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Hypergraph Rewriting:

Critical Pairs and

Undecidability of Conuence

Detlef Plump

15.1 INTRODUCTION

In their pioneering paper [KB70], Knuth and Bendix showed that conuence (or,

equivalently, the Church-Rosser property) is decidable for terminating term rewriting

systems. It su�ces to compute all critical pairs t  s ! u of rewrite steps in which

s is the superposition of the left-hand sides of two rules, and to check whether t and

u reduce to a common term. This procedure is justi�ed by the so-called Critical Pair

Lemma [Hue80] which states that a term rewriting system is locally conuent if and

only if all critical pairs have a common reduct.

For (hyper)graph rewriting systems, however, no such simple characterization of

local conuence is possible. The reason is that the embedding of derivations into

\context" is more complicated than for tree rewriting. It is shown below that in the

graph case, conuence of all critical pairs need not imply general local conuence.

This phenomenon refutes a critical pair lemma published by Raoult [Rao84] (personal

communication). Okada and Hayashi [OH92] avoid the problem by giving a critical

pair lemma under the strong restriction that distinct nodes in a graph must not have

the same label.

In this chapter a critical pair lemma for general hypergraph rewriting is presented

which provides a su�cient condition for local conuence. It requires that all critical

pairs are conuent by derivations that satisfy certain conditions. The second part of
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this chapter reveals that a simple characterization of local conuence is indeed im-

possible: conuence is shown to be undecidable for terminating hypergraph rewriting

systems.

15.2 HYPERGRAPH REWRITING

In this section the \Berlin approach" to graph rewriting is briey reviewed (see [Ehr79]

for a comprehensive survey), but all notions are lifted to the hypergraph case which is

more exible in applications. In particular, three theorems of the Berlin approach are

recalled concerning the commutation, restriction, and extension of derivations. These

results are essential tools in the proof of the Critical Pair Lemma.

15.2.1 Hypergraphs and hypergraph morphisms

Let � = h�

V

;�

E

i be a signature, that is, �

V

and �

E

are sets (of node and edge

labels), and each � 2 �

E

comes with a pair type(�) = h�; �i of strings �; � 2 �

�

V

.

A hypergraph over � is a system G = hV

G

; E

G

; l

G

;m

G

; s

G

; t

G

i, where V

G

and E

G

are

�nite sets of nodes and hyperedges (or edges for short), l

G

:V

G

! �

V

and m

G

:E

G

!

�

E

are labeling functions, and s

G

; t

G

:E

G

! V

�

G

are functions that assign strings

s

G

(e); t

G

(e) of source and target nodes to each hyperedge e such that type(m

G

(e)) =

hl

�

G

(s

G

(e)); l

�

G

(t

G

(e))i. (The extension f

�

:A

�

! B

�

of a function f :A ! B maps the

empty string to itself and a

1

: : : a

n

to f(a

1

) : : : f(a

n

).)

G is said to be discrete if E

G

= ;.

In pictures of hypergraphs, nodes are drawn as circles and hyperedges as boxes, both

with inscribed labels. Lines without arrowheads connect a hyperedge with its source

nodes, while arrows point to the target nodes. For example, the graphical structure

n

a

1

: : : n

a

m

n

b

1

: : : n

b

n

�

�

�/

1

S

Sw

n

\

\1

%

%

m

represents a hyperedge together with its source and target nodes, where type(�) =

ha

1

: : :a

m

; b

1

: : : b

n

i. \Ordinary" edges with one source and one target node are fre-

quently depicted as arrows, with labels written aside.

Let G,H be hypergraphs. Then G is a subhypergraph of H, denoted by G � H,

if V

G

� V

H

, E

G

� E

H

, and l

G

, m

G

, s

G

, t

G

are restrictions of the corresponding

functions of H.

A hypergraph morphism f :G ! H consists of two functions f

V

:V

G

! V

H

and

f

E

:E

G

! E

H

that preserve labels and assignments of source and target nodes, that

is, l

H

� f

V

= l

G

, m

H

� f

E

= m

G

, s

H

� f

E

= f

�

V

� s

G

, and t

H

� f

E

= f

�

V

� t

G

. f is

injective (surjective) if f

V

and f

E

are injective (surjective). f is an isomorphism if it

is injective and surjective; in this case G and H are isomorphic, denoted by G

�

=

H.
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The subhypergraph of H with node set f

V

(V

G

) and edge set f

E

(E

G

) is denoted by

fG. If G � H, then G ,! H denotes the inclusion morphism.

