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Abstract—ASHiCS permits the automatic discovery of high risk 

air traffic scenarios.  In this paper we describe the evolutionary 

search used in ASHiCS and present an analysis of the project’s 

Stage 2 solution landscape.  We suggest that random or 

exhaustive search is infeasible given the size of the solution space 

presented by simple air traffic scenarios, and that standard linear 

regression modeling is unlikely to find traffic input patterns that 

indicate the presence of high risk.  While ASHiCS successfully 

targets high risk scenarios, we remain faced with very large 

search spaces in future Systems of Systems (SoS) models, and 

hope that our investigations into linear regression modeling will 

lead to a generic technique of practical value in the dimension 

reduction of these large search spaces.  

Keywords-component; search, safety, risk, heuristics, rare 

events, air traffic control simulation. 

I.  INTRODUCTION 

ASHiCS has demonstrated the use of search heuristics on 

simulation outputs to find scenarios of high risk for a given air 

sector.  Our previous reports
1
 have described how weighted 

heuristics are able to focus on specific incident types, flight 

paths or aircraft so that the search can effectively target those 

areas of interest within the solution space.  The ASHiCS search 

harness generates traffic inputs for the RAMS Plus air traffic 

control fast time simulator and analyses the output of each 

simulation.  Air traffic is generated by creating three text files 

that specify the characteristics of each aircraft entering the air 

sector being simulated, namely: 

 the aircraft type; 

 the aircraft entry time, its entry and exit flight level; 

 the navigational aids specifying its flight path and the 

point at which any level changes occur. 

 

These traffic input files are created with certain restrictions, 

such as predetermined flight paths and wake turbulence 

separation.  In the project’s Stage 2 scenarios, one aircraft is 

selected at random on a particular flight path to undergo an 

explosive cabin pressure loss event, requiring the aircraft to 

carry out an emergency descent to FL100. 

                                                           
1 Available at http://www.complexworld.eu/projects/ 

Once the input files have been created, a non-graphic 

version of RAMS Plus is executed and its outputs are analyzed 

by heuristics in the ASHiCS software.  The analysis uses 

several factors to assign a score that comprises a measure of 

risk.  This estimate of risk outcome for that configuration of 

input traffic is termed the scenario’s “fitness score”.  The 

ASHiCS search harness ranks the scenarios being tested in 

terms of their fitness, selects the “fittest” (i.e. the ones 

containing the most risk) and mutates their inputs to see if their 

risk measure increases.  The search continues until no higher 

fitness scores are achieved. 

Section I.A describes background and previous work 

related to the project, Section II describes the search context, 

parameters and experiment design.  Section III contains our 

analysis of the solution space and conclusions. 

A. Background and previous work 

ASHiCS came from the realization that as complex systems 

increased in size and complexity, manual hazard analysis of the 

systems has become much harder and we may soon reach a 

point when such analysis must be carried out by machines as 

part of an automated process.  ASHiCS was intended to 

demonstrate a proof-of-concept approach using automated 

search within a complex ATM simulation to discover hazards 

that would have been hard to find using manual analysis.    

The use of search techniques with simulated environments 

is well established, however using search to investigate ATM 

simulations is still relatively new.  Previous work has been 

done in conjunction with EUROCONTROL on using a co-

evolutionary search to discover the causes of delays in dynamic 

continuous descent arrivals (CDA) scenarios [1].  This 

technique evolved a pair of “problem and solver” algorithms, 

pitting one against another to evaluate traffic distributions and 

ground events that would enable the researchers to identify 

delay bottlenecks in the system.  The same team from the 

University of New South Wales more recently used genetic 

algorithms (GA) to find the flight events resulting from an Air 

Traffic Controller’s (ATCo) actions that could lead to higher 

risk of air-borne collision.  Their approach is similar to 

ASHiCS in that their approach evolves ATC actions that:  

http://www.complexworld.eu/projects/


increase collision risk in a given air traffic scenario so that 

[those] closer to a target level of safety are deemed “fitter 

individuals”, having increased likelihood of survival to the 

next generation in the evolutionary process of the GA. [2] 

 

This approach of evolving ATM scenarios to contain 

increasing levels of risk is very similar to ASHiCS, albeit with 

different scenarios, means of measuring risk and simulation 

environment.  However, the basic approach of using a multi-

objective genetic algorithm to search for risk is the same.  The 

principal difference between the two approaches is that 

ASHiCS uses the RAMS Plus fast time simulator that allows 

us to use task workload measures and conflict resolutions by 

the ATCo as part of our risk assessment.  The study by Alam et 

al. does not appear to take a measure of ATCo workload from 

conflict resolution into account. 

