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Abstract

There is great interest in the application of nanotechnol-
ogy to medicine, but concerns for safety are paramount.
We present a modelling technique based on CSP and B
as a starting point for simulation of networks of nano-
robots. The model and the simulations are central fea-
tures of our proposed approach to the construction of
safety cases for nanomedicine applications, and com-
plex networks of cooperating components in general.
Our work is based on a case study: the clotting be-
haviour of (artificial) platelets. We present a model, and
discuss its analysis and uses.

1. Introduction

With the renewed interest in nanotechnology [5],
researchers have begun discussions about nano-scale
robots: nanites [6]. In the safety-critical area of
nanomedicine [7], it is proposed that nanites may be
used as mechanical blood cells: artificial erythrocytes,
phagocytes, and platelets. None of these exotic ma-
chines exists yet, but it is predicted by the Foresight
Institute that we will see experimental nanites within
the decade (www . foresight . org).

We present a first step towards a development tech-
nique that supports the construction of safety cases for
networks of nanites. It is based on the abstract mod-
elling of a design, which is validated through model
checking, and subsequently refined to an executable
program that is suitable for simulation. Our case study
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is a network of artificial platelets [8], which could
staunch blood flow from a wound three orders of mag-
nitude faster than natural ones.

The artificial platelets would carry a folded fibre
mesh on board, to be used near an injured blood vessel.
In such a situation, a protective film on the surface of
the mesh would dissolve, revealing sticky sections that
would bind a mat across the cut, immediately trapping
blood cells, including other platelets, and stopping the
bleeding.

Protocols are needed to guarantee that the artificial
platelets release their meshes only when required to do
so: if they do it at the wrong time, or in the wrong place,
then the result will be an artificial thrombosis. The
platelets would take their own decisions about when to
deploy their meshes based on local information: there is
no central control. Communication is subtle, and quite
unlike that in computer networks: it is based on natural
mechanisms. Platelets detect the presence of chemicals
released by a wound; communication is only between
neighbouring platelets.

We present here a simple CSP || B [15] model
for platelets, motivated by the clotting process, called
haemostasis. In CSP || B, B [1] machines are taken as
communicating abstract data types, with CSP [12] con-
trolling the way in which the operations are used. The
two notations are kept syntactically and semantically
isolated. As a result, it uses specific system architec-
tures, and enables the direct application of the existing
tools for CSP and B.

We build an abstract CSP || B model of an (artifi-
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Figure 1. Architecture and movement of single platelet

cial) platelet. We propose protocols for bleeding de-
tection, and initiation and termination of platelet clot-
ting. We also capture location and mobility properties
of platelets. A simple approach to time is used to model
the blood flow, which is different in arteries and veins,
for example. The model is surprisingly subtle and com-
plex, with localised control and isolation of different as-
pects of the problem imposing interesting challenges.
Our solution is a layered architecture.

In the validation of this model, use of the CSP
model checker, FDR [9], and its associated animator,
Probe [10], was essential. Our analysis of small net-
works of co-operating platelets and their protocols, in
order to investigate their joint behaviour, is also briefly
discussed here.

In the next section, we present a description of
CSP || B, including the features of CSP and B used here.
Section 3 presents our model: its detailed architecture
and more interesting components. A discussion of our
results comes in Section 4. Finally, we conclude in Sec-
tion 5 with some discussion of related work, and our
future directions.

2. CSP || B

CSP || B is an approach to combining the process
algebra CSP with the formal development method B.
The approach can be used to specify a complex system
which is made up of two separate specifications: a num-
ber of CSP process descriptions and a collection of B
machines (see Figure 1). Our aim when using CSP || B
is to factor out “data-rich” aspects of a system into B
machines so that the CSP descriptions focus on describ-
ing processes and their patterns of interactions.

A machine in B is a specification construct which
encapsulates some variables and provides operations
that query and manipulate those variables. In order to
demonstrate that a machine is consistent, its initialisa-
tion must establish its invariant, and its operations must
maintain it. The invariant is a predicate which con-
strains the variables to be of appropriate type and often

defines constraints on the relationship between them.
Operations take the formx <-- ¢ (v), where c is the
operation name, v is a list of input variables, and x is a
list of output variables. In Figure 5, we present a simpli-
fied model of a platelet defined in terms of a B machine.
In our abstract model we consider several platelets and
so the machine is replicated many times.