15.2.2 Rules and derivations

A rule r = (L � K ! R) consists of three hypergraphs L,K,R and a morphism

K ! R, where K � L.

A hypergraph rewriting system G = (�;R) consists of a signature � and a set R of

rules with hypergraphs over �. For the rest of this section and the following section,

G denotes an arbitrary hypergraph rewriting system.

Let G;H be hypergraphs. Given a rule r = (L � K ! R) from G and a morphism

g:L ! G, G directly derives H through r and g, denoted by G )

r;g

H, if there are

two hypergraph pushouts of the following form:

L  - K ! R

g # # #

G  - D

c

! H

(See [Ehr79] for the de�nition and construction of graph pushouts; the extension to

hypergraphs is straightforward.) Intuitively, D is obtained from G by removing the

nodes and edges in gL�gK, and H is constructed from D by identifying items in gK

as speci�ed by K ! R and by adding the items in R�K.

The relations )

r

and ) are de�ned in the obvious way. G )

�

H means G ) H

or G

�

=

H. G derives H, denoted by G )

�

H, if G

�

=

H or there are hypergraphs

G

0

,: : : ,G

n

(n � 1) such that G = G

0

) G

1

) : : :) G

n

= H.

Proposition 15.2.1 Let G be a hypergraph, r = (L � K ! R) be a rule, and

g:L! G be a morphism. Then there exists a direct derivation G)

r;g

H if and only

if the following two conditions are satis�ed:

Contact Condition. No edge in G� gL is incident to any node in gL � gK.

Identi�cation Condition. For all items x; y in L, g(x) = g(y) implies x = y or x; y 2 K.

The following track function allows to \follow nodes through derivations". For a

direct derivation G) H, track

G)H

:V

G

! V

H

is the partial function de�ned by

track

G)H

(v) =

�

c

V

(v) if v 2 D;

unde�ned otherwise.

For a derivation G)

�

H, track

G)

�

H

= i

V

if G)

�

H by an isomorphism i:G! H,

and track

G)

�

H

= track

G

n�1

)G

n

� : : : � track

G

0

)G

1

if G )

�

H by a sequence G =

G

0

) G

1

) : : :) G

n

= H.

G is conuent if for all hypergraphs G;H

1

;H

2

with H

1

�

( G )

�

H

2

there is a

hypergraph M such that H

1

)

�

M

�

( H

2

. G is locally conuent if for all direct

derivations of the form H

1

( G ) H

2

there is an M such that H

1

)

�

M

�

( H

2

.

Finally,G is terminating if it does not admit an in�nite sequence G

1

) G

2

) G

3

) : : :

of direct derivations.



PLUMP

15.2.3 Commutation, restriction, and extension of derivations

The following three theorems were originally formulated for graphs rather than for

hypergraphs. But inspecting their proofs shows that they can be extended to the

hypergraph case without further ado.

Theorem 15.2.2 (Commutation theorem [EK76]) Let H

1 r

1

;g

1

( G )

r

2

;g

2

H

2

be direct derivations through rules r

i

= (L

i

� K

i

! R

i

), for i = 1; 2. If g

1

L

1

\ g

2

L

2

=

g

1

K

1

\ g

2

K

2

, then there is a hypergraph M such that H

1

)

r

2

M

r

1

( H

2

.

The following variant of the so-called Clip Theorem applies only to direct deriva-

tions, which su�ces for the purposes of the present chapter.

Theorem 15.2.3 ( [Kre77]) Let G )

r;g

H be a direct derivation through a rule

r = (L � K ! R). If S is a subhypergraph of G such that gL � S, then S )

r;g

0

U

where g

0

is the restriction of g to S and U � H. Moreover, track

S)U

is the restriction

of track

G)H

.

The next theorem allows a derivation to extend by arbitrary context, provided that

context edges are not attached to nodes that are removed by the derivation. The

present form of the theorem is tailored to the proof of the Critical Pair Lemma.