II. SEARCH CONTEXT 

The search context is limited to a single en-route air sector 

containing a number of predetermined flight paths specified 

using navigational aids.  Scenarios use a sample size of twenty 

aircraft whose start times are randomly generated over the span 

of one hour.  The aircraft do not arrive or depart from airports: 

they “appear” outside the sector at cruise speed and do not 

deviate from their flight path except to resolve a conflict. 

However, there are several restrictions on the allocation of start 

times to aircraft (see Section II.A). 

The two principal flight paths in the sector run broadly 

north south and west east (hereafter referred to as ns and ew).  

Each carries a single type of aircraft flying at their typical en-

route altitudes.  The flight paths intersect obliquely in the 

center of the sector; however as their flight levels are FL330 

and FL190 respectively, no conflicts arise.  The high level ns 

flight path carries an aircraft chosen at random to develop the 

cabin pressure loss event.  This aircraft is referred to as 

CPLoss.  Depending on the navigational aid used to trigger the 

cabin pressure loss event, CPLoss may descend through traffic 

on the ew flight path or pass close to traffic on one of the other 

low level flight paths.  CPLoss maintains its planned trajectory 

on the ns flight path after reaching FL100. 

Beyond the two main flight paths that carry the majority of 

the traffic in the simulation, there are three more flight paths (at 

FL230) intended to represent the presence of incidental traffic 

in the sector.  These three flight paths also intersect in the 

centre of the sector but as they carry just a quarter of the traffic 

it is not intended that these would form the majority of the 

ATCo’s workload.  For ease of implementation, we assume the 

sector is controlled by a single air traffic controller (ATCo) 

from FL100 to FL600 with a standard minimum separation of 

5nm.  The aircraft types, flight paths and flight levels are 

shown in Table 1. 

 

 

 

Aircraft type Flight path Flight level 

A320 ns 330 

DH8 ew, r4 230,190 

B737 r2,r3,r4 230 

C551 r2,r3,r4 230 

Table 1: Types of aircraft, flight paths and levels. 

A. Initial seeding and distribution of aircraft  

The search process essentially uses randomisation of 

simulation input data to explore the solution space.  Our 

allocation of aircraft to flight paths is intended to represent two 

busy flight paths vertically separated (the upper flight path 

containing CPLoss), with potentially conflicting low frequency 

traffic also entering the sector on a more or less random basis. 

The distribution of aircraft between each flight path is 

decided at random, with the sole restriction that the ns flight 

path must have at least one aircraft on it to represent CPLoss.  

The proportion of traffic between the ns and ew flight paths 

and the lower level paths is split 75:25 in favour of the ns and 

ew paths.  The 25% of traffic on the low level flight paths is 

allocated one of the r2, r3 or r4 flight paths at random.  The 

entry times of the aircraft are then generated.  Aircraft may 

receive an entry time at any second between the upper and 

lower bounds; however they may not keep their allotted entry 

time if they are so close to another aircraft on the same flight 

path that they may suffer from wake turbulence (i.e. they are 

less than 120 seconds apart), in which case the aircraft is 

moved further back in time to enforce sufficient separation.   

This can have the effect of pushing some aircraft beyond 

the time limit of the simulation, in effect preventing any further 

mutation of their entry times.  However, it is rare for aircraft 

whose entry time is towards the end of the simulation to have 

much impact on conflicts within the sector.   If several aircraft 

are bunched together, then all those aircraft will be spaced the 

minimum separation apart.  This type of traffic configuration 

and subsequent separation impinges on the search’s ability to 

explore the start times of aircraft, even though tightly grouped 

aircraft can represent a hazard as they leave fewer options for 

the resolution of conflicts.   