CSP is a language for describing processes of con-
current systems and their patterns of interactions. The
unit of interaction is an event which processes perform
and on which they may synchronise. Events can be
unstructured (such as enter), or they can have some
structure, generally of the form of a channel name ¢
and some values v that are passed along that channel.
Thus, the occurrence of plateletMove.i.j can be under-
stood as passing the values i and j along the channel
plateletMove (provided i and j are of the appropriate
type), and we use it to signify a movement of a platelet
from one site to another. The occurrence of events is
atomic.

Simple processes can be generated from the follow-
ing syntax:

P:i=a—P|cx!v—Px)|b&P|
Py DP2|P1|_|P2|S(i)

The process @ — P can perform an event a and then be-
have as P. The process ¢?x!v — P(x) can accept any
input x and output v along channel ¢, and having ac-
cepted x, it will behave as P(x). The behaviour of the
guarded process b & a — P depends on the evaluation
of the boolean b: if true, it behaves as P; if false, it is
unable to perform any events.

The external choice, P; O P,, is initially prepared
to behave either as P or as P, with the choice be-
ing made on occurrence of the first event. The internal
choice Py Il P», is able to behave as Py or as P,, but this
choice is made internally: the environment of the pro-
cess has no influence over this choice. There is also an
indexed form I_Il_e[ P; which provides an internal choice

over a set of processes P; indexed by I. S(i) is a pro-



cess name where i is an expression; this is used when
we define the behaviour of an arbitrary platelet site.

In addition to the language for simple processes,
CSP provides a number of parallel composition opera-
tors which can be used to combine processes. The op-
erators we are concerned about in this paper are the fol-
lowing: Py |[A|B]| P> and |;;; P;.

The parallel composition operator, Py |[A1]A2]]
P,, executes Py and P, concurrently, requiring that they
synchronise on events that are common to both their al-
phabets. The alphabet of process P is denoted by A;
and is the set of events that it can perform; similarly
for P, and A;. This composition operator is used when
composing different platelet constraints together. The
alphabet can be dropped when it’s not implicit.

The indexed form of [|,; P; allows us to construct
combinations of similar processes. For example, when
building up a collection of processes in order to define
the behaviour of several platelets. The alphabets of the
P; can be included if not implicit.

CSP also provides an event renaming operator
P[[R]] which can be used to define instances of a generic
description. R is a relation between event names, and
P[[R]] behaves as P, but the events it performs are re-
named through the relation R. For example, if R re-
lates enter to plateletMove.i.j, then P[[R]] would per-
form plateletMove.i.j whenever P performs enter.

In order for a CSP process to interact with a B ma-
chine, as shown in Figure 1, we identify input/output
communications of CSP processes with machine opera-
tions of the B machine, thus treating the operations of a
machine as machine channels. The process c?x!v — P
can accept any input x and output v along machine chan-
nel ¢ and this matches the B operation x <-- c(v),
where the output value v from the CSP description cor-
responds to the input parameter of the operation, and the
input value x corresponds to the output of the operation.

Earlier work [13] has considered restricting the in-
teraction between processes and machines in a CSP || B
specification to be communication between a single ma-
chine and a single process. The CSP || B communica-
tion architecture in this paper is novel because it is more
dynamic: communication is permitted between more
than one process and a single B machine (see platelet-
Move.2.3 in Figure 1). Furthermore, as platelets move
along the blood vessel the processes which interact with
the B machine change, and so the architecture is more
dynamic. For example, when the Platelet_2 in Figure 1,
moves from the second to the third site, the CSP || B ar-
chitecture changes so that the machine characterising
the second platelet communicates with processes S(3)
and S(4).

The CSP || B approach supports compositional ver-

ification enabling us to focus on the CSP descriptions
and B descriptions in isolation. Theoretical results
in [13] extend to this architecture, allowing us to make
deductions about the model as a whole from the indi-
vidually verified parts. Thus consistency between the
CSP part and the B part can be deduced from consis-
tency of the individual components; deadlock-freedom
of the whole model follows from deadlock-freedom of
the CSP part; and whether platelets can move, and when
they must move, can also be determined from consider-
ation of the CSP aspect of the model.

