
A comparison of two approaches to Web access for blind users

MEng Third Year Project (PR3)

Simon Thompson
(sjt104@york.ac.uk)

Supervised by: Dr. A. D. N. Edwards
(Alistair.Edwards@cs.york.ac.uk)

Department of Computer Science
The University of York

Heslington
York

YO10 5DD

Submission Date: 16th March 2000

A comparison of two approaches to web access for blind users

Abstract
 The content and size of the World Wide Web has increased over the past few years. With this
development and increased number of users, certain accessibility problems have surfaced.
One particular group of users who may not be able to access Web information is blind users.

 Various tools have been developed to help blind users access the web. Two of these include
Betsie, a script that parses the content of web pages before presenting information to the user,
and BrookesTalk, a specialist web-browser. This project aims to compare the two tools that
are based around different technologies and to highlight good and problematic areas of each.

 Both Betsie and BrookesTalk were found to present the user with an adequate representation
of pages, however certain specific problematic areas were found. Users of Betsie were often
noted to become disorientated within a page and it was noted that this was because
information extraction was difficult. This did not occur for users of BrookesTalk who were
able to extract key document information by using the conceptualisation tools that form a part
of it.

 An implementation of a similar system was added to Betsie and whilst found to be useful,
sometimes gave excessive information.

 Various navigational issues were raised with BrookesTalk, this included a focus problem and
form filling problems. It was also noted how a search within page may be a useful feature to
add to BrookesTalk.

Acknowledgements
 I would like to thank the five testers who volunteered to take part in the evaluation process of
this project and provided interesting comments and views on the tools tested. My thanks also
go to Alistair Edwards for supervising this project and to Ben Challis for his assistance in
using the Human-Computer Interaction Lab. I would also like to thank Stephanie Booth for
agreeing to proofread this report.

3

Table of Contents
1. Introduction..5

1.1. Initial Project Objectives..5
1.2. The Internet as a resource ..6
1.3. The development of the Web...7
1.4. Accessibility Issues & the Web ...8

1.4.1. Disability Law..9
1.5. Research Into web accessibility...10
1.6. Web page design guidelines...11

1.6.1. Images & Animations ..11
1.6.2. Image maps ..11
1.6.3. Multimedia...11
1.6.4. Forms ...12
1.6.5. Frames..12
1.6.6. Scripts, Applets ..12
1.6.7. Document layout..13
1.6.8. Verify Hypertext ..13
1.6.9. Verify Accessibility ...13

1.7. Project Undertakings..13
1.8. Report Outline..14

2. An Overview of Betsie and BrookesTalk ..15
2.1. Betsie..15
2.2. BrookesTalk...19

2.2.1. Features of BrookesTalk ..20
2.3. Summary..22

3. Initial Evaluation..23
3.1. Personal Observations..23

3.1.1. Preparing the tools for use ...23
3.1.2. Applying the tools..27

3.2. User Evaluation..28
3.2.1. Techniques to test the tools..29
3.2.2. Results and analysis ...32

3.3. Summary..34
4. Development of Betsie...37

4.1. Generating a document summary ..37
4.1.1. Providing access to the summary...37
4.1.2. Generating a page summary...38

4.2. Towards an automated document abstract ...44
4.2.1. Abstract generation algorithm..45
4.2.2. Implementation of the abstract generation algorithm ..45

4.3. Summary..46
5. Further Evaluation ...47

5.1. Evaluation Design..47
5.1.1. Selecting target websites..48
5.1.2. Websites used for testing ...48
5.1.3. User Response..49

5.2. Results and analysis ...51
5.2.1. Questionnaire results..51
5.2.2. Interview results...53

4

5.3. Summary..55
6. Conclusion and recommended work..56

6.1. Comparison of the tools ...56
6.1.1. General navigation ...56
6.1.2. Images ..56
6.1.3. Conceptualisation tools..57
6.1.4. Search...57
6.1.5. Forms ...57
6.1.6. Tables...58
6.1.7. Installation Issues...58
6.1.8. Financial Implications..58

6.2. Development ideas for each tool..58
6.2.1. Ideas for developing Betsie..59
6.2.2. Ideas for developing BrookesTalk ...59

6.3. Areas for further work ...61
6.4. Self-criticism..62

7. References..63
Appendix I ...65

Code for Betsie ..65

Table of Figures
Figure 1 Diagram shows how a blind user may browse the web, the arrows indicate requests

and the dotted lines show two-way data flow..15
Figure 2 A screenshot of a web page that uses frames, the scroll bar can be noted to be a

visual cue splitting two windows into distinct text areas...16
Figure 3 Tasks the two volunteers were asked to undertake ...30
Figure 4 Questionnaire for initial evaluation of the tools ..31
Figure 5 Screen shot showing how the modified Betsie script gave information to the user

about the summary and provided a link to it..38
Figure 6 Code extract showing the additional variables needed to be configures resulting

from the addition of the page summary ...39
Figure 7 Example Perl substitution using pattern-matching statements..................................40
Figure 8 Words removed from a document before keywords are extracted............................42
Figure 9 Endings of words removed to leave stems of words ...43
Figure 10 Closed questions each user was asked to complete after use of each tool49
Figure 11 Structure of the interview used to obtain further user comments............................50

Index of Tables
Table 1 Table showing results of the evaluation questionnaire ...32
Table 2 An example hash table giving key and value pairs...43
Table 3 An example rank table using frequencies to match to stemmed words with that

frequency..44
Table 4 Answers given by each user to the selection answer questions in the second

evaluation...51

5

1. Introduction
 This chapter covers the initial ideas for the project and some indication of the stimulus behind
undertaking this project. It should be noted that where the term blind is used, this refers to
people with no sight, partially sighted refers to people with some sight and visually impaired
refers to both blind and partially sighted people.

1.1. Initial Project Objectives
 In recent years, the Internet has expanded massively, with both company and home users
having the power to access it. It is becoming a vital if not invaluable source of information
for all purposes – from research papers, to on-line shopping, to personal holiday photos.
Whatever you may wish to use it for and whoever you are, you should be able to access the
wealth of information distributed over it. For many people, using office or home PCs and
browsing with their favourite software, this is not a problem. Sighted users can see pictures
on pages and can read the text provided saving or printing pages considered useful and
rapidly discarding obviously irrelevant pages. Unfortunately, not all are able to access the
Internet in the same way. Take for example, blind users, they cannot read the text on screen
or see the pictures that sighted users can, instead they have to rely on other users or means to
access the information provided. This project aims to consider various ways of accessing
information on the Internet for blind people.

 Two browsing tools have been developed aimed specifically for blind users, these are
BrookesTalk, a specialist web-browser, and Betsie, a gateway script, the details of these tools
will be described fully later. The project will consider the two browsing methods, evaluate
their effectiveness, and identify any shortcomings. Betsie is a piece of open source software
written by Wayne Myers at BBC Digital Media [Betsie 1999] and hence provides the
opportunity for modification. BrookesTalk is in active development by The Speech Project
[Speech Project] at Oxford Brookes University who have been contacted concerning this
project and are prepared to read any conclusions that are found. It is important to note that
BrookesTalk is a multipurpose browser in that it is also designed for partially sighted users
by providing a visual representation of pages as well as an auditory representation. This is an
important observation to make as many partially sighted users wish to use the sight available
to them and have other aids rather than to simply rely on an auditory mechanism. Edwards
and Stevens [Edwards & Stevens 1997] note that “if a person receives conflicting information
on different senses it will usually be the visual signal that is heeded”, and this may be an
explanation as to why partially sighted people prefer to use their available sight when
possible. As both of the software tools have the ability to be modified or developed as
deemed necessary from conclusions drawn because of this project, they will be the only
products considered. Whilst other products do exist, the implementation of changes to a
commercial project are likely to be harder to achieve and hence of less practical use.

 The aims of this project are:

1. To investigate the functionality and effectiveness of Betsie and BrookesTalk;

2. To implement changes that will result in advantageous use of Betsie;

3. To re-evaluate Betsie and BrookesTalk;

6

1.2. The Internet as a resource
 During recent years, the use of the Internet has exploded with the development of the World
Wide Web. The British government aim to “connect” every school in the country to it within
the next few years. It is used by millions of people every day from across the globe and
provides a vital means of communication between people, companies, and countries. A recent
statement by Tony Blair PM [Blair 1999] claimed that businesses that did not develop their
web presence would be in serious danger in the future. Whilst this may be extreme, it does
show the potential of the Internet both now and in the future.

 The term “the Internet” has many different meanings to different people, it encompasses a
huge variety of systems and communications protocols, including the World Wide Web or
web, email, ‘ftp’ (for transferring files – file transfer protocol) and gopher. Some of these
systems are familiar to all users, for example the web and email, but others may only be
known about and used by specific groups of people. For example, gopher is mainly used
within the scientific world. For the majority of users who say they use the Internet, what they
mean is that they use the web and hence this project will specialise in this area.

 With the expanding use of the Internet and the information available on it, it would seem
unfair if everyone could not have access to the information provided. In fact, it could be that
with careful design of web pages, information could be presented to all users in a simpler and
more accessible fashion than is currently used.

 “The power of the Web is in its universality. Access by everyone regardless of disability is an
essential aspect.”

 -- Tim Berners-Lee, W3C Director, and inventor of the World Wide Web

 An example of how accessible design can be advantageous is outlined below, a
telecommunications company may do one of the following to send out a bill to a customer:

1. Send out a normal printed bill;

2. Send out a Braille version of the bill;

3. Send out a taped version of the bill;

4. Send an electronic version of the bill for use with a blind person’s screen reader;

 At this point, it is necessary to define the term ‘screen reader’. This is a piece of software that
has the ability to pass text displayed on screen to a suitable output device. The term screen
reader does not mean solely speech based output as many screen readers have the ability to be
connected to other output devices including Braille pads which present the user with a tactile
representation of the text on screen. Many current screen readers including the one used for
evaluation purposes in this project JAWS [JAWS], include a speech synthesiser that can be
used with a standard Windows compatible soundcard.

 Whilst the latter three of the examples given above are all suitable for a blind person, the
second can only work if the blind user can read Braille and the third would be expensive in
terms of tape and time to record the tape. In contrast to this, the fourth option allows the blind
user to browse their bill at leisure and at little cost to the telecom company (as their records
will be stored on computer in any case!).

7

 This project aims to concentrate on the needs of blind users, but accepts that the blind are not
the only group of people who may have difficulty accessing the web.

1.3. The development of the Web
 The web is a collection of sites distributed over thousands of computers around the world,
each site consists of a collection of pages, known as web pages. These pages are built using
hypertext mark-up language (HTML). HTML is documented and specified as a document
type definition (DTD) by the World Wide Web Consortium or w3c [W3C], which is made up
of individuals and company representatives from around the world (including IBM and
Microsoft). Suggestions are made when new specifications and modifications are being
designed which are discussed and then published as a standard.

 On 24th December 1999, HTML 4.0.1 [HTML4.01 1999] was published. In theory, all web
pages should conform to this standard (a validation service [VALIDATER] is provided as a
quick, simple and easy check for this). With the millions of users worldwide each wanting
their own web page, this is however, unlikely to happen. It is worth noting that HTML 4.0.1
(and 4.0 [HTML4.0 1998] to which 4.0.1 corrects a number of errors) is designed with total
accessibility in mind. Prior to HTML 4 have been HTML 3.2 [HTML3.2 1997] and HTML
2.0 [HTML2.0 1995]. HTML 2.0 was an early standard developed when the web was first
appearing however it had little support for anything other than text or links and hence users
developed new tags, many of which were implemented in the then, leading browser, Netscape
Navigator. At the time, many of the tags (mark-up codes used to identify or label elements
within the document, e.g. <p>text</p> would be used to indicate that “text” is classed as a
paragraph) included in HTML 3.2 were not rendered by the many browsing tools available.
Since that time, newer versions of the browsers have been released which do handle all the
tags in their own way.

 As the web has developed, people have demanded more graphically rich pages in the same
way as companies have moved from simple black and white leaflets to coloured, glossy
brochures. The HTML standard was however developed simply to structure documents, and
not to provide layout thus allowing individual browsers to render pages in an appropriate
manner providing scope for specialist uses. In the early days of the web, many people used
the same browser, Netscape Navigator, and page designers turned to the way it rendered tags
to provide layout. For example, the heading tags <h1>, <h2> … were used to display
different sized text because this is how Netscape visually renders these. Whilst this technique
has the desired effect for viewing in Netscape, the underlying structure of the document may
be destroyed. For this reason, the w3c have developed a method for adding layout
information to pages known as “cascading styles sheets” [CSS] or more simply, style sheets.
Style sheets allow localised definitions of how the browser should visually render a page,
thus leaving HTML for use in determining the document structure.