 Mutation of traffic inputs 1)

The ASHiCS search harness uses a population of 100 

scenarios per generation.  By selecting a proportion of these 

and mutating the entry times of the aircraft, we carry out what 

sometimes termed a ‘near neighbour, random hill-climber’ 

search [3].  However, in order to ensure that the search has not 

been unlucky in its initial seeding of random samples, we 

continue to allow a proportion of each population to be 

generated by random sampling.  The split in the population is 

generated by the selection policy; in which the top twenty per 

cent of the population’s scenarios are copied to create three 

mutants, with each mutant being carried over to the subsequent 



generation to see if its fitness improves.  The remaining forty 

per cent of the population is created from new random samples.   

Just as in natural evolution, evolutionary search is also 

generally considered to be a process of gradual optimization, 

but the reasons for this lie more towards the suspicion that if 

large mutations are allowed, then the evolutionary search is 

performing a crude form of localized random search, rather 

than employing the gradual improvement process that 

evolution and natural selection is famous for.  As random 

search does not perform better than a “brute force” or 

exhaustive search, we wanted to ensure that the mutation 

operator was not able to radically change a scenario in a way 

that made little sense from an evolutionary perspective.   

In order to affect this gradual increase in the fitness of a 

scenario, the easiest method was to alter the aircraft entry times 

within a fixed range (generally within a few minutes of the 

previous entry time).  Provided such mutations are not radical, 

we should be guaranteed that a “near neighbour” of the original 

scenario is created, as all aircraft remain on their flight paths 

and relatively close to their original entry times.   

 Evolutionary strategy 2)

The evolutionary strategy for ASHiCS is based primarily 

on mutation rather than crossover or other combination 

methods.  Our rationale for not selecting crossover is supported 

by several studies that suggest that ‘destructive’ methods for 

good gene propagation fare less well than methods that allow 

gradual changes to a phenotype’s fitness, with the proviso that 

this is likely to be dependent on problem type [4].   

We earlier outlined some of reasons that the range for the 

mutation operator should be restricted in order to effect gradual 

change, and the same reasoning applies to destructive 

techniques such as crossover for our domain.  In pragmatic 

terms, if we imagine how an ATM planner would investigate 

peak traffic flows around a certain point in time, we can 

imagine them looking at how small changes to a particular 

aircraft’s entry times might make a difference with respect to 

possible conflicts.  Our mutation operator replicates this type of 

manual search, rather than permit investigating variations of a 

scenario by moving an aircraft or group of aircraft to another 

flight path.  Such a radical change in a scenario configuration 

would create an entirely new scenario that bore little 

resemblance to the original, in effect representing a random 

jump in the search space rather than the evolution of a previous 

configuration.   

This same argument applies against the use of a crossover 

operator for scenario chromosomes.  Let’s say we crossed over 

two flight path configurations between a pair of scenarios – it is 

hard to argue that the new scenarios would bear much 

relationship to the previous ones.  It would have the effect not 

only of radically altering the entry times along the entire flight 

path, it would also mean we would have to somehow re-

balance the numbers of aircraft distributed on the other flight 

paths.  This is not to say that a crossover operator would not 

discover good scenarios, but given its destructive nature for our 

type of problem domain we believe it is unlikely it would 

outperform random sampling. 

 Population size, crossover and mutation 3)

Population size is much contested variable that can affect 

performance and studies exist on the effect of large and small 

population sizes on search performance from earliest days of 

evolutionary computation.  Much early evolutionary search 

theory believed that population size had a direct relationship to 

the amount of information available to the search: 

…when the population size is too small for the complexity 

of a particular search space … it lacks the information 

capacity to provide accurate sampling (see [5] for a discussion 

of population size requirements). [6] 

Proponents of this belief began the era of throwing “heavy 

metal” at search problems with huge population sizes, using 

racks of very powerful computers.  Koza for example, using 

GP with crossover operators, regularly used population sizes 

exceeding 200,000 [7].  It is now more widely recognised that 

a destructive means of combining chromosomes (such as 

crossover) requires larger sample sizes to work effectively, 

whereas mutation can work with smaller populations: 

…crossover needs large populations to effectively combine 

the necessary information, [whereas] mutation works best 

when applied to small populations during a large number of 

generations [8] 

More recent studies have suggested that the type of 

problem domain is also related to whether one chooses to use 

mutation or crossover, and conversely the size of population 

for each generation.  As explained in Section II.A.1), we 

believe our domain would be particularly sensitive to a 

destructive type operator, as we feel it could neither produce 

“near neighbour” hill-climbing to allow gradual improvements 

from an initial starting point, nor would it be able to trace how 

a scenario could evolve from one that was relatively low risk to 

one that contained gradually higher levels of risk
2
.  The jumps 

in the search trajectory from a crossover operator are largely 

arbitrary. 