The benefit of this is that we can apply CSP verifi-
cation tools and B tools to appropriate parts of the ab-
stract model without ever having to consider the model
as one large specification during its verification. There-
fore, we can concentrate on verifying properties of the
behavioural aspects without having to consider the way
in which the B state is updated.

3. Model

We give a very simple model of platelets that move
along a line of consecutive positions that represent a
vessel. In this model, a platelet can be either smooth or
sticky. If it is smooth, it moves freely, restricted only by
the fact that it should follow the blood flow and speed.
A wound releases chemicals which will act as aggre-
gating agents on platelets; in the presence of sufficient
concentrations, a platelet becomes sticky, and releases
more chemicals. The concentration of chemicals in a
position changes due to diffusion and the blood flow.
If two adjacent platelets are sticky, then whenever one
of them moves, the other will be dragged behind it. In
other words, sticky platelets clump together, and move
as a clump. There is no centralised control; a platelet
becomes sticky or not, and moves or not, depending on
its own state and on that of the platelets and positions in
its immediate neighbourhood.

Localised control imposes a challenge: restricting
synchronisation to neighbour platelets. Isolation of
the different aspects of the problem is also interest-
ing. When exposed to certain chemicals, the state of
a platelet changes: it becomes stimulated and sticks to
neighbouring sticky platelets, so that their movements
affect each other. Therefore, modularisation and sep-
aration of concerns require an elaborate protocol, with
all the challenges that this entails.

Our solution is a layered architecture to handle sep-
arately the movement of platelets, the state of a platelet,
and the propagation of chemicals. First, we discuss
this architecture; afterwards, we detail the components
that constrain the movement of platelets, and those that
record their state.
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Figure 2. Layered model for platelets

3.1. Architecture

Figure 2 presents the components of our model and
the channels that they use to communicate with each
other and the environment. A channel fockf keeps track
of time and determines the direction of the blood flow;
the events take the form fockf.d, where d is a direction.
In general terms, in an artery, for example, the flow is
continuous in a single direction; in a vein, on the other
hand, the blood is pumped. Both kinds of vessels can
be simulated using tockf.

Several events can take place between two occur-
rences of a tockf’; in our model, these events are deemed
to occur immediately: during the same instant. An out-
side observer views the vessel only when a fockf occurs.

The component PlateletMovement is a partial
model of a vessel: a single line of sites through which
platelets can move. Another view is provided by the
component ChemicalMovement: a line of sites that may
contain chemicals. Finally, Platelets models the state of
all platelets.

The channel plateletMove is used by a platelet to
keep track of its position (site). A site can find out the
state of the platelet that it contains using observe; this is
used to restrict its movements, if it happens to be sticky.

For communication between the components
Platelets and ChemicalMovement we have signal and
emit. The former is used by a chemical site to inform
the platelet its amount of chemicals. The latter is used
by a stimulated platelet to tell a site the amount of chem-
icals that it is emitting. Chemicals can also be released,
externally, by a wound using the channel chemicalln.

The movement of chemicals is monitored by the
component chemicalMove. 1t is different from the
movement of platelets, since there are no concerns
about clumping. On the other hand, the platelets and
the chemicals are both affected by the blood flow deter-
mined by fockf.

The vessel is represented the parallel composition
of processes that model each of these components. The
definition of PlateletMovement is a parallel composi-
tion of processes that model restrictions on the move-
ment of the platelets.

PlateletMovement =
PlatSiteRow || AdjPlatMov ||
PlatFlow || StickyPlatSite

e The process PlatSiteRow models a row of sites
each of which can hold at most one platelet at a
time and through which platelets can move at a
limited speed: each platelet can move at most once
between occurrences of tockf.

o The process AdjPlatMov restricts the movement of
platelets to adjacent sites;

o PlatFlow restricts the direction of the movement to
that dictated by the last rockf.

o Finally, StickyPlatSite restricts the movements of
sticky platelets: they drag along a neighbouring
sticky platelet.

The processes PlatSiteRow and StickyPlatSite are dis-
cussed in the next section.