 When page designers misuse the HTML language to provide document layout rather than
structure, specialist browsers that render tags in different ways are affected. For example, the
<h1> tag may be used by a designer to achieve larger text, however a specialist browser for
blind people may represent the enclosed text as louder or with emphasis. When the tag is
misused, the meaning of the page may not be correctly conveyed to the blind user. Further

8

aspects of web accessibility are discussed below but it should be clear that correct use of
HTML helps to minimise accessibility problems.

1.4. Accessibility Issues & the Web
 When the HTML 4 standard was developed, the issue of accessibility was raised and the
resulting standard was aimed at providing fully accessible web sites. Clearly, this will only be
possible if pages do adhere to the HTML standard. As such, page designers should use the
free validation service [VALIDATOR] provided by the w3c. Other tools are also available
for checking the syntax of web pages and include “Bobby” [BOBBY] developed by CAST.
Bobby is a tool that analyses web pages and reports on potential accessibility problems for
users. The following section discusses some of the common issues concerning accessibility
for blind users.

 One of the problems affecting many screen readers is the inability to represent information
displayed that is non-textual. This causes a problem when textual information stored in an
image or picture is incorporated in a page. For example, often designers wish to indicate that
a particular section of a web site is new and represent this with the word “new” surrounded
by some form of coloured star. This would cause a problem for a screen reader because it has
no way of accessing the text stored in the image and hence the meaning could potentially be
lost for a blind user. HTML 4 provides a mechanism for providing a short textual description
of the image in the ‘ALT’ attribute added to the tag as well as a link to a file that can contain
a detailed description of the image in the ‘LONGDESC’ attribute. The long description is
optional because not all images require a full description - a photograph may do, however an
image used to depict “new” only needs alternative text of “new” to fully describe it. This
attribute can be used by blind users because many web browsers support displaying the text
instead of the image that can then be accessed using a screen reader.

 The requirement for ‘ALT’ text was only added in the HTML 4.0 standard, previously it was
optional and as such, many web sites do not include it. It should also be noted that providing
‘ALT’ text of the filename is often of little use, for example even to a sighted user
‘fig09a.jpg’ has no meaning as to the content of the image. It has been suggested [Jenkins
1997] that future image standards should themselves provide the option to include a
description of the image within the file itself.

 As an aside, many current browsing tools do not provide support for the ‘LONGDESC’
attribute and as such the w3c have suggested using a specific link following an image
referenced as just ‘D’ to a file containing a description.

 It should be noted that not only images provide problems with accessibility for blind users,
other new technologies also do. Some examples are Shockwave flash [SHOCK], a tool for
generating multimedia presentations using images and vector manipulation for animation,
and Java [JAVA], a programming language designed to run on a “virtual machine” which is
emulated in software on the client computer. When these technologies are used, images often
form an integral part of what is being described. Haywood [1997] commented on how the
effects of the then new technologies such as ActiveX [ACTIVEX], (a technology developed
by Microsoft used for programming which allows modules that perform specific operations to
be included in applications and web pages), and Java would adversely affect browsing. If we

9

consider existing browsers, it can be seen how specialist technology use can cause problems
for blind users. This is because little or no support for technologies is available – Lynx (a
well used text based browser) for example, has no support for ActiveX that can often be used
for key features of pages because of the ease of use by the page designer. Often, no
consideration is made for users without the capability of ActiveX. This technology renders all
users of Unix based machines disabled to a certain extent because, at the time of writing,
ActiveX is only supported on the Microsoft Windows 9x and NT platforms.

 Despite the efforts of the w3c to ensure all web pages are accessible by using their standards,
in the real world pages are not going to be ideal and hence specialist applications and
technology are required. This may be through pages being designed to previous HTML
standards, or insufficient testing of the site as well as a designer totally failing to consider
users unlike themselves (i.e. Blind or in some other way disabled) or simply through bad site
design.

1.4.1. Disability Law
 Both the UK and USA have laws protecting disabled users, these take the form of the
‘Disability Discrimination Act’ [DDA1995] and the ‘Americans with Disabilities Act’ [ADA
1990]. The American law effectively states that it is illegal not to provide accessible
information, whereas UK law claims that it is only illegal to refuse accessible information
when asked for it. In America, a case has tested this in terms of computing information
regarding blind users’ access to AOL [Mendels 1999], however no UK cases have yet been
brought. Edwards [1997] discusses the feasibility and use of legislation and it is important to
note that the imposition of legislation has implications on the freedom of speech of the author
– a person may not be capable of providing a fully accessible page and the law should not
stop them from publishing what they can write. Edwards brings forward the point that the
Internet as a whole is not owned by anyone and hence implementing any such law would be
difficult. He goes on to imply that some sort of prestige for accessible pages would be better
in terms of encouraging others to do likewise. At present the w3c provide a banner for pages
that conform to the standards, this is accepted as a form of prestige attributed to a well-
designed page. Cast, with their tool “Bobby” have also implemented a similar system and
increasing numbers of pages are being classed as Bobby accepted implying their
accessibility.

 At present, many blind users do use the web with limited accessibility, either through
specially designed web browsers (which often suffer from lack of support for new
technologies and tags) or through commonly used visual web browsers using a screen reader.
Haywood [1997] performed tests on the use of these specialist and adapted browsers,
however some of her conclusions as to the use of adapted browsers are no longer valid – for
example, Microsoft Windows 98 provides greater accessibility options and their Internet
Explorer (versions 4 and 5) provide accessibility handles – these provide information to
external software regarding the page in use. Jaws for Windows (a popular screen reader)
provides support for these accessibility handles which make browsing in Internet Explorer
easier. One of the comments made by Haywood [1997] was that it was difficult to identify
links in that the user had to listen out for the screen reader noting a change of colour. When
using Jaws and Internet Explorer, links are easily identified because the screen reader is made

10

aware that the text is a link by using accessibility handles. It is for this reason that testing of
Betsie shall be undertaken using Internet Explorer and Jaws – so that any problems with
accessing pages can be attributed to Betsie and not through lack of understanding or
functionality of the screen reader/browser combination.

 There are effectively three ways in which a blind user can access the web, these are
summarised as follows:

• Use a standard browser and screen reader;

• Use a standard browser with a gateway parser and screen reader;

• Use a specialised browser;

 Betsie falls into the second category and BrookesTalk into the third. The first category of
access is generally unsuitable for providing meaningful access to web page because the
majority of screen readers available have problems when tables and frames are used in page
layout. This is due to the nature of screen readers that simply read text across the screen as
they are unaware of any layout and formatting provided by the web page to the sighted user.

1.5. Research Into web accessibility
 Much research has been undertaken into making the web accessible including that by
companies such as Microsoft and IBM who have also joined the w3c and are involved in the
development of web accessibility guidelines which form part of the w3c web accessibility
initiative [WAI]. These guidelines set out ways in which web designers can improve the
accessibility of their pages for all. Unlike this project, it does not only consider blind users
but also other users who may experience problems accessing the web, for example, those
using a mobile telephone or people using text only access methods.

 Jenkins [1997] describes some of the problems that IBM experienced in developing an
accessible web site. Much research and testing was undertaken to ensure that the site was
accessible to all users and the research highlights some key groups who have problems
accessing the web. These include people with mobility problems who may not be able to hold
down a key or press multiple keys. This highlighted the need not only for IBM to produce
accessible web pages, but also to produce accessible software as a whole and highlights
specific items such as using standard input and output techniques to help reduce conflicts
with assistive technologies as well as allowing individual users to have a profile whereby
they can customise areas of the software. Jenkins also notes that as technology continues to
develop and expand, making pages accessible will become more difficult because people as a
whole use them in different ways. Jenkins concludes by stating how difficult is has been and
continues to be to encourage each group in the ibm.com domain to convert their pages to be
accessible. Jenkins also comments on how making departmental representatives who are
responsible for web pages aware of the needs and capabilities of accessible web design. The
aim of this is to provide accessible pages in the first instance rather than getting changes
made afterwards. As more people involved in development become aware of web
accessibility issues, software as in general should become more accessible because similar
principles apply to both the web and software.

11

1.6. Web page design guidelines
 The following presents a set of guidelines to web designers that if closely followed should
provide a useful and informative site to both blind and sighted users with little effort on
behalf of the page designer. These guidelines are based around ideas presented by IBM [SNS
1999] and the w3c WAI [WAI]:

1.6.1. Images & Animations
 Provide ALT=“text” for all images which is meaningful and concise. That is the text
described earlier and used to provide users with a description of images for use when non-
visual or text-only browsing is undertaken. Do not use animations unless the meaning can be
properly conveyed with other means, this is also important even for visual users as moving
images are distracting to the eye and hence can distract sighted users as their eye is drawn
towards the changing information.

1.6.2. Image maps
 Use client-side rather than server-side image maps and provide text descriptions of the link –
browsers not using image maps can access this and provide equal functionality. Where
server-side image maps are used, provide equivalent textual links. Image maps provide sets
of co-ordinates and corresponding links that can be applied to images such that when the user
clicks the part of the image surrounded by a set of co-ordinates, the corresponding links is
activated. For example, a web page may contain a map of Europe, links could be set up using
co-ordinates so that clicking on the UK would follow a link taking the user to a page about
the UK. This would be an image-map (although a photo of a band could be used rather than a
map of the UK and clicking each member of the band takes the user to a different personal
page). It is clear how non-visual users would have problems following image map links
unless alternative text is provided for each set of co-ordinates.

 A server-side image map requires special software to be installed on the web-server and a file
containing co-ordinates and corresponding URLs is stored on the server. When the user clicks
over a mapped image, the co-ordinates of the pointer are passed to the web-server that then
redirects the user to the appropriate page. Server-side image maps tend not to be used because
the syntax for writing the image map is server-software specific and often difficult to
configure. Client side image maps on the other hand have co-ordinates coded into a web page
and the following of links is co-ordinated by the client web-browser rather than the web-
server. Client side image maps form part of the HTML [HTML4.0 1998] standard and hence
can be transferred to different web servers without the need to re-write the co-ordinate
information. This is because the handling of the redirection is undertaken by the client. Client
side image maps allow specialist browsers to handle image maps in their own way, so for
example a non-visual browser may provide a set of links extracted from the image as access
to the source code is possible. This option is not available when a server-side image map is
used and hence the need for additional textual descriptions.

1.6.3. Multimedia
 Provide text transcripts of audio and video presentations. For example, a site containing a
RealAudio [RAUDIO] interview should also provide a transcript. Not only is this essential
for blind users who may encounter problems when using a screen reader due to technical

12

limitations of soundcard output, but also for users who wish to read the page without being
connected to the Internet. RealAudio is a standard used for “streaming audio” where chunks
of audio are sent to the user and re-assembled in the correct order. It is intended to provide a
better form of listening to audio on the Internet than downloading whole files because
listening can begin before the whole “stream” has been received. The nature of the streamed
audio makes it difficult to listen to whilst not connected to the Internet and hence a transcript
may be necessary.

1.6.4. Forms
 Forms are electronic versions of paper fill out forms but can have greater uses. For example,
they may be used to request a brochure from a company, to fill in an electronic visitors’ book,
or to provide a search string to an Internet search engine. Elements available for use in forms
include check boxes and text boxes. A blind user may find it difficult to conceptualise the
layout of the form and cannot see to click into each box provided, hence it is important to
associate labels and tab indexing with all elements to aid the navigation of the form for blind
users.

1.6.5. Frames
 Provide titles for frames so that the user can track location. Provision of access into the site
for non-framed browsers is also necessary. Frames are a feature of HTML that allows
multiple pages to be opened within the same context and communication between the pages
is allowed. This technique is often used to provide a navigation bar and a content window
because following links in the navigation bar can cause the page displayed in the content
window to be dynamically changed. Framed pages can cause problems when a browser and
screen reader are used and this is discussed further in the next chapter.

1.6.6. Scripts, Applets
 Provide alternative content for scripts and applets and ensure functionality or meaning is not
lost when disabled. Scripts and applets are mini-programs that run when an event happens to
a web page. Events include the loading of a page, or clicking or moving the pointer over
some area of the page. Often this is used to generate dynamic content, that is, something
about the page changes when an event occurs. An example of an event is when the mouse
pointer is moved over an image or block of text. The event handler for the specific
“onmouseover” event triggers a textual description to appear on the screen. As the content
changes, this causes problems for screen readers and for blind users who have no visual cue
as to the changing content. It is therefore vital that dynamic content is not required for full
functionality of the page.