III. CHARACTERISATION OF SOLUTION SPACE 

A. Total size of search space 

We suspected that our search space was very large even 

before we tried to calculate the input permutations.
3
  Large 

search spaces are often termed “high dimensionality” 

problems, i.e. those in which mutation can act on a large 

number of variables to affect the fitness outcome of 

individuals.  High dimensionality continues to cause the search 

community considerable difficulty, particularly when trying to 

demonstrate that an optimal solution has been found in a given 

                                                           
2 We have not attempted to incorporate traceability into our search harness as 

yet, but the choice of a non-destructive operator allows us to keep this as an 
option for future work. 
3 

The size of the search space containing all possible permutations would 

make an exhaustive search impossible (see appendix of the E.02.05-ASHiCS-
D2.2-Method Description Technical Report). 



search space [9] [10].  For most real-world problems, this sort 

of “proof” is impossible to achieve, and most practitioners are 

content to discover a solution which is good enough or better 

than a previous design. 

However from a safety perspective it is important to 

quantify risk to levels that are deemed acceptable to the 

regulatory authorities.  Using search to discover unexpected 

risk or hazards is more effective if we are able to say 

something about the nature of the solution space, i.e. have we 

found an isolated example of extremely high levels of risk, or 

are there many such examples out there?  What are the average 

levels of risk and what is the likelihood that a hazardous 

scenario could develop from a situation that would normally be 

judged to be safe?  These questions are hard to answer unless a 

quantitative description of the solution space can be given. 

B. Reducing the size of the search space 

As we became aware of the total size of the search space, it 

became clear that we might need to reduce the size of the 

search to more manageable proportions.  The quickest, most 

pragmatic approach to this is to apply domain knowledge to the 

input variables, often termed ‘dimension reduction’, so that the 

search has less work to do.  However, dimension reduction 

runs the risk that you cut out part of the search space that might 

be profitable to explore, particularly if one is searching for rare 

events such as near collision.  We wanted to find a systematic, 

evidence-based approach to reducing the overall size of the 

search space that would provide some guarantee that our search 

would still cover the areas where high risk scenarios could be 

found.     

 What proportion of the total search space is worth 1)

searching? 

Our assessment of risk in a given scenario focuses on the 

principal safety barrier in our model (maintaining separation 

between aircraft) and how that may be degraded by several 

factors which we attempt to measure.  This combination of risk 

measures, several of which are weighted to guide the search 

towards certain outcomes, means that there are many scenarios 

whose input configurations are unlikely to be of interest to us. 

Let us say we have weighted our fitness function to reward 

those scenarios containing conflicts directly related to CPLoss.  

If we are only interested in the workload or risk associated with 

CPLoss in a scenario, it is easy to see that any aircraft that 

passes out of the sector prior to CPLoss’s entry cannot impact 

the controller workload associated with CPLoss.  Likewise 

aircraft that arrive in the sector after CPLoss has left cannot 

come into conflict with CPLoss.  So it is clear that there is a 

relationship between the entry times of aircraft on certain flight 

paths and the fitness score.   

For example, the aircraft on the ew flight path are the same 

type (DH8), so they travel at the same speed.  The same is true 

for A320 aircraft on the ns flight path.  Therefore if a group of 

aircraft that are bunched up close together on the ew flight path 

enter the sector at a particular time with respect to the aircraft 

chosen to be CPLoss, there is a high chance that CPLoss may 

be in conflict with one of them as it makes its emergency 

descent.   

A similar line of reasoning can be applied to the emergency 

descent.  CPLoss is free to make its descent at any of the 

navigational aids on the ns flight path.  However, only a few of 

them will force its descent through the ew flight path and close 

to other flight paths.  Similarly if the event is triggered at a 

navigational aid on the edge of the sector, it is unlikely any 

aircraft will conflict with CPLoss.  It seems reasonable to 

assume therefore that there is a relationship between the 

navigational aids and fitness score for the scenario.  The 

following sections look at how we might be able to uncover 

this relationship to allow some dimension reduction. 

C. Determining the nature of the search landscape 

Our initial searches suggested that the evolutionary search 

was not out-performing the random sector of the population.  