Theorem 15.2.4 ( [Ehr77, Kre77]) Let S )

r;g

T )

�

U be a derivation and G be a

hypergraph with S � G. Let Boundary be the discrete subhypergraph of S that consists

of all nodes that are touched by any edge in G� S. If track

S)T)

�

U

is de�ned for all

nodes in Boundary , then there is a derivation G)

r;g

H )

�

M such that T � H and

g is the extension of g to G. Moreover, M is de�ned by the pushout

Boundary

tr

! U

# #

Context ! M

where Context = (G� S) [ Boundary is a subhypergraph of G, Boundary ! Context

is the inclusion of Boundary in Context, and tr is the restriction of track

S)T)

�

U

to

Boundary (considered as a morphism).

15.3 THE CRITICAL PAIR LEMMA

The quest for a critical pair lemma is motivated by the problem of testing hypergraph

rewriting systems for (local) conuence. The idea is to infer the conuence of arbi-

trary divergent steps H

1 r

1

( G )

r

2

H

2

from the conuence of those steps where G

represents a \critical overlap" of the left-hand sides of r

1

and r

2

. By the Commutation

Theorem 15.2.2, such an overlap is critical only if it comprises nodes or edges that are

removed by r

1

or r

2

. This suggests the following de�nition of a critical pair.

Definition 15.3.1 (Critical pair) Let r

i

= (L

i

� K

i

! R

i

) be rules, for i = 1; 2.

A pair of direct derivations of the form T

r

1

;g

1

( S )

r

2

;g

2

U is a critical pair if

S = g

1

L

1

[ g

2

L

2

and g

1

L

1

\ g

2

L

2

6= g

1

K

1

\ g

2

K

2

. Moreover, g

1

6= g

2

is required for

the case r

1

= r

2

.
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In the sequel, two critical pairs are not distinguished if they di�er only by renaming

of nodes and edges. The critical pairs arising from r

1

and r

2

can be computed by

constructing all pairs of direct derivations T

r

1

( (L

1

+L

2

)

=�

)

r

2

U where (L

1

+L

2

)

=�

is a quotient of the disjoint union L

1

+L

2

that identi�es at least one item in L

1

�K

1

(resp. L

2

�K

2

) with some item in L

2

(L

1

).

By the Commutation Theorem 15.2.2 a strong conuence property can be estab-

lished for the case that G has no critical pairs at all. This is substantially di�erent

from term rewriting where only local conuence holds (see for example [Hue80]).

Theorem 15.3.2 Hypergraph rewriting systems without critical pairs are strongly

conuent, that is, whenever H

1

( G ) H

2

, then there is a hypergraph X such that

H

1

)

�

X

�

( H

2

.

Proof. LetH

1 r

1

;g

1

( G)

r

2

;g

2

H

2

. If g

1

L

1

\g

2

L

2

= g

1

K

1

\g

2

K

2

, then there are direct

derivationsH

1

)

r

2

M

r

1

( H

2

by Theorem 15.2.2. Assume therefore the contrary. The

Clip Theorem 15.2.3 yields direct derivations T

r

1

;g

0

1

( (g

1

L

1

[ g

2

L

2

) )

r

2

;g

0

2

U with

g

0

1

L

1

\ g

0

2

L

2

6= g

0

1

K

1

\ g

0

2

K

2

. Because there are no critical pairs, r

1

= r

2

and g

1

= g

2

must hold. Then H

1

�

=

H

2

since the result of a direct derivation is determined uniquely

up to isomorphism. 2

Definition 15.3.3 A critical pair T ( S ) U is joinable if there is a hypergraph

X such that T )

�

X

�

( U .

It turns out that the joinability of all critical pairs of G does not guarantee local

conuence. This problem may occur if S ) T )

�

X and S ) U )

�

X send some

node in S to di�erent nodes in X. As an example, let G contain the following two rules

(the node indices 1,2 indicate the inclusion morphisms):

r

1

=

�

�

� �

-

a

� � � �

�

�

�



b

?

� �

1 2 1 2 1 2



�

r

2

=

�

�

� �

-

a

� �� �

�

�

�



b

?

� �

1 2 1 2 1 2



�

There are only two critical pairs, both being joinable:

�

�

�



b

?

� �

r

1

( � �

-

a

)

r

2

�

�

�



b

?

� �
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�

�

�



b

?