 Applets run in an object frame within a page and will often contain dynamic content. Many
pages use Java applets to provide functionality because of their platform independence
provided a Java machine is installed on the client computer. Scripting languages on the other
hand vary dependant on browser and operating system. Java applets also have compiled code
and hence the source code is hidden from the client. The NatWest [NatWest] use this
technology for online banking because it provides a secure way of accessing their databases.
Many text based browsers do not support access to applets and screen readers will often have

13

problems either caused by dynamic content or not being able to access text within the applet
object-frame, similar to the problem with text that is represented by images.

1.6.7. Document layout
 Ensure HTML is used only for marking-up and identifying elements of a document and that
the visual layout of the document is controlled with Cascading Style Sheets [CSS] rather than
misusing HTML tags to provide features. Many designers misuse the heading tags (e.g.
<h1>, <h2>) to provide text of different sizes, which may not convey the true structure of
the document i.e. that an <h2> element is a subsection of an <h1> element. Cascading Style
Sheets provide a page designer with the ability to specify attributes of each element in a page.
Attributes include the colour, size, and typeface of text and even extend to the actual
language the paragraph is written in. An attribute is also provided to change the speed at
which any future auditory browser should read the text. At present, no existing browsers
support this feature.

1.6.8. Verify Hypertext
 Verifying hypertext ensures the underlying document structure is properly formed and hence
specialist browsers that are not as fault tolerant to poor HTML will have no problems
presenting the page. Use the w3c’s validation service [VALIDATER] to perform this task.

1.6.9. Verify Accessibility
 Check ease of use and content of the site with images and sounds disabled, verify the site
using a tool, e.g. Bobby [BOBBY].

1.7. Project Undertakings
 This project aims to analyse and compare two tools available for web access, these tools are
BrookesTalk and Betsie. One of the many problems with adaptive technology is the cost
involved to the user – a screen reader can be very expensive, as can a specialist browser.
BrookesTalk and Betsie were chosen to be evaluated because they present two different
approaches to making existing web pages accessible to blind (and partially sighted in the case
of BrookesTalk) users. Both of the tools selected are free of charge and are able to take
advantage of any conclusions found from this project because of the nature of their
development. Betsie is an open source script and can therefore be modified and BrookesTalk
is under development by a team at Oxford Brookes University, this will have the effect of
allowing blind users to benefit from any conclusions drawn.

 Betsie requires a web browser and a screen reader (it is assumed that all blind users who
currently use PCs will have a screen reader) but other than that is platform independent
because it acts as a gateway for obtaining pages and runs on a web server. BrookesTalk on
the other hand contains a built in speech synthesiser and therefore only requires a Microsoft
Windows based system.

 It can be seen from this that Betsie has the potential to be very cheap for a blind user who
already has a screen reader – a standard free web browser (Internet Explorer or Netscape
Navigator) can be used. At present, BrookesTalk is also free because it is under development
and contains an in-built speech synthesiser.

14

 Much research has been undertaken in the field of speech synthesisers and Braille devices as
well as some research into the use of dedicated browsers or browser/screen reader
combinations. The advent of HTML 4 with its dedicated section on accessibility has also
been the subject of much research and as such, this project aims to look at tools for accessing
pages that do not conform to the latest standards or those designed without accessibility in
mind.

1.8. Report Outline
 The report for this project is structured in the following way, chapter 2 presents the user with
an overview of the two tools to be evaluated including details of their features and operation.
In order for the reader to understand the descriptions of evaluations and results, it is important
to have reasonable background knowledge of the tools, which is provided by chapter 2. An
initial evaluation of the tools was undertaken and details of this, including conclusions drawn
are detailed in chapter 3 of the report. Chapter 4 of the report presents the reader with a
description of the modifications made to Betsie as a result of the findings from the initial
evaluation and includes details of the algorithms used. The last two chapters describe a re-
evaluation of the tools following the modifications made to Betsie and conclusions drawn as
a result of both the evaluations undertaken, and the background research completed
concerning the area of study.

15

2. An Overview of Betsie and BrookesTalk
 In order to understand fully the testing and conclusions drawn over the two browsing tools, it
is important to first understand the features and results using of each tool. This section
describes the ways in which the two tools can aid browsing for blind users.

2.1. Betsie
 Betsie is an “open-source” CGI script written in the language Perl. This means that the source
code for the tool is available to all and hence can be modified. The script runs on a web-
server and acts as a gateway for blind people to access web pages. Figure 1 shows how a
blind user may browse the web using various tools:

Figure 1 Diagram shows how a blind user may browse the web, the arrows indicate requests and the
dotted lines show two-way data flow

 In the context of web browsing, the term gateway means that the user makes web page
requests to the script which causes the server to load, parse and return a more accessible
version of the page to the user, this flow of information is shown in Figure 1 with dotted
lines. Whilst other gateway scripts are available performing similar tasks, Betsie was chosen
because it was specifically designed for presenting information to the blind. Other available
scripts have been written with different applications in mind (one such example attempts to
translate the language of text in a web page).

 Betsie is the result of an attempt made by BBC Digital Media Services to allow blind users
access to the BBC website [BBC]. This may have been as a result of a request made under

World Wide Web

Web Server Gateway Script

Web Page

Specialist Browser Standard Visual
Browser

Screen Reader

Speech Synthesiser Braille Device

Blind User

16

the Disability Discrimination Act [DDA 1995] or simply because the BBC perceived the
need to provide blind users with access to their web site. Betsie aims to present the web-
browser/screen-reader combination with a suitably modified page to provide the user a
meaningful representation of the page being accessed. Past research, including that done by
Haywood [1997] has shown that the combination of a screen reader and standard browser
often has problems in reading out a page. This has been attributed to several factors, firstly
that the screen reader can only read text presented on the screen and hence any visual
distinction such as frames between boundaries is difficult for a screen reader to correctly
recognise or that text presented as part of an image cannot be accessed. Screen readers also
suffer from the same boundary problems when tables are used. Many screen readers do not
recognise column boundaries when reading a page and an example of how a screen reader
may be confused by a frame boundary is described below.

Figure 2 A screenshot of a web page that uses frames, the scroll bar can be noted to be a visual cue
splitting two windows into distinct text areas

 In Figure 2, the visual cue of a line and scroll bar between the two pages indicates that the left
hand side is a navigation bar of some sort whilst the right hand side is text content and that
the two sections are distinct and discrete areas of text. A screen reader will not recognise this
visual cue and hence may instead read across the whole line in one go resulting in the
following example output, “2000 Product > Bonne Marmite is closed…”. Betsie attempts to
solve this problem by modifying framed pages so that each frame is layered horizontally
across the screen thus avoiding the problem described above. It should be clear how the same
problem could occur when tabled data is presented in a web page – the screen reader cannot
use the visual cues of lines or justification to distinguish columns and as such reads across
whole table rows in one go. Again, Betsie provides a solution for this problem by splitting
each column of a table onto a separate line on the screen thereby separating each cell in the
table. Not only is this important for accessing real data tables but also in providing the user
with a representation of pages when tables have been (incorrectly) used for the layout of the
page rather than simply to present data.

 It has already been discussed how the use of images on the web has increased and how means
of providing textual descriptions is available, Betsie is written to take advantage of this and
instead of loading pictures it simply returns the text specified. Not only does this provide the
user with an understanding of the image (where available), it also reduces download time
because image data does not require loading.

17

 It was stated earlier that Betsie was not specifically designed for partially sighted users, rather
for blind users. Despite this, it still provides support for partially sighted users as a visual
representation is presented to the user that read by the screen reader. To aid partially sighted
users in using their available sight with screen reader assistance, Betsie converts all text to be
displayed with larger characters and could easily be modified to represent the page using high
text-to-background contrast. High contrast pages are generally found to be easier to read by
partially sighted people because the difference between text and background is more easily
noticed. In order for Betsie to provide larger text displays for partially sighted users, all
references to the tag are removed and a new tag is placed at the start of the
page resulting in the whole page being displayed in the same, large font.

 Many web pages use forms to allow users to pass information to the web-server, this may be
to provide data for a search query or for a guest-book where users can leave comments. The
data passed from a form has to be handled in someway, this may be by triggering an email to
be sent, starting a program on the client computer, or executing a script or program on the
server. Whilst scripts and programs are different in the way they work, in terms of how Betsie
accesses them, there is no difference. If a script is executed on the server then data from the
form is passed to it using one of two methods called “get” and “post”. In effect, the result is
the same but are different in practice, the “get” method encodes the passed data into the URL
of the script being requested and is obtained from the script accordingly whilst the “post”
method encodes data into a variable that is passed as part of the request for the script. In order
to display the output of any scripts through Betsie, the script has to be called using Betsie.
Passing data from the form to Betsie does this, and then the script is loaded from Betsie using
the same mechanism as for any page. In order for this to function properly, data passed has to
be forwarded to the script in the same way it would be if Betsie were not in use and thus
Betsie appends data to the called URL if the “get” method is used or appropriately encodes
the data into the document request if the “post” method is used.

 The web is navigated by following links between documents, these can take the form of
absolute links or relative links. An absolute link is that where the web-server and page or
directory is specified whereas a relative link will only specify the directory or page and not
the server. Both forms of link have their advantages, for example absolute links allow access
to web sites that are not hosted on the local server whereas relative links allow sites to be
moved between servers without the need to change every link each time the site is moved.
Further to this is an optional tag that can be added to a page that specifies the base URL to
which all links should be appended to form the whole link, this is the <base> tag. In order
for blind users to navigate between pages and for all pages to be displayed through Betsie, the
Betsie script must look for links in each page and modify them so that when a link is
followed it is loaded through a request to Betsie. In cases where an absolute link is specified,
this simply involves appending the URL to Betsie to the front of the link using the correct
syntax to join them. This is more complicated when relative links are used and when the
<base> tag is included. These cases are handled in the following manner. If the <base>
tag is used, Betsie has to calculate what the current base URL is and then append the URL of
Betsie to it appropriately. When relative URLs are used, Betsie calculates the web-sever URL
and directory structure, when required, from the URL that was used to load the page

18

containing relative links. Once the Betsie enabled URLs are calculated, they are substituted in
place of the original link.

 The task of link conversion is slightly simplified in that not all links need to be modified.
This is because Betsie checks if the linked page is within a list of “safe” domains. If the page
URL is not listed as safe, then the original link is left intact but with the word “External”
added to indicate the page loaded by following the link will not be Betsie parsed. This feature
is implemented because Betsie was originally written for the BBC website [BBC] and
indicates that Betsie is not tested as safe to use on pages not within the BBC domain. Some
organisations may also require a notification by way of disclaimer concerning to the content
of web pages that are not under the control of that organisation, this feature provides a
convenient way to indicate this when using Betsie. When installed on a web-server, it is
possible to modify the list of “safe” domains to allow a specific domain or indeed any domain
to have linked pages parsed by Betsie.

 It was discussed earlier how certain types of object that can be included in a web page, for
example Shockwave Flash, may cause problems for screen readers. Betsie provides little in
the way of technique to avoid this problem other than to remove images included in a page
using the <object> tag (rather than the usual tag) as well as modify links within
the <object> tag to be loaded using Betsie.

 In the previous chapter, it was discussed how Java applets whose content may be dynamic or
inaccessible to screen readers and scripting languages such as JavaScript, often used for
dynamic changes in a page, can cause problems for blind users. To counter this, Betsie takes
several steps in an attempt to make the page more accessible. Firstly, Java applets are
removed from the page, not only does this stop the problem of inaccessibility but also reduces
the complexity of Betsie. This is because a Java applet has to be downloaded and run on the
client computer. In order for Betsie to properly support Java applets, it would have to detect
the presence of Java in a page and then make a second request to the web-server for this data.
The Java applet data would then be loaded and returned to Betsie. Once received, Betsie
would have to forward the data to the user knowing that it was an applet i.e. without parsing
the data received as if it were a web page. Again, this not only helps blind users with page
accessibility but also reduces the time for the page to be downloaded.