For the FDR analysis of our model, we use an ab-
straction of the B machine that defines Platelets, and is
presented in the next section (Figure 5). The abstraction
is an interleaving of a number of platelet sources: pro-
cesses that represent new smooth platelets, at either end
of the vessel. A Platelet is modelled as in Figure 3. It
has three parameters: its adhesiveness a, its site posi-
tion i, and a flag that records whether a check of the
chemical level at that site has already been done, using
the channel signal. A platelet can move from i to the
positions i — 1 or i + 1, as long as it does not leave the
vessel. If it is inside the vessel (that is, in a position
in the set Sife), it can be observed, take up a chemical
signal, emit some chemical. When it receives a chem-
ical signal, it nondeterministically chooses to change
the state (PlatNonDetState); the choice depends of the
strength s of the signal, and is only modelled in the B
machine. The amount v that a platelet emits is also cho-
sen nondeterministically in the CSP process, and further
specified in B (Figure 5). Finally, time is only allowed
to pass if the platelet is inside the vessel and has checked
the chemical signal or it is not inside the vessel (that is,
in a position in the set Terminal).

The definition of ChemicalMovement is similar to
that of PlateletMovement; it is discussed in the next sec-
tion.
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Figure 3. Abstract CSP model of a Platelet

3.2. Components

The top and bottom layers in Figure 2 are each de-
scribed as a composition of constraints. Constraints
on the movement of the platelets and how they inter-
act with each other are captured as behaviour on in-
dividual sites. This behaviour is expressed in terms
relative to that site and property, using events such as
enter, exit, pull, and drag. When applied as a compo-
nent of the whole system, these are mapped (through
renaming) into events representing platelet movements
between specific sites.

We illustrate the approach by describing some of
the constraints on platelet movement through the sites
that make up the model. For reasons of space, we re-
strict the description to include only simplified versions
concerned with site capacity, speed limit on platelet
movement, and movement of a sticky platelet. We
also include a simplified version of the platelet de-
scription in B to illustrate how state information is in-
cluded. The full CSP and B descriptions can be found at
http://www.cs.york.ac.uk/nature/tuna.

Figure 4 describes the combination of two con-
straints on platelet movement at a site. Both are con-
cerned with the movement of a platelet into and out of
the site, modelled by enter and exit respectively. The
process PlatCapacity is concerned with the maximum
number of platelets that the site can contain — here
this is restricted to just one. The process PlatSpeed
is concerned with how quickly a platelet can move
through the site. This constraint requires consideration
of rockf: if a platelet enters the site, then it cannot exit

PlatCapacity = enter — exit — PlatCapacity

PlatSpeed = enter — tockf — PlatSpeed
O exit — PlatSpeed
O tockf — PlatSpeed

PlatSite = PlatCapacity
|[{enter, exit} | {enter, exit,tockf } ]|
PlatSpeed

Figure 4. CSP: Platelet movement at a site

in the same instant. Thus exir is blocked until tockf oc-
curs. Conversely, a site can allow the exit and entry
of platelets in the same instant provided exit is before
entry, since in this order the events are associated with
different platelets.

The combination PlatSite of these two constraints
describes an aspect of platelet movement through sites.

To combine these constraints, it is necessary to ex-
press them in terms of the events of the overall model.
For example, enter for site i + 1 (from the left) is the
same event as exif for site i (to the right), and in the com-
bined view both will be considered as plateletMove.i.i+
1. Combining these views is achieved by use of renam-
ing in CSP, allowing any plateletMove.j.i as an entry
into site i, and any plateletMove.i.j as an exit from site
i, for all j € SITES, where SITES is the set of indexes of
the sites in the model:

S(i) = PlatSite
[[enter — plateletMove.j.i,
exit < plateletMove.i.j | j € SITES]]

The combination PlatSiteRow is obtained by taking the
(alphabetised) parallel combination of these renamed
PlatSite processes:

PlatSiteRow = HieSITES S(i)
All processes synchronise on fockf, and only S(i) and
S(j) synchronise on plateletMove.i.j.

Figure 5 gives a B description of the way in which
stickiness can be activated and de-activated within a
platelet. The variable 1evel records the amount of
accumulated chemical that activates the platelet; adh
is the state of the platelet: either smooth, or sticky;
location tracks the location of the platelet. This is
purely for modelling purposes: platelet behaviour is in-
dependent of its location, but the model needs to relate
information from the CSP description to the appropriate
platelet.