By tagging the scenario with its original index, we could 

investigate each jump in fitness and track it to see its lineage.  

Throughout Stage 1 and the early part of Stage 2 it was often 

the case that even after hundreds of generations, a random 

scenario could appear late in the run and outscore the previous 

evolved best.  The evolutionary changes appeared as gradual 

improvements in fitness (as you would expect from a mutation 

operator).  However, large (and unexpected) jumps nearly 

always came from the 40% of scenarios who bore no relation 

to the selected part of the population. In order to try and 

establish what was going on and to learn more about the search 

landscape, we decided to conduct a sensitivity analysis.   

 Sensitivity Analysis 1)

This form of analysis generally takes the fitness score of the 

near neighbours that are sampled as part of the hill-climbing 

algorithm.  By keeping a record of these, we find out how 

destructive or beneficial our mutations are to each near 

neighbour of the original scenario.  We had noticed that the 

search often reached long plateaus of high fitness (when the 

best of the previous generation is passed on unchanged to the 

subsequent generation), during which time it appeared that no 

mutations of high scoring scenarios were able to improve their 

fitness score.  By conducting a sensitivity analysis, we could 

directly compare different mutation rates and see how the 

mutations were affecting the average.  

If mutations show a significant drop in fitness, it suggests 

that the original scenario is on or near a peak of high fitness.    

However, if the summit is very narrow, and the sides of the 

peak are steep, then the drop off in fitness is rapid and most 

mutations will fail to find the “sharp” point of highest fitness. 

How would this appear in a sensitivity analysis?  If we look at 

two typical plots showing a wide variance in the mutation 

range value, we can see a marked difference not only in the 

performance of the search, but also in the effect of mutating 

copies of the best scenarios.
4
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We ran over 30 evolutionary search runs on Stage 2 over two months.  Here 

we show the progression of typical runs for the stated parameters.  



 

Figure 1: Sensitivity analysis showing fitness of top ten per 

generation.  Mutation range = 300 seconds. 

Figure 1 shows a sensitivity analysis that plots the fitness 

values (y axis) of the top ten scenarios of each generation (x 

axis for this and all following plots) containing a population of 

100 scenarios.  Bear in mind that the top ten of each generation 

will contain three copies each of the previous generation’s top 

three scenarios (see Section 2).   

As the evolutionary run progress, we can see plateaus of no 

improvement for the best scenarios becoming longer (these 

runs were stopped before 250 generations).  At the beginning 

of the run, the distance between the fitness scores that the best 

of a generation and its mutated copies achieve are reasonably 

close together.  As the run progress and higher fitness scores 

are achieved by selected scenarios, the gap between the 

mutated copies and the best individual starts to widen.  Once 

the highest level of fitness is achieved, the gap between the 

mutated copies and the best individual is so wide it seems 

barely worth continuing the search, as every mutation seems to 

radically worsen the fitness score.  This type of sensitivity 

pattern suggests the search landscape is composed of tall, 

narrow spikes, in which a large mutation is likely to mean the 

individual is placed beyond the small area of high fitness 

occupied by the original scenario.  The most likely explanation 

for this is that the near neighbourhood determined by a 

mutation range of 300 seconds is too large, making it difficult 

for a random mutation to fall within the range of values that 

will ensure an improvement.   

When we compare this to Figure 2 that shows exactly the 

same search parameters and risk measures, but with a much 

reduced mutation range of 30 seconds, it is immediately 

obvious that the smaller mutation range has produced a much 

less destructive effect on the fitness of near neighbours.  The 

overall performance is improved, with a higher final fitness 

score for the best scenario (which had improved gradually over 

many generations) but also with a better average fitness across 

the population.  The gap between the best and its near 

neighbours’ fitness scores indicates that the Stage 2 solution 

space is highly sensitive to mutation rates.    

 

Figure 2: Sensitivity analysis showing fitness of top ten per 

generation.  Mutation range = 30 seconds. 

Figure 1 and Figure 2 provide us with an intuition of the 

search space; in that we can see small mutations enable the 

heuristics to improve the scenario’s fitness scores, whereas 

large mutations appear destructive.  But how can we be sure 

that the best scenarios are being “evolved” and not chosen from 

the randomly generated part of the population?  By tagging the 

previous index of selected scenarios, we can track their roots 

after they enter the top ten of a particular generation.  If the 

search is working correctly and effectively, we would expect 

the proportion of successful scenarios coming from the random 

sector of the population to decrease over time, as evolved 

scenarios compete for fitness.  If they don’t, it suggests that the 

search is not working, or at least it is not outperforming the 

random part of the population.   