 Whilst Betsie totally removes Java applets from pages, it does not remove all scripting
language functions. There are two potential ways in which a scripting language can be
utilised within a page, these are functions that are defined within the header information page
(enclosed in the <head> tag) and script items that form part of the body (within the <body>
tag) of the page. Script items that are located within the body of the document are generally
only executed when the page is loaded. An example of this is a script item to show the date
the page was last modified obtaining the information from the file date rather than a text area
that the page maintainer has to remember to update each time a change is made. As script
items within the body do not generally alter the content of a page once loaded, Betsie leaves
them intact. On the other hand, script items outside the <body> tag are generally functions
that are called dynamically as the page is being viewed in response to events occurring on the
page. Some example events that may occur are, the mouse being moved over an element of a
page, or an item being clicked as well as the page loading and page close events. Betsie

19

therefore removes all references to event handlers (the action to take on events is an attribute
of a tag and may include a call to a function or a line of script) as well as scripting language
code that is outside of the <body> tag. This approach to handling scripting languages may
not be perfect, but in the majority of cases is effective in producing pages that are more
accessible.

 The general presentation of web pages is not the only aspect of web browsing that Betsie
attempts to make more accessible for blind users. Anyone who has browsed the web for any
length of time will know the frequency that pages are not found, caused by both incorrect and
outdated links and pages being updated. To help blind users in the event this happens, Betsie
replaces the commonly seen “error 404 document not found” error page with its own error
page that attempts to provide the user with additional information including the URL of the
page being accessed providing a blind user with information sighted users obtain by looking
at the address entered. Betsie also attempts to keep the user informed about other errors that
may have occurred including socket errors – a socket is opened by Betsie to a web-server to
load pages – which may occur for a variety of reasons from a fault on the server running
Betsie to other network errors. Betsie also provides an error message in the event of a
timeout, this is where the web-server containing the requested page fails to respond within a
certain amount of time, this may be of use to some users.

 A further underlying feature of Betsie is its ability to follow redirects to different pages. A
redirect may be triggered by two means either from the server or from within a page. A
server-side redirect is generally not noticed by the user but Betsie must be able to act
appropriately to server redirects in order that the correct page is obtained. A web page
redirect is subtly different in that it may cause the current page to be reloaded after a period
of time or a different page to be loaded. The code for this to occur is stored within a web page
in a <meta> tag which also enables additional document information to be coded into the
<head> of a web page. The HTML form of redirect is no longer recommended by HTML
4.01 [HTML4.01 1999] because some browsers do not support the feature. In order to stop
any page Betsie loads from refreshing automatically, the tag is removed then any re-directs
scheduled to occur in less than 99 seconds are followed, and the resulting page displayed to
the user.

2.2. BrookesTalk
 In comparison to Betsie, BrookesTalk is a different approach to web accessibility, rather than
being a ‘gateway’ layer for a blind user to use an existing browser, it is a specialist browser
that handles all document requests and the presentation of information to the user itself. This
specialist browser also removes the need for a separate screen reader application because a
text to speech engine is included with the package. The supplied speech engine is a part of the
Microsoft Speech Development kit. At present BrookesTalk is in development and is
available as a free piece of software which allows a blind user to access the web with no cost
implications other than a computer fitted with a soundcard, unlike Betsie which requires a
screen reader. It should be noted that this restricts the output of BrookesTalk to auditory only
i.e. output to a Braille or other tactile device is not possible.

 BrookesTalk presents the user with two windows when launched, the upper one presents the
user with a large font version of the textual information being read, the colours for the

20

background and text can be adjusted to allow the user to modify them to suit their own needs,
but defaults to black and yellow – a high contrast display. This window helps visually
impaired users who do have limited sight to access the page without the need to rely solely on
auditory output. The lower of the two windows presents a full visual representation of the
page as would be seen in a normal web-browser. Again, this enables partially sighted users to
access the visual part of the page without some of the potential problems described above
when a traditional browser and screen reader are used – this is because the browser and
speech engine being used are specifically tied together and hence information about the
document structure is known, unlike when using most screen readers. This capability of the
browser has enabled certain special features to be implemented.

2.2.1. Features of BrookesTalk
 The standard browsing using BrookesTalk has basic functionality like Internet Explorer may
have, but is limited in its capabilities, for example, files other than HTML and images cannot
be retrieved and ‘plug-ins’ to support further technologies are not available. Java and
JavaScript are also not supported. A problem with forms also exists but this will be discussed
later. BrookesTalk does provide the means to move forwards and backward pages as is
available in, for example, Internet Explorer or Netscape Navigator.

 In addition to basic functionality, BrookesTalk provides some ‘specialist’ features that have
been the subject of much research at The Speech Project [Speech Project], a description of
these features follows. Once a page is loaded, BrookesTalk processes the contents of the page
in order to extract various pieces of information to provide specialist features designed for
blind and partially sighted people that are not found in conventional browsers. Many of these
features have been implemented in order to ease the cognitive load of a blind user whilst
browsing the web. They are designed to help the user obtain a conceptual [Zajicek & Powell
1997] model of the page. This is the ability to understand the structure and content of the
page without the visual cues provided for sighted users. BrookesTalk itself is a development
of an earlier research project investigating conceptual models that resulted in the software
WebChat being developed.

Headings Menu
 Pages that are well structured will include headings for sections of a document, for example,
a chapter in a book may be called, “The Light Fantastic”, but within the chapter may be
subsections such as, “The Sending of the Eight”. If a page is properly designed and uses
HTML tags correctly, this would be structured as <h1>The Light Fantastic</h1> and
<h2>The Sending of the Eight</h2>. This shows how the text enclosed by the <h2> tag is
a subsection of that within the <h1> tags. The headings menu can be made to read all
headings or used interactively, pressing return during interactive reading sets the current
position to that heading where reading of the page can be continued.

Links Menu
 A menu is provided which lists all available links in a page in order. The text provided which
forms the link is read rather than a URL to guide the user as to the result of following the
link. Links can all be read together or can be read out individually in an interactive manner
where pressing return will result in the link being followed.

21

History Menu
 The history menu acts as a collection of links to previously visited documents and reads out
the URL of each document. The history list is only retained during the current session. As
with the links menu, by reading the URLs one at a time, the document can be retrieved by
pressing return.

Document Keywords
 In order to help a blind user quickly grasp the contents of a page, a list of keywords is
provided. This list is generated by parsing the contents of the page. Keywords are then
calculated according to frequency of use within the document. The keywords that are listed
are those that are the highest scoring for each page and no association with previously visited
page is made even if the pages are within the same domain.

Page Abstract
 BrookesTalk provides the user with an abstract of the page being accessed. Whilst keywords
can help a user understand some of the content of a page, single keywords were perceived to
be out of context and hence the usefulness of them alone was called into question. An
abstract or abridged version of the text was therefore added to help with the understanding of
the page content.

 The algorithm used to generate the abstract is reasonably complicated and hence is only
briefly discussed here. A more in depth description of the algorithm including an example
relating to BrookesTalk is discussed by Zajicek, Powell and Reeves, [1998] in “Orientation
of Blind Users on the World Wide Web”.

 Effectively the algorithm looks for regularly occurring groups of words, in this case groups of
three words, also called “tri-grams”, and then allocates a score to each tri-gram before
selecting sentences with the highest scores to be included in the abstract.

 In order to minimise the diversity of tri-grams found through grammatical differences, stems
of words were used when looking for tri-grams rather than whole words. Stems are generated
by removing bound morphemes from the ends of words. “Bound morpheme” is a linguistic
term and refers to chunks of words that can only exist as part of another word and include for
example, “ing”, “ed”, “es” and “’t”. These are all endings of words that can change because
of grammatical requirements and therefore need to be ignored when generating tri-grams as
the ultimate meaning of the word group is the same – runs and running are spelt differently
because of grammatical requirements but are both forms of the verb “to run” and hence
convey the same meaning. It should be noted that English is a poor language morphologically
and that other languages, for example, Arabic have many more bound morphemes. In other
languages, bound morphemes may not only be attached to the ends of words but can also be
split within a word. This technique of abstract generation is therefore only reliable for the
language it has been set-up for, in this case, English.

 Once tri-grams have been collected, each is allocated a score relating to frequency, number of
keywords in the tri-gram and the number of content words contained in the tri-gram. Content
words are words that add to the meaning of the sentence rather than being required because of
linguistic requirements, some non-content words are “and” and “is” which do not add to the

22

meaning of a sentence but merely join words together. Tri-grams are then ranked according
to score and appropriate sentences selected.

Page Summary
 As BrookesTalk has access to the source code of the web page being accessed, it is able to
generate a summary of the page. This is available through one of the menus and provides the
user with key information about the structure of the page. This information includes the
number of words – a blind user cannot look at a page visually and see if it contains lots of
text or is just a collection of images. A count of the number of headings and extracted
keywords is also generated as well as the number of ‘META’ [HTML4.0 1998] keywords
that are encoded in the document <head> section.

Help Information
 At any time, a user may hold the CTRL key and press another key that will prompt
BrookesTalk to give auditory, context sensitive help to the user.

 A set of configuration tools is also provided to allow the user to adjust the speed of reading
and the voice used in order to cater for individual needs.

2.3. Summary
 After reading this section of the report, the reader should be familiar with the features and
their uses of each of the two tools, Betsie and BrookesTalk. The next section of the report
will look at an initial evaluation of the tools in order to find problematic areas and to look for
potential improvements that could be implemented.

23

3. Initial Evaluation
 In order to assess potential areas for development, an initial evaluation was undertaken to
look at the usability and usefulness of Betsie and BrookesTalk. The evaluation consisted of
two parts, personal observations of the software, and a set of tasks undertaken by several
users. The external users help to discover any particularly difficult problems or particularly
good features. This chapter presents the initial evaluation and the results of it.

 It should be noted that this evaluation was intended to identify problems and advantages of
each of the tools and hence only a small number of people were involved. An effect of using
a small quantity of people is that objective, potentially inaccurate results may be obtained. In
this case, this can be discounted because the object of the evaluation was to find potential
problems with the tools and to get ideas on development potential for the two tools.
Development ideas for Betsie were of special importance because of the ability to
immediately implement and test them.

3.1. Personal Observations
 In order to evaluate the software with other users effectively, I thought it necessary to
familiarise myself and become comfortable using the tools so that I may provide help and
understand problems users may encounter. Doing this also provided me with an early insight
into potential problems that I could then include in my test for other users to see if they also
had the same problems, as well as to identify immediate and potential future areas of
development. Items noticed as needing immediate development applied only to Betsie as the
source was available for changes to be made and were only those considered necessary to
proceed with further evaluation.

3.1.1. Preparing the tools for use
 The tools are designed for blind users and this project is aimed at evaluating their
effectiveness when used by blind users. In order for a blind user to use either tool, installation
of software is required and as such, a description of the installation process follows. Ease of
installation is an important observation to make when assessing the usefulness of the tools for
blind people because many installation programs do not give anything other than visual
representations during installation.

Installation of the Betsie
 In order for a blind user to use Betsie, some degree of software installation is required. For
the majority of users this will purely be the installation of web browser and screen reader,
and, as these will vary from user to user and ease of installation from application to
application, will not be discussed within this report. Once a browser and screen reader are
available to a blind person then nothing further needs to be done other than knowing the URL
of a server hosting the Betsie script.

 Betsie is a server-side script and hence requires a web server and sufficient permissions on
that server to install a Perl script onto it. It is fortunate that all Computer Science students at
the University of York have access to a file/web server and have the ability to install server
scripts. This meant I was able to install a local copy that could easily be modified and that did

24

not rely on external hardware or other factors over which I may have no knowledge or
control.

 The installation of Betsie was found to be simple on the web-server because little is required
in the way of configuration and customisation. Elements of the script that do require
customisation are clearly marked. In fact, the most difficult part of installing Betsie on the
student fileserver was finding the location of Perl 5 – the version of Perl installed in the
default Perl location was version 4 and Betsie contains methods that are only supported in
Perl 5.

 Below is shown a list of variables that require customisation for the local web server (other
than the path to the Perl installation):

$pathtoparser = “http://atlas.cs.york.ac.uk/~sjt104/cgi-bin/$name”;
$parsecontact = “sjt104\@york.ac.uk”;
$localhost = “atlas.cs.york.ac.uk”;
@safe = qw (york.ac.uk virgin.net ac.uk);

 The first of these variables $pathtoparser gives the URL of the script. This is used when
modifying links within a document to allow followed links to be loaded using Betsie. The
$parsecontact variable stores an email address to be included in error messages
generated by Betsie in order to allow users to contact the person responsible for Betsie on the
particular web-server. Note that the @ symbol in the email address is escaped (prefixed by a
“\”), this is necessary because of the syntax of Perl.