�

r

1

(

�

�

�



a

?

� )

r

2

�

�

�



b

?

�

However, G is not locally conuent:

�

�

�



b

?

� �


 	

b

O

r

1

( � �

-

a


 	

b

O

)

r

2

�

�

�



b

?

� �


 	

b

O

The outer hypergraphs are non-isomorphic and irreducible, hence they have no com-

mon reduct.

Here the embedding of the �rst critical pair into context destroys the isomorphism

between the outer hypergraphs. This is possible because the two direct derivations

of the critical pair|although resulting in the same hypergraph|have di�erent track

functions. In order to overcome this problem one can introduce the rules

r

3

=

�

�

�

�

�



b

?

� � ; � ;



�

r

4

=

�

�

� � ; � ;



�

which allow the outer hypergraphs of both critical pairs to the empty hypergraph

to be reduced. r

3

and r

4

do not create new critical pairs, so all critical pairs have

\conuent derivations with identical track functions". Still, this is not su�cient for

local conuence: r

3

and r

4

cannot be applied to the outer hypergraphs of the last

derivation pair because of the contact condition for direct derivations. In other words,

the conuent derivations cannot be embedded into context since r

3

and r

4

remove

nodes.

This example suggests that the conuent derivations of critical pairs should preserve

certain nodes and send these to the same nodes in the common reduct.

Definition 15.3.4 Let T ( S ) U be a critical pair, and let Protect(S) be the

discrete subhypergraph of S that consists of all nodes v such that track

S)T

(v) and

track

S)U

(v) are de�ned. Then T ( S ) U is strongly joinable if there are deriva-

tions T )

�

X

�

( U such that for all nodes v in Protect(S), track

S)T)

�

X

(v) and

track

S)U)

�

X

(v) are de�ned and equal.
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Lemma 15.3.5 (Critical Pair Lemma) A hypergraph rewriting system is locally

conuent if all its critical pairs are strongly joinable.

Proof. Assume that all critical pairs of G are strongly joinable. Consider two direct

derivations H

1 r

1

;g

1

( G )

r

2

;g

2

H

2

through rules r

i

= (L

i

� K

i

! R

i

), i = 1; 2. If

g

1

L

1

\g

2

L

2

= g

1

K

1

\g

2

K

2

, then there is a hypergraphM such thatH

1

)

r

2

M

r

1

( H

2

by the Commutation Theorem 15.2.2 . Assume therefore g

1

L

1

\ g

2

L

2

6= g

1

K

1

\ g

2

K

2

.

Assume further that r

1

6= r

2

or g

1

6= g

2

, as otherwise H

1

�

=

H

2

. Let S = g

1

L

1

[ g

2

L

2

.

By Theorem 15.2.3 there are restricted derivation steps U

1
r

1

;g

0

1

( S )

r

2

;g

0

2

U

2

where

g

0

i

is the restriction of g

i

to S and U

i

� H

i

, for i = 1; 2. Clearly these two steps

constitute a critical pair. Hence, by assumption, there are derivations U

1

)

�

X

�

( U

2

such that track

S)U

1

)

�

X

(v) and track

S)U

2

)

�

X

(v) are de�ned and equal for each

v 2 Protect(S)

V

.

Let Boundary be the discrete subhypergraph of S that consists of all nodes that

are touched by any edge in G � S. Both track

G)H

1

and track

G)H

2

are de�ned for

all nodes in Boundary , because G ) H

1

and G ) H

2

satisfy the contact condition.

Then, in particular, track

S)U

1

and track

S)U

2

are de�ned on Boundary , that is,

Boundary � Protect(S). Hence, for i = 1; 2, track

S)U

i

)

�

X

is de�ned on Boundary .

Therefore, by Theorem 15.2.4, there are derivations G)

r

i

;g

i

H

i

)

�

M

i

with U

i

� H

i

,

for i = 1; 2. g

i

is the extension of g

0

i

to G, so g

i

= g

i

and consequently H

i

�

=

H

i

, for

i = 1; 2. Moreover, Theorem 15.2.4 states that, for i = 1; 2, M

i

is de�ned by the

pushout

Boundary

tr

i

! X

# #

Context ! M

i

where Context = (G � S) [ Boundary , Boundary ! Context is the inclusion of

Boundary in Context , and tr

i

is the restriction of track

S)U

i

)

�

X

to Boundary (con-

sidered as a morphism). Now tr

1

= tr

2

implies M

1

�

=

M

2

since pushout objects are

unique up to isomorphism. Thus H

1

)

�

M

1

�

( H

2

. 2

In contrast to term and string rewriting, the Critical Pair Lemma cannot provide a

characterization of local conuence: the following example shows that even conuent

and terminating systems may possess critical pairs that are not strongly joinable.