Figure 3 and Figure 4 show the lineage of the top ten from 

each generation, using the same data as Figure 1 and Figure 2.  

As before, the scatter plots show generations on the x axis, with 

the lineage or index of the scenario on the y axis.  Any scenario 

that comes from an index of over 60 (measured on the y-axis) 

has come from the random part of the population.   

We can see that in the case of the poorly performing, large 

mutation rate, the random part of the population continues to 

supply almost equal numbers of scenarios in the top ten of that 

generation.  Over generations there is little drop off in their 

numbers, which indicates the search is both selecting scenarios 

from the random part of the population and failing to improve 

on them by mutation.  Figure 4 shows the same type of plot but 

for the small mutation range.  It shows how over time the 

search increasingly selects from mutated scenarios, while the 

contribution from the random part of the population falls off 

rapidly as the search progress and tails off to almost zero in the 

final stages.  By using both the sensitivity analysis and tracing 

the lineage of the scenarios, we can be confident that our 

evolutionary search outperforms random search and see 

evidence that supports our decision to use a non-destructive 

mutation operator.  However, while we can make qualitative 

assessments of the solutions discovered by looking at how 

sensitive the solution space is to mutation rates, we cannot give 



any form of quantitative assessment of the area we are 

searching.  That is to say we cannot say whether there are 

many possible solutions of a similar nature or very few.   

This is not usually an issue for research into search 

heuristics; however in the case of searching for risk or safety 

related factors, it is important as the cost of dealing with risk 

(usually through the implementation of safety barriers) is often 

worked out by determining the cost of the outcome multiplied 

by the frequency of the event occurring.  As we are searching 

for rare events, it would be of interest to not only discover 

instances of these, but to gain an approximate idea of their 

frequency for a given configuration of air space.   

IV. ANALYSIS OF HIGH RISK SCENARIOS 

This section describes our on-going efforts to see whether 

we can find patterns in the input data or the output logs of the 

high risk scenarios that could help us to reduce size of the 

search space.  As each search run takes a long time to 

complete, it has been hard to compile a set of experimental data 

that could provide us with a statistical measure of certainty 

with regards to the type of solution most often found.
5
  We 

decided given the limited time and resources available, that we 

would use a large random sample to collect statistical 

information.  This allowed us to set up a dedicated machine 

that would conduct extensive random samples of the solution 

space that could then be harvested for analysis. Our hope is that 

this information might lead us to a method which could reduce 

the size and complexity of the solution space. 

After discussion with a colleague who specialises in search 

techniques (Dr Simon Poulding, York), we decided that 

although random sampling could not represent a viable search 

                                                           
5
 For example, to get meaningful statistics on the performance of a given 

parameter setting, we would need to run at least 20 (overnight) searches.  

Unfortunately there are many potential parameter settings we could explore, 

so a line has to be drawn on whether to experiment with new settings or to 
stick with a setting so that a reasonable number of results can be obtained.   

 

Figure 4: Lineage of top 10 per generation with mutation range 

at 30s.  Individuals with an index (y-axis) greater 60 were created 

from random sampling. 

method given the size of our solution space, there should be 

some limit to how long the sampling process should run (other 

than one simply determined by size).  With this in mind, we set 

an upper limit of a million random samples taken from the 

Stage 2 solution space.  This took about 165 hours to complete 

(approximately one week).   

 Random search results 1)

As expected with such a large solution space, random 

sampling failed to discover any scenarios approaching the best 

evolved solutions.  However, the best results found by random 

sampling were within the fitness values achieved by 

evolutionary search after about 150 generations (15,000 

simulations), so we considered these results to be indicative of 

solutions that could be subsequently mutated to achieve higher 

fitness scores.  By assessing these medium to high fitness 

scenarios we hoped to uncover any patterns in the input data 

that would indicate if the scenario is likely to generate high 

levels of risk.   

Intuitively, one would assume there must be some type of 

linear relationship between the input variables that leads to 

high levels of risk.  Even accepting that different aircraft travel 

at different speeds, and that the resolution algorithm used by 

RAMS Plus is unknown to us, it would seem reasonable to 

assume that the high fitness scenarios can to some extent be 

predicted from their traffic inputs.   