 The nature of decoding URLs passed to Betsie requires that the script knows the name of the
server it is installed on and this is specified in the $localhost variable.

 Finally, an array of domains over which Betsie is safe to use is specified in the @safe
variable. The domain list may contain partial domains as well as fully qualified server
identifiers. This list of domains is used when links are parsed in order to identify links to
mark as external. This feature was discussed in the previous chapter and can be used to mark
pages that have not been tested as safe with Betsie and also to identify that following the link
will take the user away from the current web site to a different one. Any link that does not
contain any of the safe-listed domains will also not be loaded using Betsie. The example
given above indicates that anything within the york.ac.uk, virgin.net and ac.uk
domains are safe to be parsed. Some accepted web-server names would include
kipper.york.ac.uk, www.cs.york.ac.uk as well as www.bham.ac.uk. It should be noted
that repeated domains cause no problems as can be seen from using york.ac.uk and
ac.uk – the York domain would be included in the more general ac.uk domain but was
specifically included to allow easier removal of non-local computers during testing.

 It is possible to allow any domain without having to include all domains in the list of safe
domains by modifying the sub-routine called safe. This should be changed to be “return
1;” which has the effect of saying all URLs passed to it are safe to be parsed using Betsie.

 A further variable $maxpost is also provided to be modified, this can usually be left
unchanged but is included to stop hackers attempting to overload a web-server by sending
excessive data in a post request. This works by limiting the amount of data that can be
accepted. Many web-servers have a default limit to the amount of data permitted when a post

25

request is received and hence the $maxpost only needs to be modified if the server-default
is a lower value than that specified within Betsie.

 Once Betsie has been configured for use on a server, all that requires to be done is that it be
copied into a directory with permission to execute scripts and that the script be set to
executable. The technique to do this depends on the web-server and hence it is suggested that
a competent and knowledgeable user of the server perform this.

 It can be seen that whilst Betsie is easily configured for use, it is unsuitable for installation by
a non-computer literate person. Once installed on a web-server, no further installation or
configuration is required in order that any client may use Betsie for web browsing. The only
installation required on behalf of a blind user is as discussed above – a screen reader and web
browser, which would be required for web browsing in any case.

Installation of BrookesTalk
 BrookesTalk is different from Betsie because it runs solely on the user’s computer and
requires no resources on external computers. In fact, BrookesTalk only requires that the
Microsoft Windows operating system be installed on the user’s computer.

 The installation process for BrookesTalk is documented in the manual that is distributed as
part of the package. The manual is aimed at partially sighted users as it is printed in
reasonably large sized text. Unfortunately, this is of little use to a blind user and hence a
sighted user will be required to help with installation of the software. It should be noted that
an electronic version of the manual is included on the CD and providing a blind user is aware
of this could load the file and access the information with a suitable screen reader. In order to
help with installation for blind and partially sighted users, it may be advantageous to make
use of the “auto-run” feature of Windows. Auto-run is part of the operating system that
automatically runs a specific file in a CD’s root directory whenever inserted into the CD
drive. This could for example be used to either automatically start the installation process or
to load the text file containing the instructions for installation.

 The installation process directs the user to “click start, then run” and to then run three
separate install programs. If the directions are followed as described in the instructions, the
user will encounter problems with running the first two install programs. This is because the
actual programs are located within a sub-directory of the CD and hence the person installing
will have to find the correct path to the install programs in order to complete the first two
steps of the installation process.

 BrookesTalk is built around Microsoft speech tools and the first installer that is run installs
the speech development kit. This involves three steps, confirming that the user accepts the
licence agreement, adjusting the install location and finally responding to the server
confirming installation is complete. After installation of the speech engine, installation of a
text to speech engine is required. Once executed, the install program simply asks the user to
confirm agreement of the licence. The program then installs and completes with no further
user interaction.

 Finally, the user is required to install the BrookesTalk browser and the program to install this
does run from the location specified in the manual. During install, the user is presented with a
series of messages to which a response is required. Firstly, a welcome screen to which the

26

user merely has to acknowledge the licence agreement, this is followed by a prompt to enter
user information. Default values are pre-filled into the form. These values are extracted from
the Windows registry and relate to those specified during Windows installation. The next two
prompts ask the user for an installation directory and a folder under which to place
BrookesTalk in the Start-menu. Once again, default values are specified. A confirmation of
all the details specified then follows before installation begins. During the install process, an
error message is generated. This is however, documented in the manual provided. On
completion of installation, some icons are created in the Windows Start-menu. The window
in which the icons are generated remains the attention of focus rather than returning to the
install program for the user to acknowledge completion of the install process.

 Once the three steps of the installation are complete, the user no longer needs access to the
CD and can run BrookesTalk by simply selecting it from its location in the Start-menu.

Summary of the installation process
 Clearly, the two tools have vastly different mechanisms for installation, the first may require
no interaction from a blind user – they may simply need to load their screen reader and
browser and then enter the URL of a server that provides Betsie. On the other hand, a blind
user may need to install or request that Betsie be installed on a web-server. For the majority
of users the former is the most likely case and hence from the point of view of a blind user,
they could immediately start using Betsie to browse the Internet without the need to do
anything.

 BrookesTalk, on the other hand, requires interaction from a user to install the application and
from the description detailed above, it is clear that this process may be difficult for a blind
user. This is because they may not be aware of the location of the electronic version of the
installation guide stored on the CD and hence assistance from a sighted user will probably be
necessary. It should however be noted that the version of BrookesTalk used is an evaluation
version and hence any formal release would probably be equipped with a better install
application. It is hoped that any formal release would not require the user to run three
separate programs, some of which have to be located from sub-directories on the CD.

 Suggestions for improving the install method of BrookesTalk are as follows:

• Provide a better install program so that only a single application needs to be executed to
complete installation;

• Include an auditory guide to the installation process – when installing the Jaws [JAWS]
screen reader, audio cues helped guide the installation process. If a blind user has no
screen reader then they may be unable to access the information provided in each
stage of the installation;

• Ensure blind users can access installation instructions. This could for example take the
form of including Braille instructions or automatically loading a file containing
instructions when the CD is installed for use with a screen reader. Automatically
beginning installation when the CD is inserted in the drive is also another viable
option.

27

 By studying the design of an installation package specifically aimed at blind users, for
example that for Jaws [JAWS], and implementing some of the mechanisms used, blind users
should be able to use the tool rapidly and with greater ease. Some features of the Jaws install
package worth noting for potential inclusion are the computer-auditory guide to installation
and the cassette tape that accompanies the user manual and describes the installation process.

3.1.2. Applying the tools
 Whilst being able to install the tools is important in order to use them, it is also a process that
only requires doing once per user. Much more important is the task they were designed for –
making the web more accessible to the blind and, in the case of BrookesTalk, partially
sighted. The following details some of my observations of the tools from experience using
them. This information is based on personal familiarisation of the two tools. It is important to
note that as they are based solely on personal experience the view of the software is
objective.

Comments on Betsie
 On first beginning to use Betsie, it was noted that certain URLs caused Betsie to generate an
uninformative error message. By analysing the code, it was determined that the cause was a
result of checking input URLs for valid characters. The URL that was requested contained
the character “~” as is used by many web-servers to indicate unofficial or user web pages.
The regular expression used to check passed URLs was modified to include allowing “~”.
The error message generated was also updated to include an indication of what the error
really was.

 It was noted that whilst browsing documents where the content was already known or when
pages were short, it was easy to quickly grasp the context of the pages. In cases where pages
were being visited for the first time, the context of the page was found to be difficult to grasp.
This was worsened when long pages were loaded as well as pages that originally contained a
table to provide a navigation bar as this was often placed at the top of the page due to the
structure of the table used. This resulted in a list of links to other pages that had to be read
before any useful content of the page was found.

 When framed pages were loaded, no problems were found with the screen reader reading
between page boundaries and navigation was found to be simple. On one page, a client-side
image map had been used and this was found to be unusable because the links within it were
not provided in a textual format.

 A problematic area of Betsie was discovered when password protected documents were
accessed. This only occurred when server-side authentication was implemented rather than
form based authentication. In server-side authentication, the server sends a specific HTTP
code to the client browser, the client browser interprets this and prompts the user to specify a
username and password. When Betsie is used to access password protected documents, it
receives the HTTP codes from the web-server rather than the browser. Betsie considers all
unknown codes (i.e. those not stating document returned OK) as an error and therefore does
not prompt the user for a username and password. This means that Betsie is unable to access
the requested page and hence cannot return it to the user.

28

Comments on BrookesTalk
 On first use of BrookesTalk, I noticed that the default voice speed was excessive and after a
small amount of time configuring the software, a more comfortable speed was found. The
process of doing this was found to be simple using the inbuilt menu and voice assistance was
provided whilst accessing the configuration screen. This was found to be helpful with non-
visual access to the menu.

 Several navigational issues were found to be difficult, firstly from the perspective of a visual
(and presumable partially sighted user), I discovered that typing a URL into the address box
in BrookesTalk and pressing return did not cause the page to be loaded. This was unexpected
because personal experience of using other web browsers has always allowed this technique.
Instead, the F1 key had to be pressed and the URL entered into the dialogue box presented.

 It was noted that whilst loading a page, I was kept ‘up to date’ with information about the
state of loading by being told the amount of data loaded and the total amount left to load.
This was found to be disconcerting when told “loaded 29k of 28k” and loading was assumed
complete when “loaded 30k of 30k” was said. Often further data was then loaded. Informing
the user of the program’s state is vitally important, especially if the user cannot see text as it
arrives at the computer, however I would suggest that an alternative to the current method
could be implemented.

 The content menus (e.g. list of links, summary, etc…) that are provided in BrookesTalk were
found to be useful in some cases. The different ways of accessing them – selecting to either
read the contents or use the ‘active’ version (for example the links list can simply be read or
read in an active manner where pressing return follows the link) was found difficult at first.
When pages contained large amounts of information, I found the summary to be useful at
times. Often I found that a search within the page text would have been useful, especially if I
thought the page to be relevant and wanted to look for a specific topic within the page.

3.2. User Evaluation
 In order to obtain a wider perspective of the two tools, a user evaluation was also conducted.
The idea behind this was to draw on ideas and comments of other users and to identify further
problems with the tools not personally experienced. Two people were asked to participate in
the evaluation, one using each of the tools. Each was given a set of tasks to complete that
were designed to evaluate the tools in terms of their use in non-visual browsing and potential
problems drawn from my experience. This technique should ensure any problems I
encountered were not exclusive as well as highlighting further problems. The technique also
allows simple testing into how well the tools perform when some of the common problems
with accessibility (as discussed earlier) are presented to them.

 The evaluation asked the users to perform a series of tasks aimed at finding problems and
useful features of the tools as well as assessing their use as accessibility tools for blind users.
After completing the tasks, a questionnaire was given to the users to obtain their comments
and views. Whilst the use of sighted users does not fully represent blind users, the results and
conclusions drawn should still be valid as the aim of the evaluation is to identify problems. It
could be assumed that blind users would also experience any web-accessibility problems
experienced by sighted users. The use of sighted users may also bring out further ideas for

29

development based on existing experience of browsing – the idea of the tools is to provide
blind users with improved web accessible. Sighted users will have existing and potentially
different experiences of the web and hence ways in which sighted users perceive and
conceptualise pages may be useful to include in a tool for blind people.

3.2.1. Techniques to test the tools
 During early research, I was informed of a project several years ago that was called “Battle of
the Browsers” which aimed to evaluate the effectiveness of both specialist and common
visual browsers when used for non-visual web access. It was considered that similar
techniques may be useful in testing Betsie and BrookesTalk and hence research into this
began. Unfortunately, no information could be found despite extensive web research and
postings to various mailing lists read by blind users. The mailing lists used were “blind-L”, a
mainly American based list, and the British mailing list “BCAB”, that is aimed at blind
computing professionals. Neither of these lists generated a suitable response and people
interpreted “Battle of the Browsers” to refer to the competition between Netscape and
Microsoft to develop a better, more feature rich browser which occurred during the late
1990’s. It was therefore decided to base the evaluation on some common ways that user
interfaces are tested – by providing a set of tasks followed by a user debriefing which took
the form of a questionnaire.

