf_lia)
model appears to be an enormous challenge. Anyone working on SMT modelling
of combinatorial problems needs to proceed cautiously, expect the unexpected
and be prepared for di�culties.

In the future we hope to work with the developers of SMT solvers to try
to develop an understanding of how modelling choices a�ect solver performance
and to consider whether SMT solvers can be tuned to perform better on combin-
atorial problems. In future experiments we plan to reduce the a�ect of chaos by
averaging over large samples of instances that have their constraints randomly
ordered.

Acknowledgement

We thank James Cussens and Mark Bartlett for explaining the pedigree recon-
struction problem and supplying us with their problem instance generator. We
are grateful to the referees of this paper for their valuable feedback. Miquel Palahí
has been supported by the Spanish Ministry of Science and Innovation (project



TIN2012-33042) the Universitat de Girona (grant BR 2010) and the Economy
and Knowledge Department (Generalitat de Catalunya) and SUR (BE-DGR
2012).

References

1. M. Bo�ll, M. Palahí, J. Suy, and M. Villaret. Solving constraint satisfaction problems
with SAT modulo theories. Constraints, 17(3):273�303, 2012.

2. A. Cimatti, A. Griggio, B. J. Schaafsma, and R. Sebastiani. The MathSAT5 SMT
solver. In N. Piterman and S. A. Smolka, editors, TACAS, volume 7795 of Lecture
Notes in Computer Science, pages 93�107. Springer, 2013.

3. R. G. Cowell. E�cient maximum likelihood pedigree reconstruction. Theoretical
Population Biology, 76(4):285�291, 2009.

4. J. Cussens, M. Bartlett, E. M. Jones, and N. A. Sheehan. Maximum Likelihood
Pedigree Reconstruction Using Integer Linear Programming. Genetic Epidemiology,
37(1):69�83, January 2013.

5. L. M. de Moura and N. Bjørner. Z3: An E�cient SMT Solver. In Proceedings of
the 14th International Conference on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS 2008), volume 4963 of LNCS, pages 337�340.
Springer, 2008.

6. B. Dutertre and L. de Moura. The Yices SMT solver. Tool paper available at
http://yices.csl.sri.com/tool-paper.pdf, August 2006.