For example, we know that that only one aircraft from the ns 

flight path will be CPLoss.  So the fewer aircraft that are on 

that flight path, the fewer options there are for CPLoss to be 

selected.  We also know that the main flight path that could 

conflict with CPLoss is the ew flight path, so again if there are 

few aircraft on that flight path the less chance there is of 

conflict.  However, we don’t know what the optimum 

distribution of aircraft between the two flight paths should be 

for a high level of risk. 

Figure 3: Lineage of top 10 per generation with mutation range 

at 300s.  Individuals with an index (y-axis) greater 60 were 

created from random sampling 



 

Figure 5: Frequency of CPLoss's entry times within 5 min bin 

ranges from random samples having a fitness score of over 800. 

 

Figure 6: Frequency of high risk scenarios having CPLoss 

emergency event occurring at a particular navigational aid. The 

x-axis shows the index of the nav aid along the ns flight path. 

    We can also make similar assumptions about when CPLoss 

enters the scenario.  If it is too early, then there are very few 

aircraft for it to come into conflict with, likewise if it is very 

late.  We would expect scenarios with either of these 

configurations to have low risk levels with respect to conflicts 

involving CPLoss.  There is a similar argument with regard to 

the navigational aid chosen as the point at which the 

emergency cabin pressure loss incident occurs.  Finally, if 

CPLoss descends towards a tightly grouped bunch of aircraft 

on the ew flight path, it would seem reasonable to assume there 

is an increased risk of conflict with one of the aircraft within 

the group. Based on these intuitive assumptions from our 

domain knowledge, we might expect a pattern to emerge from 

high fitness scenarios that show: 

 CPLoss enters the sector outside the very earliest or 

latest times; 

 CPLoss has the emergency pressure loss event close to 

the ew flight path; 

 CPLoss descends towards a group of aircraft on the ew 

flight path. 

 

Our random sample had just 10 scenarios with fitness 

scores over 1000, so it would be relatively simple to do a 

manual analysis of the input files for these 10 scenarios and 

look for any correlation between them with respect to the 

points above.  However, such a small sample might be 

misrepresentative.  By choosing all scenarios that score over 

800, we raise that number to 51 and hopefully get a clearer 

picture.  We must emphasise at this point that we are not 

attempting to carry out an exhaustive statistical analysis; we are 

just manually looking for any obvious patterns.   

The first place to look is to see if CPLoss’s entry times are 

significant.  Using our sample of 51, we can create a histogram 

of the entry times for CPLoss using a bin size of 5 minutes.  

The results are shown in Figure 5.  We can see that there 

immediately appears to be very little correlation with CPLoss’s 

entry time to high fitness scores.  While we can see a small 

drop off in the frequency of high risk scenarios which contain 

CPLoss entering at either end of the simulation, there is 

otherwise no obvious discernible pattern to emerge.  The next 

step is to see whether a better correlation appears when we look 

at where the CPLoss event occurs.  This is coarsely determined 

according to the position of the 10 navigational aids that make 

up the ns flight path.  Again, as with the entry times, we might 

expect fewer conflicts are caused if the emergency event occurs 

very early or late in the simulation.  However, as Figure 6 

shows there is a similar, weak pattern of lower frequency at 

either end of the simulation and again in the centre which 

respect to navigational aid triggers the emergency event.  

As a further test, it is a relatively simple matter to run the 

entry times for CPLoss and navigational aid indices with the 

associated fitness score through the statistical software “R” to 

see if there is any correlation: 

> cor(d$Fitness.Score, d$Index.of.Nav.Aid) 

[1] -0.02506953 

> cor(d$Fitness.Score, d$Entry.time.of.CPLoss) 

[1] 0.1085984[1] -0.02506953 

> cor(d$Fitness.Score, d$Entry.time.of.CPLoss) 

[1] 0.1085984 

 

The figures also suggest a weak correlation between these 

input variables and the scenario fitness score.  These manual 

analyses suggest that the most probable pattern remaining is 

the distance in time that separates CPLoss from other aircraft in 

the scenario and whether aircraft are grouped together on the 

ew or random flight paths.  However it is important to keep in 

mind the aim of looking for such patterns, which is to reduce 

the search space either by reducing its dimensionality or 

reducing the parameter ranges we search across.  If we can 

determine that most high risk scenarios are related to particular 

groupings of aircraft or the relative entry time of aircraft on 

different flight paths, then we have no need to generate such 

large variations of input data.  We can focus the search across a 

tight spectrum of inputs, allowing greater coverage and more 

efficient searches.  