Evaluation Tasks
 Initially when creating the list of tasks, it was thought that a sample set of web pages could be
created, this was however rejected in favour of evaluating the tools against real web pages.
This was decided because the tools are designed for use on real web pages that may not
contain accurate HTML code and it was thought that writing web pages containing realistic,
common errors would be a difficult task. It was therefore decided that the evaluation tasks
should be centred on real web pages. The choice of page was important in order to ensure that
the volunteers did not already know the information being sought in the tasks. It was decided
after visiting various web sites that the Birmingham University web site be used. The
volunteers used to undertake the task would be unlikely to have an in depth knowledge about
the University and it’s website content but would have sufficient experience of a University
based web site from the use of YorkWeb [YorkWeb]. It was assumed the volunteers would
be from the University of York and have some knowledge of the Internet.

 The design of the tasks and questionnaire took place in parallel in order to ensure the data
retrieved from the questionnaire was relevant and that the tasks would obtain data and test
certain features of each tool. A summary of the aspects of the tools to be tested follows. Each
item noted has a corresponding task that the user was asked to complete (see Figure 3 for the
full list of tasks).

Navigation
 The user should be able to adequately move between pages using links. This is evaluated by
several of the tasks where the user has to move to different sections of the web site.

Retrieval of textual information
 The majority of web pages present information in a textual form, it is vital that users are able
to retrieve data from blocks of text without becoming disorientated and frustrated when large

30

amount of text are presented to them. Tasks 7 and 9 require the user to extract information
from paragraph text. Task 7 requires data extraction from a mixed media page (the page
includes both paragraphs and tables), whereas task 9 is based on a page containing dense text.

Tables
 Extraction of information from tabulated data is vital because many web pages now
incorporate this feature for data presentation. Tasks 6 and 8 ask the user to find data from a
table.

Images
 Ability to understand the content of an image where ALT text is provided. This is vital
considering it is the only means a blind user can access image-based information. This is
tested by task 2 in which the user is asked to describe what photos are displayed on the page.

Forms
 Forms are widely used on the Internet to allow data to be sent from the user to a web-server.
They are used for applications such as guest-books and search engines, users should therefore
be able to access this technology. Task 10 requires the user to perform a search using a form.

Non-HTML pages
 Many sites incorporate information not stored in a traditional HTML page. Users should be
able to cope reasonably well in such cases. Task 11 requires the user to navigate through a
directory listing. In a visual browser, this would be navigated in the same way as an HTML
page containing links. This task checks the availability of similar navigation when using non-
visual access.

 Tasks

 Thank-you for you assistance, please complete the following tasks that will help evaluate the effectiveness of two web-
access tool designed for blind people.
 Remember that it is not you being assessed but the software and that all results will remain anonymous.
 The evaluation is based around Birmingham University’s website. Some tasks may be difficult and other may be easy, if
you are having problems skip to the next task or ask for assistance.
 1. Find the page within the Undergraduate Prospectus on the City of Birmingham.
 2. What photos are on this page?
 3. Return to the main University page.
 4. Find the list of departments.
 5. Find the Department of Computer Science and load their web page.
 6. Find the internal phone number for the departmental library.
 7. What is the dialling code for external access?
 8. Find the post of Mr Bertram Dandy.
 9. What bus number services the Vale Halls of residence from the Department of Computer Science?
 10. Find the technical report archive and find the date and authors for the report “Interaction between object and space
systems revealed through neuropsychology”.
 11. Return to the Department of Computer Science main page and find their information for students. Find the name of a
key text for the course “Human Resource Management”, module code “comm273”.

Figure 3 Tasks the two volunteers were asked to undertake

 Not only does the collection of tasks in Figure 3 require the user to undertake specific tasks.
Also required is some general web-access skill. This includes the ability to navigate
successfully between pages and also to extract and note required information in the same way
that a visually orientated user might.

31

 In order to obtain feedback from the users, as well as the tasks outlined in Figure 3, the users
were also asked to complete a questionnaire.

Evaluation Questionnaire
 Figure 4 shows the questionnaire that was given to the users. It should be noted that the
questions were structured in a negative format to encourage the user to think about their
answer – not all statements would necessarily be suitable to agree or disagree with. In order
to reduce bias on the questions, two levels of agreement and disagreement were included as
well as a neutral answer. This should cover different user opinions as well as stopping users
from making up an opinion when they really have none. Open-ended questions are also
included at the end in order to allow the user to specify and provide any comments and
thoughts not covered by other questions.

 Questions about the browser

 Thank-you for your time. It would be appreciated if you could spend a few minutes completing this questionnaire. Please
select the answer you feel is most appropriate.
 1. I found it difficult to find the department of Computer Science’s web page

 strongly agree agree no preference disagree strongly disagree
 2. I found it difficult to find the phone number of the library

 strongly agree agree no preference disagree strongly disagree
 3. I found it difficult to find the post of Mr Dandy

 strongly agree agree no preference disagree strongly disagree
 4. I found searching for the report difficult

 strongly agree agree no preference disagree strongly disagree
 5. I found the process of reading a page long and tedious

 strongly agree agree no preference disagree strongly disagree
 6. I found it difficult to get the general idea what a page was showing

 strongly agree agree no preference disagree strongly disagree
 7. I found it difficult to understand what a picture was trying to show

 strongly agree agree no preference disagree strongly disagree
 8. I found links difficult to find

 strongly agree agree no preference disagree strongly disagree
 9. I found navigation between pages difficult

 strongly agree agree no preference disagree strongly disagree
 10. I would be happy to use this browsing method again

 strongly agree agree no preference disagree strongly disagree
 11. I would need more practice using this method before being comfortable using it

 strongly agree agree no preference disagree strongly disagree
 12. What did you like about this browsing method?
 13. What did you dislike about this browsing method?
 14. What did you find hardest?
 15. How could using this browsing method be made easier?
 16. Any other comments?

Figure 4 Questionnaire for initial evaluation of the tools

 Question 1 was aimed at evaluating the ease at which a long list of links could be navigated.
The page with a link to the Department of Computer Science contained such a list in that a
link to each departmental web page was given. The second and third questions were aimed at
evaluating the ease at which data could be retrieved from a table. The tables in question were
of different sizes but located on the same page. The fourth question tested the ability of the
user to use a fill out form and the ability to retrieve data from responses. Questions six, eight
and nine were designed to get an idea of how well the user conceptualised and recognised the
content of each page whereas question seven tested the ability to extract information about
images from a page. Finally, questions ten to sixteen were included to obtain comments from
the users and to find out how confident they felt using the tools provided. The results
obtained from the questionnaire along with conclusions drawn from it are given below.

32

Performing the Evaluation
 An explanation of the reasoning for undertaking the evaluation was given to both users along
with a description of the structure of the evaluation. At this point, it was stressed to the users
that the tasks were not necessarily all possible to be completed and that it was the tools, and
not the user that was being tested.

 The users were then given time to familiarise themselves with the browser before being
supplied with a sheet containing the tasks to be performed in a non-visual manner. Each user
was allowed to perform familiarisation in both visual and non-visual forms and was permitted
to use web pages with which they were familiar. This was to allow the user to become used to
the nature of auditory browsing within a familiar context. A help sheet was provided to each
user that contained the keyboard commands required to perform various operations – this was
important because each user was used to visual web-access using a mouse to perform actions.
The users were able to ask for help at any time if they felt it was required.

3.2.2. Results and analysis
 As only two users were involved in the evaluation, a world representative view cannot be
found. It is however, possible to draw ideas for development and highlight problems with the
tools from the results obtained from this evaluation. Table 1 shows the results from the
questionnaire and an analysis follows below.

No Question Betsie user BrookesTalk user
1 I found it difficult to find the department of

Computer Science’s web page
No preference No preference

2 I found it difficult to find the phone number
of the library

No preference Agree

3 I found it difficult to find the post of Mr
Dandy

Agree Disagree

4 I found searching for the report difficult Not possible Not possible
5 I found the process of reading a page long

and tedious
Agree No preference

6 I found it difficult to get the general idea
what a page was showing

Agree Disagree

7 I found it difficult to understand what a
picture was trying to show

No preference Strongly agree

8 I found links difficult to find Agree Strongly disagree
9 I found navigation between pages difficult Disagree Agree

10 I would be happy to use this browsing
method again

Disagree No preference

11 I would need more practice using this
method before being comfortable using it

Strongly agree Agree

12 What did you like about this browsing
method?

Ability to search Didn’t have to read

13 What did you dislike about this browsing
method?

Difficult to know
location in page, not

know if loading

Loading, can’t tell if
something is on a page

or a link
14 What did you find hardest? Finding the bus number -
15 How could using this browsing method be

made easier?
Didn’t read all links

automatically
Provide a search in tool
and previous page key

16 Any other comments? - Prefer English accent!

Table 1 Table showing results of the evaluation questionnaire

33

 There seems little point in including the answers generated from the actual task evaluation
because the tasks were purely to test certain features and sufficient information can be
extracted from the results of the questionnaire and from observations of the users whilst
performing the tasks.

 The results to questions 1 and 8 indicate that general navigation of web pages using the two
tools was not difficult, and whilst the Betsie user indicated that some links were difficult to
find, when coupled with one of the comments made, this problem could be attributed to the
screen reader not enumerating all links stored in a page. It should be noted how the links list
in BrookesTalk clearly helped the user with navigation.

 The results to questions 2 and 3 give conflicting views. Both questions concerned the
extraction of data from tables. The Betsie user appeared to have no real problems in finding
the telephone number of the library, this was contained in a small table. The user did indicate
some concern over extracting data from the larger table containing the post of Mr Dandy. It is
interesting that the user of BrookesTalk found problems with extracting information from the
smaller table and found the extraction of data from the larger table, where more information
was present, easier. Not only do the opposite views present an interesting confliction, when
coupled with the knowledge that the auditory version of both tables was presented in the
same way, further confliction is apparent. It is therefore probable that the confliction of views
received can be attributed to the different users rather than any specific fault with either tool.
If this is assumed, the fact that the BrookesTalk user may have become used to the nature of
an auditory table when accessing the second table could be an explanation for some of the
confliction of views. The user of Betsie may not have perceived the tables in the same way as
the BrookesTalk user and the fact that both tools present tabular information in the same
auditory way reinforces this. It is therefore accepted that both Betsie and BrookesTalk have
adequate auditory representation of tabular data but that users would need to become familiar
with the nature of the representation.

 The results from question 7 brought out surprising results. The user of Betsie was clearly able
to find and access pictorial information from within the page whereas the user of
BrookesTalk was unsatisfied with the nature of pictorial representation. It should be noted
that BrookesTalk did in fact, in no way present the user with any information about pictures
within the page being accessed, despite the fact that ALT text was available. This indicates
that developments to BrookesTalk remain and that presenting textual representations of
images where available is one important development to implement.

 It should be noted that task 10 was found to be impossible when using either tool. The cause
of this was investigated, in the case of Betsie, it attributed to an incorrect link in the web page
pointing to the script that performed the search. This resulted in Betsie modifying the link to
the script to point somewhere on the server running Betsie. In the case of BrookesTalk, the
problem with the task was that the user was unable to navigate and complete the provided
form when non-visual access was used. It is therefore clear that a problem exists with
BrookesTalk and forms. Once it was apparent that the problem with using Betsie and the
script was attributed to a faulty web page, the script was tested using a different website and
navigation and successful completion of a web form was found to be possible. This problem

34

means that the results from question 4 will be discounted, however a note of the problem with
BrookesTalk should be kept.

 It is clear from the results to questions 5 and 6 that the user of Betsie found conceptualising
pages more difficult than the BrookesTalk user. This was apparent during the evaluation as
the Betsie user became impatient and frustrated because they were unable to quickly identify
the content of pages being accessed. The user noted as a response to question 13 that
knowing where you are in the page was sometimes difficult. The user of BrookesTalk, on the
other hand, was noted to make active use of the menu system when accessing pages and it
could be assumed that their differing responses to questions 5 and 6 may be attributed to this
fact – that they were able to obtain content detail of pages quickly. Despite the Betsie user
complaining about understanding the content of pages, they clearly did not have problems
with general navigation as they were able to find and move between pages quickly and easily
and disagreed with question 9 when asked if they found navigation difficult. It is interesting
that the user of BrookesTalk, whilst finding the content of pages easy to understand,
complained about navigation. It was noted that the user used the links list for much
navigation. When the user considered a page irrelevant, they found it difficult to return to the
last visited page and even commented about this when asked what was found hardest. It was
noted from the actions of the user that they tried a common “back” keyboard shortcut (CTRL
+ left arrow), but that this was found not to work. The user therefore resulted to traversing to
previous pages by using the history menu. It was noted that the user found this difficult, and
said that they attributed this to the fact that the history menu listed URLs rather than page
titles. It is important to note that BrookesTalk does provide a key to move back a page,
however it is not the same as used in many popular visual browsers and hence the user’s
difficulty in performing the action.