MACHINE Platelet
SETS ADHESIVENESS={smooth, sticky}

VARIABLES level, adh, location
INVARIANT level : NAT
& adh : ADHESIVENESS
& location : NAT
INITIALISATION level := 0 ||
adh := smooth ||
location := 0

OPERATIONS
i <-- plateletMove(j) =
PRE j : NAT

THEN i := location ||
location := j
END;
a,i <-- observe =
BEGIN i := location ||
a := adh
END;
i <-- signal(s) =
PRE s : NAT1
THEN level := level + s ||
i := location ||
adh :=
END;
s,1 <-- emit =
BEGIN i := location ||
S =
END;
tockf = adh :=

END

Figure 5. B model of platelet stimulation

The operations of the machine are equivalent to
events in the CSP description, and enable the B ma-
chines to synchronise with the CSP physical and chem-
ical layer models using standard CSP synchronisation.
For example, plateletMove.i.j is a synchronisation be-
tween the CSP description of movement between sites,
and the B operation 1 <-- plateletMove (j) of
the platelet at location i. Other operations include a,
i <-- observe, which indicates the current state
of adhesiveness of the platelet; 1 <-- signal (s)
which accepts s units of chemical (which may activate
stickiness, hence the possibility of updating adh); s,
i <-- emit, where the platelet puts chemicals into
the site; and tockf, which enables changes due to the
passage of time (which may deactivate stickiness, up-
dating adh). More complex factors influencing sticki-
ness can also be introduced into platelet descriptions by
including more complex state, and more sophisticated
decision making. This is natural in B, and would be
cumbersome in CSP. The facility to handle state-rich
parts of the system is the primary motivation for using

... check presence and adhesiveness of

Stickiness = platelets in current and next site ...be-
have as NotStuck or Stuck
NotStuck = pull — NotStuck

O drag — NotStuck
O tockf — Stickiness

Stuck = pull — drag — tockf — Stickiness
O tockf — Stickiness

Figure 6. Imposing stickiness at a site

d!ag p:ull

o -0 -

Figure 7. Sticky platelet dragging neighbour

CSP || B over pure CSP to build the models.

When analysing the system as individually verified
parts, an abstract CSP description of the Platelet
B machine is used (Figure 3). It provides the same
interface as the B machine in Figure 5: channels
plateletMove, observe, signal, emit, and tockf. The
parameters a and i of the CSP process correspond to
the state components adh and location of the B
machine. In CSP, there is no record of the chemical
level, and in B we do not need the flag f to control
communication through signal.

Figure 6 describes the behaviour resulting from
stickiness at a particular site. The behaviour described
by Stuck is obtained when the site and its neighbour
are both occupied by sticky cells. If a platelet exits the
site, modelled by occurrence of the event pull, then the
neighbour must also move, modelled by drag, during
the same instant. This is illustrated in Figure 7. It is ex-
pressed in CSP by the description that drag must follow
pull, before the next fockf can occur.

The process NotStuck describes the behaviour
when there are not two platelets stuck together. In
this case, the events pull and drag can occur indepen-
dently of each other, and there are no constraints be-
tween them.

Each site has a stickiness constraint associated with
each direction of movement: leftwards and rightwards.
Site i’s constraint on rightwards movement, for exam-
ple, is concerned with the effect of plateletMove.i.i +
1 (the pull event) on plateletMove.i — 1.i (the drag
event).

The stickiness constraints for all the sites are com-
posed into StickyPlatSite by renaming and composing



in parallel in the same way that PlatSiteRow was con-
structed. A clumping property emerges from this com-
bination of local stickiness behaviours: if a row of sites
are all occupied by sticky platelets, then they must
move as a clump. When each platelet moves, it must
pulls its neighbour in the direction of movement dur-
ing the same instant, so that they must all have moved
by the time of the next fockf. In rightwards movement,
plateletMove.i.i+ 1 corresponds to pull at site i. This
must be followed in the same instant by drag at site
i: the event plateletMove.i — 1.i. This event is also pull
at site i — 1, which will drag the next platelet. The effect
will ripple along the sites until a site is reached which
does not contain a sticky platelet.

The chemical layer also has a process for each of
the sites, in this case tracking the local concentration of
chemical. Interactions between these sites correspond
to the flow of chemical in a variety of ways: in, out, and
between sites. Platelets learn the ambient concentration
via signal, and can increase the concentration via emit.