 Linear modelling on adjusted inputs    2)

By looking at the entry times of aircraft on all or selected 

flight paths and comparing those times to CPLoss’s entry time, 

we can see whether aircraft that enter the sector within a certain 

time frame relative to CPLoss have an impact on fitness scores.  

If there is a correlation between them, then we can look to see 

if the patterns of inputs can be traced to a likelihood of 

conflicts involving CPLoss.  This type of analysis is only 

possible after the event, i.e. after selecting which aircraft will 



represent CPLoss.  Prior to the event, we can only say that 

certain traffic input patterns represent possible risk should one 

of them incur the emergency cabin pressure loss event. 

This time we used an extended selection from the best of 

the random sample, which resulted in a set of medium to high 

fitness scenarios (131 scenarios in total), and looked at their 

entry times relative to CPLoss.  We can separate these into 

separate flight paths and look to see the entry times relative to 

CPLoss has any correlation to that scenario’s fitness score.  

This transformation was done for 131 input files and the 

resulting table analysed using the R statistical package to see if 

either entry time relative to CPLoss or flight path (or both) are 

correlated to a scenario’s fitness score.  Unfortunately, this 

manipulation of the data is not sufficient to show the effect of 

aircraft “bunching together” on a flight path, which may be 

why they showed only a weak correlation when we tried to use 

linear modelling to fit these two factors against the fitness 

scores of each scenario.  To date, we have not managed to 

show a correlation using the best fitness scores from random 

sampling run.  However, we believe there may be other 

candidate techniques out there (such as principal components 

analysis) which will help us to reduce the dimensionality of the 

search space.  Another possibility we are investigating is to use 

a collection of the best evolved solutions to see if these will 

provide clearer results.   

V. SUGGESTED EXPANSION OF TECHNIQUE TO 

SYSTEMS OF SYSTEMS (SOS) 

ASHiCS is intended as a proof-of-concept approach to the 

automated discovery of hazards in complex systems.  We 

believe the work we have to date shows that heuristic search is 

capable of finding high risk scenarios in such systems, and we 

see no reason why it could not be extended to cover large SoS.  

As the method of using heuristics to target the search towards 

those areas of risk that interest us would remain the same, the 

main question to answer is whether the search could continue 

to perform in an increased size of search space. Evolutionary 

search in this domain has already demonstrated its capability to 

find solutions better than those than can be found using random 

search.  Our calculations indicate that the search space typical 

for this domain is extremely large.  What is interesting is that 

evolutionary search always appears to discover “solutions” 

better than those found even in large random samples.  This 

suggests that either: 

 the search performs exceptionally well in very 

large search spaces; 

 the search will find some “risk” in almost any part 

of the search space and can then manipulate the 

input variables to increase this risk. 

 

We believe that although both of these possibilities are an 

acceptable outcome for the project’s method, it is the second 

which we think will make the technique useful in a pragmatic 

fashion for the domain of ATM.   

VI. CONCLUSIONS 

In this deliverable we have described the heuristic search 

used by ASHiCS in the search for high levels of risk in our 

Stage 2 scenarios.  We have provided arguments that the use of 

destructive operators such crossover as opposed to mutation is 

unlikely to be effective, as small mutation ranges were shown 

to be far more productive than destructive mutations using a 

larger range.  We have shown that evolved solutions are 

significantly better than any found using random sampling and 

that these solutions are found in a much reduced time.  

We have attempted to find out quantitative information 

about the solution space by conducting a large random sample 

and using dimension reduction techniques on the inputs to see 

if we could characterise the solution space and therefore target 

the search more effectively.  While we believe this technique 

holds promise, to date we have been unable to show a 

correlation between the input variables that would allow us to 

use it to recognise traffic patterns that indicate scenarios 

containing high risk.  We believe that the techniques such as 

linear regression modelling can uncover patterns in the input 

data that would allow effective dimension reduction, something 

we believe would pay dividends on the much larger search 

spaces that a SoS domain would present. 
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