 Both users indicate that they would need additional time using the browsers before becoming
comfortable with them and the Betsie user notes that they would not be willing to use the
method again. This would generally be expected when people who are used to visual web
browsing are asked to perform non-visual, auditory browsing. This is because a certain
degree of adjustment is required to transfer from visual to non-visual web access. It was
noted from conversation with the users after the evaluation had been completed that one of
their reasons for answering the questions in the way they did was because they were used to
visual browsing and that the transition to auditory browsing would be difficult. It was
interesting to note from the conversation with the two volunteers that they thought blind users
would have less difficulty using the tools and would probably be confident using non-visual
browsing more quickly if not used to being able to build visual conceptualisations of pages.

3.3. Summary
 From this evaluation, it is clear that several points about the two tools’ representation of web
pages are worth noting. These key points are discussed in the following section.

 Images were sufficiently represented when Betsie was used to access web pages. It was
however noticed that when browsing using BrookesTalk, images were not represented in an
auditory format. This is clearly not acceptable for blind users – partially sighted users would
be able to use the visual representation BrookesTalk provides to access image information.
This does not remove the problem for blind users and hence implementing an auditory

35

version of the ALT text provided as an attribute to the tag is an essential
improvement for a future BrookesTalk release.

 It was noted that when long or unfamiliar pages were presented to the Betsie user, they often
became frustrated and commented on the inability to quickly grasp the content of pages.
Whilst this may be attributed to the user’s transition from visual to non-visual browsing, the
degree of frustration was not experienced by the BrookesTalk user, who was noted to make
use of the specialist menus in BrookesTalk to access internal page information. Some form of
conceptualisation based on the ideas in BrookesTalk being integrated into Betsie is one area
that provides potential and scope for development.

 Whilst not perfect, the representation of tabular information was found to be adequate when
both of the tools were used. No suggestions for development in either tools in the way each
presents tables has become apparent and hence the current representation of data is accepted
as sufficient to present the data in a more accessible format.

 General navigation using both tools appeared to be simple, however a number of small points
are worth noting. Whilst the user of Betsie complained that not all links were identified whilst
pages were being read, this is attributed to the screen reader not enumerating all links rather
than a problem with Betsie and hence this comment should be discounted. It was interesting
that the implementation of links in the two tools was different in that BrookesTalk links are
followed by selection from a list of links in the menu whereas Betsie leaves links in context
in the document. When implemented with the Jaws screen reader, links were presented to the
user in an inline manner and could be followed immediately. This was an interesting concept
and addition of this feature into BrookesTalk could enhance its navigational power. This
would allow the user to immediately follow links from the context they were in rather than
having to navigate the list of links to see if a particular section of text of interest to them
contained a link. It was noted that the user of BrookesTalk found navigation to visited pages
difficult, this was attributed to the different keyboard shortcut used in common visual
browsers and that implemented in BrookesTalk. Clearly, if the user had read the reference
card provided with BrookesTalk, this may not have been such a problem, but including the
keyboard shortcut of CTRL + left arrow may result in fewer problems for users moving from
one browser to another. Whilst not apparent from the evaluation, it was noted from personal,
visual experience of BrookesTalk, that if the user clicked into the window displaying the
visual page representation (maybe to follow a link), a focusing problem was found. The
problem was that clicking into the different window removed focus from the text-speech
reading window and hence pressing arrow keys to change the reading mode or to read more
text was impossible. By clicking back into the speech window, this problem was resolved. At
first, this was confusing because links were being followed by clicking them in the visual
representation. The result of this was that pages loaded by following links could not be read
because focus remained on the visual representation window.

 An interesting problem with BrookesTalk was identified, this was that whilst support for
forms was present, it proved impossible to navigate and complete forms when non-visual
browsing was used. It was found that when browsing with the aid of the visual representation,
forms could be used and results obtained provided that navigation around the form was
undertaken using the mouse. Clearly, this is not possible for blind users who will not be able

36

to see the location of the mouse pointer in order to complete this task. Again, this may be
associated with the focus problem discussed above but needs resolving to help accessibility
for blind people. The user of Betsie was able to complete forms by pressing the tab key to
move into the box. It is not sure whether this would always be the case, of special note is
when a page designer has not included the tabindex attribute for each form element.

 Finally, it is worth noting that the user of Betsie used an interesting feature of the web
browser (not part of Betsie) to help retrieve information, this was the in-built search within
page. It was noted how this was used to help determine if specific information was located
within a page. Whilst BrookesTalk does have a search mechanism, this is actually an
interface to various Internet-wide search engines rather than a search within page. It is
therefore suggested that some form of search within page be included in BrookesTalk in
order to help users find specific information within a page.

 As a result of this evaluation, it was decided that some of the useful features of BrookesTalk
might be included in Betsie. The following section explains the developments made to Betsie
in order to attempt to improve its ability to present blind users with more accessible web
pages.

37

4. Development of Betsie
 The initial evaluation indicated that whilst Betsie was reasonably good at presenting web
pages in an accessible format, it lacked the assistant features of BrookesTalk. The features in
BrookesTalk that were found to be useful with orientating the user on the page were the
specialist menus designed to give a conceptual model of the page – such as document abstract
and summary. It was suggested by the user of BrookesTalk that these helped when trying to
assess if the document being accessed was relevant or not. It was therefore decided that an
implementation of some of these features into Betsie could be advantageous.

 At this point, it is important to define two terms that will be used which are summary and
abstract. The term “summary” will be used to refer to structural information about a page, for
example, number of words and number of links. The term “abstract” is used to refer to a set
of extracted sentences from the document that should concisely describe the content of the
page.

4.1. Generating a document summary
 Based on the content of the document summary in BrookesTalk, it was decided that Betsie
would provide the following information in a summary:

• Number of words;

• Number of sentences;

• Number of paragraphs;

• Number of links;

• Document Keywords;

• Document title;

4.1.1. Providing access to the summary
 The first decision to be made was where to place the document summary and abstract.
BrookesTalk has an advantage over Betsie because it can present this information through
program menus. Clearly, it is not possible to do this when using a gateway script because the
script has no way of generating or altering menus within a browser. This kind of
implementation would not only be a security risk, but information would also have to be
known about the many browsers available thus removing Betsie’s ability to be browser
independent. Three realistic options were considered:

1. Use JavaScript or another scripting language to provide a “pop-up” window containing
the information when the user performs a certain action related to the document.

2. Place the summary information somewhere in the page. Either the start or end would
seem sensible locations.

3. Store the summary in a separate web page and provide a link from the original document
that was loaded.

38

The first of these three options is not really a viable solution because of the issues discussed
earlier concerning page scripts – it involves the use of scripting languages to create dynamic
actions on the web page. It was discussed earlier how dynamic elements and event handlers
could cause problems with some screen readers, hence this option was rejected.

The solution that was chosen was in fact a combination of suggestions two and three. This
was to provide a link at the beginning of the loaded document to the summary page – thus
giving the user the opportunity to load the summary if required. To aid the user in deciding
whether the summary should be loaded, the number of words in the document is enumerated
before the link to the summary. A full implementation of example two was not used because
it was thought that many pages may not need the summary to be used and hence this
information may simply serve to annoy the user if placed at the beginning of every page
loaded. Similarly, it was decided not to place the page summary at the end of the document,
this was considered pointless – by the time a user reached the summary, they would already
have read the page.

Figure 5 Screen shot showing how the modified Betsie script gave information to the user about the
summary and provided a link to it

Figure 5 shows a screenshot of how the modified version of Betsie gives the user information
about the content of the page in terms of the number of words and provides a link to the
summary information that is stored in a separate page.

Initially, the link was to a constant, global file name. This was considered unsuitable for
general use because multiple users may be using the gateway script and may accidentally
load the summary for a page being viewed by a different user. The design was modified to
use unique filenames for the summary page that related to each user. It was therefore decided
to append the user’s IP address to the name of the file stored on the web server running Betsie
and hence a unique summary page would be stored for each user.

4.1.2. Generating a page summary
The language in which Betsie is written is Perl [Perl]. The Perl language has very powerful
regular expression handling capabilities based on mathematical regular expression methods.
Perl was originally designed as a text processing language that has been developed to include
may other features. Fortunately, Perl’s powerful text processing capabilities could be put to

39

good use when processing the HTML code that forms the underlying structure of a web page.
It was therefore decided that the summary should be generated using Perl as an additional
sub-routine called from the existing Betsie script. This was a simple feature to add because of
the design of Betsie – a page is loaded from the server and a function called to process data
with the whole page content passed as a variable. This function modifies the page data passed
ready for further parsing. The first parser function effectively separates HTML tags to be one
per line allowing the second parsing function to process each individual tag. In order to add a
document summary, it was felt necessary that the whole document content should be
available and therefore the first of the parser functions was modified to include a call to a
further function that generates the page summary (and abstract). A wrapper was added around
the call to the function to allow anyone installing Betsie onto a web-server the ability to
disable the summary generation. This was included late on in development but was
considered important in order that a single distribution of Betsie be available (thus easier to
maintain) rather than to have two separate scripts depending on if the web-master did not
wish the summary pages to be generated on their web-server. This option for local
customisation for Betsie requires some additional variables to be configured by the user,
these are shown in Figure 6.

$summarypath = “/usr/fsa/ug97/sjt104/web/summaryfiles/”;
$summaryurl = “http://www-users.york.ac.uk/\~sjt104/summaryfiles/”;
$generatesummary = “yes”;

Figure 6 Code extract showing the additional variables needed to be configures resulting from the
addition of the page summary

 Figure 6 shows three variables added because of adding the ability of a web-master being
able to disable generation of a document summary. The first of these, $summarypath,
gives the local path on the server running Betsie to where summary files should be saved.
The second variable, $summaryurl, gives the base URL to where summary files are
accessible from on the web. It should be noted that in many cases, this might not be the same
URL as where Betsie is executed from – for example, CGI scripts are executed on a separate
machine at the University of York compared to that from where web pages are served. This is
designed to guard against attacks on the web-server for various reasons when using CGI
scripts. The final variable that must be configured is the $generatesummary variable.
This should be set to “yes” if the summary is required, or anything else if not. This variable is
tested before the function to summarise a page is called and also before adding a link to the
summary page from the Betsie processed page.

 Once called, the function to generate a page summary takes the parameter passed to it – the
complete content of the page – and copies it (this is necessary because of the way Perl
parameter passing works). Three copies are in fact made which are used for the document
summary as well as keyword weight calculation and sentence extraction. The latter two of
these operations are used during document abstract generation and the process to perform
each of these tasks is described later.

 It was decided that the title and number of words and links would be generated as part of the
summary, as well as a list of keywords. Further to this, it was decided that the title should be
extracted from the page title specified by the page designer. This should be stored within the
HTML tag <title> within the <head> section of a document. The title variable is

40

initialised to an empty string and then set to the document’s real title by using the following
code extract:

if ($pcopy =~ /<title>(.+)<\/title>/i) {
 $doc_title = $1;
}

 The nested regular expression that forms part of the “if” statement will evaluate to true if the
opening and closing <title> tags are found and within them one or more characters exist.
If evaluated to true, the $doc_title variable is set to the last matching text string, in this
case, the parenthesised “one or more character” (.+) part of the regular expression.

 Once the document title has been extracted, the number of links is counted. The technique for
performing this action relies on a specific feature of HTML. This feature is that links are
contained within <a> and tags. Using an in built text processing function of Perl called
“split”, the number of links was calculated. The split function takes an expression and a string
and returns an array, each entry in the array contains the text that was located between each
occurrence of the match expression. The match expression used to split the page text was the
tag . This was because it is assumed that page authors will close their link tags
(otherwise all following text will also form part of the link) and also because the closing tags
do not have additional parameters which would have to be included in the match expression.
It should also be noted that the <a> tag might also be used to identify local anchors within a
page, this is used to enable references and links within a document. Once an array has been
created, another Perl feature is used to calculate the number of links. This is the ability to
obtain the length (number of items) of an array by evaluating the array in a scalar context
(this can be done by adding 0 or using the specific “scalar” function). If the length of the
array is found to be greater than zero, then the number of links is set to the length minus one,
otherwise, the link count is set to zero. It is important to take one off the value of the array
length because of the technique used to count the number of links. This is because when a
link is found, the text is split into two, that being the text on either side of the tag, this
has the effect of the array length being one greater that the actual number of links.