Let the label sets �

V

and �

E

be singletons, and let G contain only the following

rule:

r =

�

�

�

�

�



?

�

�

?

�

�

�

�

�



?

�

�

�

�

�

�

�



?

�

�

�



�

G is terminating because every rule application decreases the number of edges by one.

To see that G is conuent, consider two derivations H

1

�

( G )

�

H

2

. Then either

G contains no loop and H

1

�

=

G

�

=

H

2

, or G;H

1

;H

2

contain at least one loop and

have the same number of nodes. In the latter case holds H

1

)

�

M

�

( H

2

for the

hypergraph M with jV

G

j nodes, one loop, and no other edges. So G is conuent. But
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the following critical pair is not strongly joinable (the nodes are numbered to indicate

the track functions):

�

�

�



?

�

1

�

2

r

(

�

�

�



?

�

1

�

�

�



?

�

2

)

r

�

1

�

�

�



?

�

2

15.4 UNDECIDABILITY OF CONFLUENCE

The above example demonstrates that terminating and conuent hypergraph rewriting

systems need not have strongly joinable critical pairs. So the well-known decision

procedure for the conuence of terminating term rewriting systems|which reduces

the terms of a critical pair to normal form and checks equality|cannot be adapted

to the hypergraph case (by checking strong joinability of critical pairs). This leads to

the question whether conuence is decidable at all for terminating systems. By the

following result, the answer is negative.

Theorem 15.4.1 It is undecidable in general whether a �nite, terminating hyper-

graph rewriting system is conuent.

Here a hypergraph rewriting system G = h�;Ri is said to be �nite if �

V

;�

E

and R

are �nite sets.

The rest of this section is devoted to the proof of Theorem 15.4.1. The proof idea is

inspired by the proof of Kapur, Narendran, and Otto [KNO90] that ground-conuence

is undecidable for terminating term rewriting systems. In the following the Post Cor-

respondence Problem (PCP) is reduced to the problem of deciding conuence for

terminating hypergraph rewriting systems. Recall that the PCP is the following de-

cision problem: Given two nonempty lists A = hu

1

; : : : ; u

n

i and B = hv

1

; : : : ; v

n

i of

nonempty words over some alphabet �, decide whether there is a sequence i

1

; : : : ; i

k

of indices such that u

i

1

: : :u

i

k

= v

i

1

: : : v

i

k

.

The pair hA;Bi is called an instance of the PCP, and a sequence i

1

; : : : ; i

k

as above is

a solution of this instance. It is well-known that it is undecidable whether an arbitrary

instance of the PCP has a solution (see for example [HU79]).

Let now hA;Bi be an arbitrary instance of the PCP with A = hu

1

; : : : ; u

n

i, B =

hv

1

; : : : ; v

n

i. The plan is to construct a �nite, terminating hypergraph rewriting system

G(A;B) that is conuent if and only if hA;Bi has no solution.

Let �

V

= f�g and �

E

= �[f1; : : : ; ng[ f?;1;@; ?; 9g; the types of the edge labels

can be seen from the rules below. The rule set of G(A;B) is partitioned into subsets

R

0

;R

1

;R

2

, and R

3

. R

0

gives rise to a critical pair which stands for the choice to

create an edge labeled by 1 or to check a possible solution of hA;Bi. R

1

tests whether

a sequence of indices is a solution of hA;Bi, R

2

detects ill-formed hypergraphs, and

R

3

performs \garbage collection".
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R

0

contains the following rules:

�

�

?

-

� � � �
1

�



�

�

�

?