4. Discussion

The work reported in this paper is part of a project
to investigate emerging properties in complex sys-
tems [14]. In this project, we are interested in novel de-
vices that operate somewhere between the nanoscopic
and microscopic levels, and yet cause macroscopic ef-
fects. The fundamental research question we are ad-
dressing is: can we develop collections of these devices
that may be trusted in safety-critical applications? In
trying to answer this question, we face the following
challenges. (1) To investigate the languages needed for
developing abstract models of devices and the proto-
cols needed for inter-device communication and con-
trol. (2) To investigate methods for validating and ver-
ifying executable models of these devices. (3) To in-
vestigate the requirements for an appropriate simulation
framework for executable models of devices and of net-
works of devices. (4) To investigate the nature of safety
cases for the use of networks of devices. In this paper,
we discuss (1) and (2), while (3) and (4) are discussed
elsewhere [14, 17, 11, 16].

4.1. Languages and modelling

Partitioning and structure are fundamental con-
cerns in modelling complex systems, and it is essen-
tial to choose an appropriate language and architecture.
Given the massive concurrency inherent in modelling
blood platelets, a process algebra is a natural choice
of language in which to express such models. Using
CSP as the process algebra suggests an architecture for

the models in which system properties are grouped into
layers, with strictly defined interfaces linking them to-
gether. This idea is originally due to E. W. Dijkstra, who
pointed out the elegant conceptual integrity exhibited
by such an organisation [4]. This layering technique
allows us to build up very complex behaviours, whilst
maintaining a proper separation of concerns. This is a
very powerful mechanism: rather than having to model
everything in one go, we are able to separate issues of
movement of chemicals and platelets, and mechanisms
for activating and deactivating stickiness.

Just as there are alternatives to using CSP, there are
alternatives to adopting a layered architecture. For ex-
ample, we could have started from an object-oriented
design. This architecture would have had classes for
platelets, sites, and chemicals, but then all their be-
haviours would have to go straight into the relevant
class definition. This would have resulted in a very
different structure, without the successful separation of
concerns that we achieved.

In our models, we aim at a basic principle: all com-
munication should be local. With the exception of the
passage of time represented by the clock tocking, we
achieve this principle, but this is at the cost of a good
deal of intellectual effort. Localised communication is
difficult to model in a language based on global syn-
chronisation: it is fragile and it requires very careful
handing of event alphabets.

4.2. Validation and verification

The choice of CSP || B has another significant ben-
efit: the availability of the FDR model checker for vali-
dating and verifying our models. FDR is a powerful de-
bugging tool, essential when building a complex model.
It is particularly useful in getting boundary conditions
right, and in negotiating interfaces between layers.

FDR has a built-in check for deadlock, and a sim-
ple construction allows us to check for timelocks: be-
haviour that delays the passage of time. Freedom
from deadlocks and timelocks is an internal consistency
property of our model. It is a useful guideline for de-
bugging the model, since these inconsistencies gener-
ally arise when two local constraints are modelled in
incompatible ways.

Other internal consistency properties have been
formulated, and FDR allows layers to be checked for
these properties before they are composed. For exam-
ple, we have checked that certain expected patterns of
platelet movement are possible for the model. We have
also checked the property that once two sticky platelets
are adjacent, then they always remain adjacent. As we
added more layers, we have gained more confidence in



our model. The result is a design that we can use to
explore emergent behaviour.

FDR’s deadlock checking has also revealed an un-
expected emergent behaviour that is an artefact of the
model. With only local knowledge, platelets can move
independently in either direction. If each end of a
clump move in opposite directions, then the middle
platelets cannot follow both leaders; yet the stickiness
constraints require this before time can pass; hence a
timelock results. This tells us that such a model is too
flexible: the real world does not behave like this. A so-
lution comes with the notion of flow to dictate the di-
rection of movement.

The process behaviour explorer ProBE allows us
to play out different scenarios: we expect certain be-
haviours to be possible (e.g., a particular pattern of
moves), or not to be possible (e.g., time blocked until
a clump has all moved). Exploring these behaviours en-
ables us to perform sanity checks with respect to what
the model should be doing.

It is difficult to imagine building a model as com-
plex as this without tools like FDR and ProBE, al-
though ProBE is very difficult to use on examples of
this scale. The tree structure generated by possible
choices is difficult to explore easily, and a more graph-
ical simulation-style interface would make it easier to
explore the model. The lack of modules in the ver-
sion of CSP that we are using makes it awkward to de-
scribe our layered architecture, though a simple notion
of modules is present in FDR 2.82.