-

�

i

-

�

x

� �

x

�

�

�

P

Pi

1

�

�)

2

@

-

3

�

i

-

�

x



�

for i = 1; : : : ; n,

R

1

contains the following rules:

�

�

x�

y�

P

Pi

1

�

�)

2

@

-

3

�

i

-

�

z

�

x�

y�

�

z

�

x�

-

u

i

:1

�

: : :

y�

-

v

i

:1

�

: : :

�

-

u

i

:p

i

�

�

-

v

i

:q

i

�

P

Pi

1

�

�)

2

@

-

3

�

z



�

for i = 1; : : : ; n, where u

i

= u

i

:1 : : :u

i

:p

i

and v

i

= v

i

:1 : : : v

i

:q

i

, with u

i

:j; v

i

:j 2 �,

�

�

x�

y�

P

Pi

1

�

�)

2

@

-

3

� �

x�

y�

�

x�

y�

P

Pi

1

�

�)

2

?



�

�

�

x�

-

a

�

y�

-

a

�

P

Pi

1

�

�)

2

?

�

x�

y�

�

x�

y�

P

Pi

1

�

�)

2

?



�

for all a 2 �,

�

�

x�

-

a

�

y�

-

b

�

P

Pi

1

�

�)

2

?

�

x�

y�

�

x�

y�

1



�

for all a; b 2 � with a 6= b,

�

�

x�

-

a

�

�

P

Pi

m

�

�)

?

�

x�

�

x�

1



�

for m = 1; 2 and all a 2 �,

�

�

�

�

P

Pi

1

�

�)

2

?

� ; �

9



�
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R

2

contains the following rules:

�

�

�

�

P

Pi

�

�)

@

-

3

�

�

i

� �

�

�

� � �

�

�

� �
1



�

for i = 1; : : : ; n,

�

�

�

�

P

Pi

�

�)

@

-

3

�

�

�

i

-

�

@

@

j

-

�

�

�

�

�

�

�

�

�

�

�

�

�

1



�

for all i; j 2 f1; : : : ; ng,

�

�

�

�

P

Pi

�

�)

@

-

3

�

�

m

@

�

�1

P

Pq

�

�

�

�

�

�

�

�

�

�

�

�

�

�

1



�

for m = 1; 2; 3,

�

�

�

�

P

Pi

�

�)

@

-

3

�

�

m

?

-

� �

�

�

� � �

�

�

� � 1



�

for m = 1; 2,

�

�

�

�

P

Pi

�

�)

@

-

3

�

-

a

� �

�

�

� � �

�

�

� �
1



�

for all a 2 �,

�

�

�

�

P

Pi

�

�)

@

-

3

�

�

a

� �

�

�

� � �

�

�

� �
1



�

for all a 2 �.

R

3

contains the following \garbage collecting" rules:

�

�

�

i

-

�
1

� � �
1

� � �
1



�

for i = 1; : : : ; n,

�

�

�

�

P

Pi

�

�)

@

-

�
1

�

�

�

�
1

�

�

�

�
1



�
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�

�

�

�

P

Pi

�

�)

?

1
�

�

�

1
�

�

�

1



�

�

�

�

-

a

�
1

� � �
1

� � �
1



�

for all a 2 �,

�

�

9

1
�

1
�

1



�

�

�

1 1 � 1 � 1



�

�

�

1
� �

1
�

1



�

In the following it is shown that G(A;B) is terminating (Lemma 15.4.2), and that

G(A;B) is conuent if and only if hA;Bi has no solution (Lemmas 15.4.4 and 15.4.6).

This concludes the proof of Theorem 15.4.1 since G(A;B) is e�ectively constructible.

Lemma 15.4.2 G(A;B) is terminating.

Proof. Suppose that G(A;B) admits an in�nite sequence G

1

) G

2

) : : : of direct

derivations. No application of any rule in G(A;B) increases the number of edges with

label in f?g[ f1; : : :; ng, so there is some l � 1 such that the number of these edges is

the same in all G

j

with j � l. Consequently G

l

) G

l+1

) : : : contains no applications

of the �rst three rule schemata. But all other rules in G(A;B) decrease the sum of the

numbers of nodes and edges, and hence G

l

) G

l+1

) : : : cannot be in�nite. 2

Lemma 15.4.3 Every hypergraph containing an edge labeled by 1 reduces to 1 .

Proof. Apply the rules in R

3

and the �rst rule for R

0

as long as possible. 2

Lemma 15.4.4 If hA;Bi has a solution, then G(A;B) is not conuent.