4.3. Applications and experiments

Our work involves studying the feasibility of mod-
elling and analysing large numbers of agents co-
operating with only local communication to achieve
some significant emergent property: aggregation in the
presence of a signal and not in its absence. We have
begun to study an architecture for these kinds of mod-
els that has a tractable analysis technique. The most
obvious application of this architecture is to model the
behaviour of other blood cells. Of course, from a phys-
iological viewpoint there are many similarities between
the various kinds of blood cells: they all have a com-
mon origin in the bone marrow, where they begin as
stem cells; only later do they differentiate into red and
white cells and platelets. Our models of movement
and chemical communication are applicable to all blood
cells throughout their life-cycle, and form a common
basis on which to build further layers that differentiate
their behaviours.

The architecture also serves as a basis for further
work to produce ever-more realistic models of platelets.

One purpose of these models is to validate components
for electronic experiments. Using a simulation plat-
form, we can conduct large-scale experiments to study
the emergence of properties such as haemostasis. Initial
results are presented in a companion paper [17].

These in silico experiments can just as well be car-
ried out in vitro, or even in vivo; however, the electronic
experiments are distinguished by starting from a col-
lection of local rules of behaviour. The electronic ex-
periments demonstrate that certain desired behaviours
can arise from a specification of these rules. This the-
ory of local behaviour and the results of associated ex-
periments then provide the setting for studying the ab-
sence of undesirable behaviours (such as different kinds
of thrombosis), the specification of a design for an arti-
ficial platelet, and the foundation for its safety case.

A challenge for nanoengineering is to devise a de-
sign that satisfies our rules of behaviour.

5. Conclusions

Much of the research work on nanotechnology is
related to the physical construction of nanites; the sys-
tems engineering aspects have received significantly
less attention than fabrication. In this paper we have
discussed a proposal to provide techniques to model,
analyse, and simulate such systems in order to support
the construction of safety cases for such critical mech-
anisms. We have focused on developing techniques
that could be used to build and analyse formal mod-
els of complex systems which exhibit emerging prop-
erties, and demonstrated them using a model of mov-
ing platelets and their associated clumping behaviour
in a one-dimensional space. We have also investigated
how the model could be extended to deal with platelet
movement in a multi-dimensional space, how wounds
and constriction of a blood vessel could be described,
and the properties that emerge as a consequence of these
additional constraints.

Our CSP || B model scales up to two and three di-
mensional spaces so that platelets can move around and
clump in a richer and more realistic space. We are
able to reuse the layering technique presented in the
paper but several issues arise: we have to change the
notion of platelet movement to include locations that
are representative of the appropriate multi-dimensional
space, and clarify the constraints which determine how
platelets can move. We also have to extend the notion
of stickiness of platelets so that they consider all their
neighbours when determining whether to become ac-
tive or not, and whether to return to a smooth state or
not.

Formal models have also been used to explore the



behaviour of stem cells. D’Inverno and Saunders [3]
have developed a multi-agent approach which begins
with a formal model, written in Z, and is used as a basis
for simulating the behaviour of stem cells. Their aim in
developing a mathematical model is to highlight which
properties are required of stem cells in order to maintain
the body’s homeostasis. Their formal models are based
on a layering technique in which the physical, chemical
and biological environments are considered separately.
This separation in a formal model resonates closely with
the layering style that we adopted in our models. Our
adoption of a layering technique was done in complete
isolation from the work of d’Inverno and Saunders but it
is clear that in order to deal with the complexity of the
problem both approaches consider this layering to be
an important factor in the construction of formal mod-
els. Through the visualisations in [3] the emergent be-
haviour of the individual interactions of individual stem
cells has been observed. We have also developed visu-
alisation of our formal models using Occam [17] so that
we can observe the movement and clumping of platelets
amd that the platelets induce haemostasis.

Our future work will establish a link between
CSP || B and Circus [18, 2], so that the abstract models
of a platelet and its protocols may be translated from the
former to the latter. The translation will form the start-
ing point for the refinement into an executable model.
This will enable us to validate that emergent behaviour
that has been identified at the abstract level is what is
visualised in a simulation.

Our architecture helps to subordinate the complex-
ity of the model, but its greatest value must lie in its
application to other models. When we build other mod-
els in this domain, we expect to discover common struc-
tures and interconnection strategies, as well as to exploit
existing ones.
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