Proof. Let i

1

; : : : ; i

k

be a solution of hA;Bi. Then
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?

-

�

i

1

-

�

i

2

-

�

: : :

�

i

k

-

�

reduces to 1 and 9 , both being irreducible. 2

Lemma 15.4.5 If hA;Bi has no solution and G ) H is a direct derivation through

the second rule schema for R

0

, then H )

�

1 .

Proof. Call a sequence e

1

; : : : ; e

k

of edges in H an index chain if (1) m

H

(e

j

) 2

f1; : : : ; ng for j = 1; : : : ; k, (2) t

H

(e

j

) = s

H

(e

j+1

) for j = 1; : : : ; k � 1, and (3)

indegree(s

H

(e

j

)) = outdegree(s

H

(e

j

)) = 1 for j = 1; : : : ; k. Let now e

1

; : : : ; e

k

be

the longest index chain in H such that e

1

is created by G ) H. Then there is a

derivation H )

�

H

0

through k successive applications of the �rst rule schema for R

1

,

such that the j

th

step replaces e

j

by two sequences of edges representing u

i

j

and v

i

j

,

with i

j

= m

H

(e

j

). Let v be the third target node of the @-edge e created in the k

th

step. If v is a source or target node of any other edge, then H

0

) H

00

through a rule in

R

2

and hence H

00

)

�

1 by Lemma 15.4.3. On the other hand, if e is the only edge

incident to v, then e can be replaced by a ?-edge through the second R

1

-rule. The

generated strings u

i

1

: : :u

i

k

and v

i

1

: : : v

i

k

cannot be equal as otherwise i

1

; : : : ; i

k

were

a solution of hA;Bi. Therefore an exhaustive application of the R

1

-rules for ?-edges

results in a hypergraph containing a 1-edge. Finally, this hypergraph reduces to 1

by Lemma 15.4.3. 2

Lemma 15.4.6 If hA;Bi has no solution, then G(A;B) is conuent.

Proof. By Newman's Lemma (see e.g. [Hue80]) it su�ces to show local conuence,

since G(A;B) is terminating. Consider two direct derivations H

1 r

1

( G )

r

2

H

2

through rules r

1

,r

2

from G(A;B). Assume that the two steps are not independent in

the sense of the Commutation Theorem 15.2.2 and that H

1

6

�

=

H

2

, as otherwise the

existence of a common reduct is clear.

Case 1: r

1

; r

2

2 R

2

[ R

3

. Then both H

1

and H

2

contain an edge labeled with 1,

hence they reduce to 1 by Lemma 15.4.3.

Case 2: r

1

2 R

0

[ R

1

, r

2

2 R

2

[ R

3

. Then H

2

reduces to 1 . If H

1

contains a

1-edge, then H

1

reduces also to 1 . Otherwise there is a direct derivation H

1

) H

3

through a rule in R

2

, so H

3

reduces to 1 .

Case 3: r

1

2 R

2

[R

3

, r

2

2 R

0

[R

1

. Analogously to case 2.

Case 4: r

1

; r

2

2 R

0

[R

1

. Then one of the rules, say r

1

, is the �rst rule for R

0

while

r

2

is an instance of the second rule schema. By Lemmas 15.4.3 and 15.4.5,H

1

and H

2

reduce to 1 . 2

15.5 CONCLUDING REMARKS

A task for further research is to �nd a su�ciently large subclass of terminating hy-

pergraph rewriting systems for which conuence is equivalent to strong joinability of
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critical pairs. For the �nite systems in such a class, conuence is decidable since strong

joinability becomes decidable under termination.

A possible application of the Critical Pair Lemma not considered in this paper is

the completion of non-conuent systems. One could set up a procedure which adds

rules to a system until all critical pairs are strongly joinable, where the new rules

should preserve the equivalence

�

, generated by). The hypergraph rewriting systems

submitted to such a procedure would have to be terminating, to ensure that strong

joinability can be checked. This poses the question of how to test for termination of

(hyper)graph rewriting systems, a topic to which apparently very little attention has

been paid yet.

Acknowledgement. I wish to thank Frank Drewes for pointing out an error in a

previous version of the proof of Theorem 15.4.1.
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