 Having counted the number of links and extracted the document title, a word count needs to
be undertaken. It was decided to generate the word count by using a similar technique to the
link count, this time using a space as the split character. In order to assume that only words,
and not tags are counted, as well as ensuring that one space only exist between words, a
degree of processing of the page needs to first be undertaken.

 The first step to be taken was to remove the <head> information. This was done using the
Perl substitution using pattern matching and is the technique used for all of the text
processing described below. Some example code, although not all code used, is shown in
Figure 7

$pcopy =~ s/<head>.+<\/head>//is;
$pcopy =~ s/>/> /sg;
$pcopy =~ s/\&//sg;
$pcopy =~ s/\&(\w|\d|\#)+;
$pcopy =~ s/\s{2,}/ /gs;
$pcopy =~ s/^ //gs;
$pcopy =~ s/ $//gs;

Figure 7 Example Perl substitution using pattern-matching statements

41

 The first example shown in Figure 7 is used to remove page-heading information. This
example matches when the <head> tag pair is found with any text within it. The matched
string is substituted with the text enclosed by the second and third “/”, in this case, nothing. It
should also be noted that the “i” character at the end refers to non-case sensitive matching so
that pages with capital letters in tag content, e.g. <TITLE> will be included in the
substitution.

 The second example is used to ensure that all HTML tags are followed by a space, this is
required because some words may only be visually split because of images or other tags
occurring in the source code. Example four would include example three that is included to
remove special HTML characters such as “&” and “©” which are specified in the document
with special code strings of the form “&”. The final three examples are used to remove
white space to ensure that only one space exists between each word and not at the beginning
(example six) or end (example seven) of lines. Example five replaces multiple spaces with a
single space. This processing of spaces is vitally important for an accurate word count. It was
described earlier how a link would cause a split into two giving one more link than the actual
count each time. A similar case to this will occur if multiple spaces exist because the split
function will create empty records in the array because a split will occur for each space found
even if no text exists between each occurrence of the match pattern. It is for this reason that
multiple spaces are removed.

 As well as the examples shown above, other text processing also occurs, this includes the
removal of HTML tags – these should not be included within a word count – as well as the
replacement of certain special characters, “,”, “.”, “?” and “!” which are replaced by spaces.
This replacement ensures text of the form “only,then” is counted as separate words rather
than as a single word.

 It is fortunate that in order to generate a collection of keywords the previously described
substitutions and removals also need to have been undertaken. If these substitutions had not
occurred and HTML tags, for example, were left in the document, then it is likely that <p>
would occur regularly within a document and hence be classed as a keyword. Also, the
characters “,” and “.” have to be removed otherwise words ending in “,” or “.” would not be
found to be the same. For example, it would be desirable that “hence,” and “hence” would
match as the same word. By using the result of the existing modified text, the keyword
generation is possible without any repetition of work.

 At this point, it is important to note that keywords that are listed are those words with highest
frequency within the document. This is however a simplification and rather than being words
that are found and counted, stems of words are found and counted. This has been discussed in
an earlier section, but to clarify this point, a stem of a word is effectively the part of it not
affected by grammatical requirements. Rather than trying to explain this concept, it is easier
to demonstrate with examples. The words “take”, “taking” and “takes” all have the same
stem, “tak”, however have different additions to the word that depends on grammatical
requirements. It should be clear that the frequencies of “take”, “takes” and “taking” are all
different, however the frequency of the stem “tak” should be the sum of the three separate
frequencies. It is for this reason, that grammatical rules require different word endings, that
the stem of words is used for the frequency count rather than whole words. It should be noted

42

that in some cases the technique of using stemmed words might generate incorrect
frequencies for a particular stem because the start of several words may be the same. It was
however, thought that this would occur infrequently and therefore this method was accepted
for use.

 Having defined what is meant by the term “keyword”, a definition of the algorithm used will
be outlined. Full code for the algorithm is located in Appendix I.

 In order to ensure meaningful keywords are generated, certain words are removed. A word
list has been generated containing words considered not to provide additional meaning to the
document content, these are words such as “and”, “the” and “this”. The full list of words
removed is given in Figure 8.

 but, for, you, and, did, what, all, has, one, two, not, was, were, been, had, used, when, where, are, our, with, that, put,
some, other, which, also, big, the, she, they, its, have, this, from, there

Figure 8 Words removed from a document before keywords are extracted

 Figure 8 shows the words selected to be removed from a document before keywords are
generated. It should be obvious that the words included in the list would not add to the
meaning of a page but are simply included to link sentences. Such words would occur
frequently within a document’s text and hence could be ranked as keywords if not removed.
Observing the keywords generated when browsing various pages resulted in this list of
words. Any word found that was considered to provide no content value for the document
was added to the list. Initially linkage words such as “and” and “the” were placed in the list
with further words added as experimentation proceeded. Perhaps worth a note is the
implementation of this technique. A list of words to remove is stored in a variable within
Betsie and a loop of code is executed. For each iteration of the loop, one word is selected
from the list of words to remove and, using a case insensitive global substitution, all
occurrences are removed. Whilst in many programming languages, this may take time when
long documents are parsed, using Perl allows a quick solution because of its original nature
and power for text processing. As speed of the algorithm was not a problem, it was accepted
as suitable for use.

 It should be noted that no words less than three letters long are contained within the list of
words to remove, this is because any word found with length less than three characters was
removed before keyword generation. Such words were considered to not add to the meaning
of a page and were hence removed. Words that fall into this category include “a”, “me”, and
“I”. Clearly, such words cannot contribute to the overall meaning of a document and this is
the reasoning behind their removal.

 It is also worth noting that any hyphenated words were split to form two separate words, this
was included to ensure that the two words forming a hyphenated word were counted
individually. Performing this task would ensure that words such as “web-page” would
become “web page”. This is required because of the implementation used to separate and
count words.

 Once removal of certain words and characters is complete, a frequency of each stemmed
word can be counted. In the implementation of this, the keyword generator splits the text into
individual words by using the Perl split function as described earlier using a space for the

43

match pattern. In order for this to function correctly, all extraneous white space is removed
and replaced with a single space. An array of words would now exist over which a loop can
be performed.

 It was described earlier how stems of words would be used rather than keywords, it is
therefore necessary to remove all endings of words and retain just the stem. Figure 9 shows
the list of word endings removed from words to leave the word stem.

 ings, ing, ies, es, ed, ‘s, s, e, ‘t, y

Figure 9 Endings of words removed to leave stems of words

 In terms of implementation, the order in which the word endings listed in Figure 9 are coded
is important. This is because only one ending should be removed from each word, if this
restriction is not imposed, further breakdown of the word can occur resulting in useless stems
being generated. For example, “ies” is placed before “es” in the list to ensure that the “i” is
also removed as would be required in the example of “families”. If only “es” were removed,
the result would not match with the stem of “family”. The list given does only contain a small
number of endings required by grammatical differences (e.g. family and families have the
common stem “famil” but are spelt differently because of plurality), it is however complete
enough to count the stems with reasonable accuracy. A regular expression is used to pattern
the endings and to remove them only if found at the end of a word. This ensures that removal
of characters does not occur mid-word.

 In order to implement the frequency count, the “lc” Perl function was used, this converts the
string passed to it to be all lower-case. It was essential to do this because of the way the
frequency table was implemented. Perl contains various internal data structures, many of
which have already been seen in use – numerical values, strings, and arrays. Included in this
collection of structures is the hash table. A hash takes a key (in this case the stemmed word is
used) and pairs a value to it (the frequency) using an in-built function to relate the data. An
example of this is given in Table 2. Further information on the Perl hash can be found in any
Perl text [Perl]. The key for the hash table has to be the same for each lookup hence the need
to convert the stem to lowercase. The existing frequency for the word is looked up and
incremented. If the current word is the first occurrence of the word then a value of one is
added to the hash table that corresponds to the stem.

Stem Frequency
famil 10
book 2
reduc 39
run 6

Table 2 An example hash table giving key and value pairs

 Once the frequency count is completed, all that remains to be done as far as the keyword
algorithm is concerned is to extract the highest-ranking words. In terms of implementation,
this is slightly more complex. Fortunately, Perl allows data within hash tables to be extracted
in list format. This takes the form of key then value repeated until the whole hash has been
enumerated. The implementation takes advantage of this feature and progressively works
through the list taking a key and its frequency and storing the key as a value into a second
hash table. This second hash table uses frequency of stem as the key. This has the effect of

44

grouping all stemmed words with the same frequency together. An example of this is shown
in Table 3, this shows how the stems “run”, “find”, and “peopl” have the same frequency of
18. A count of the highest frequency so far is also kept in order to allow the highest-ranking
words to be extracted quickly. This is implemented by using a loop which decrements a
counter and extracts words with the specified frequency.

Frequency Stems
20 book
18 run find peopl
7 jump

Table 3 An example rank table using frequencies to match to stemmed words with that frequency

 It was noted that a count of paragraphs and sentences would also be included in the document
summary, this was actually implemented whilst processing text to generate the document
abstract but will be described here. The process for counting the number of sentences was
similar to that for counting words. Again, the split function was used and the length of the
resulting array evaluated in a scalar context to give the number of sentences. In the case of
words, the split pattern was “ “, a space, when splitting text to find sentences, the following
characters were used – “.”, “!” and “?”. These three characters all have a grammatical
meaning related to the end of a sentence.

 The process for counting paragraphs was more complicated in that it was aimed at tolerating
poorly designed pages. In theory it would be suitable to use the split function using only the
HTML paragraph tag, <p>, as the match pattern. This was the approach used, however a
certain amount of modification of the page HTML was undertaken first to ensure all
paragraphs began with a <p> tag. In some web pages, the designer of the page does not
implement paragraphs using <p>. Instead, they use two line-break tags,
, to indicate a
new paragraph. It was therefore decided that a substitution of two consecutive line breaks
with a paragraph tag would be made in order that properly distinguished paragraphs would
result. As well as this, headings and lists (enclosed in the tag) would also be classed as
paragraphs and hence their HTML tags were substituted with a <p> tag before the split
function was called. Once split, the matter of counting the paragraphs was trivial and whilst
the result was not necessarily accurate, it was considered accurate enough to provide an
estimate of the number of paragraphs in a page.

 Once the document summary and abstract (described below) have been generated, the results
are saved into a file by redirecting the Perl output using file handlers ready for use by the
user.

4.2. Towards an automated document abstract
 The automated document abstract is aimed at providing the user of Betsie with an overview
of the content of the page being accessed. It should be noted that whilst keywords can have
their use, they can often have little meaning when taken out of context. It was therefore
decided that the keywords generated for the document summary should be available within
some context – this forms the basis of the automated document abstract.

 The basic outline for the abstract generation algorithm will first be given, before a discussion
on the implementation of it is presented.

45

4.2.1. Abstract generation algorithm
 In essence, the abstract generation algorithm uses keywords to allocate each sentence an
importance score and then extracts sentences that have attained a sufficient score. The score
that is allocated to a sentence depends on the number of keywords in that sentence. In order
for this technique to work, each extracted keyword (or stemmed word) is allocated a value
depending on frequency and whether or not it has appeared in a heading (within a <h?> tag)
or occurs in the document title. It is therefore necessary to assign a score, or weight, to each
word in the title and any word in a heading. In the same way as when generating keywords,
words that do not contribute to the meaning of a page should be excluded (see Figure 8 for a
list) from being awarded a weight. Highly ranking keywords which do not occur in headings
or title are also attributed a value depending on their position in the keyword rank order.

 A score for each sentence is then calculated by summing the values of each scoring word
within the sentence and if over a predefined threshold, is added to the abstract. It should be
noted that extracted sentences remain in the same order that they were in originally, and are
not presented with highest-ranking sentences first.

4.2.2. Implementation of the abstract generation algorithm
 In order to store the values of each word, two hash tables were created. The first of these
stored the value to give any word that exists in a header or keyword rank. This value was
dependant on the heading level or location in the rank order. The second hash table stored
words as the key and score as the value. Words that were located in the title were all allocated
the same score and stored in the word/score hash table. This was implemented by using the
document title variable as defined earlier and removing non-content words before splitting
the text on spaces and storing the scores into the hash table. In order to proceed with
allocating weights, the HTML tags are required to be available in the document and hence the
need for the local copy of the page made when the summary function was first called as
described earlier.

 After allocating title word weights, the weights of heading words were then calculated. The
weighting of words in titles depended on the “level” of heading used, i.e. level one heading
(<h1>) words received a higher score than level six heading (<h6>) words. In order to
ensure each heading was scanned correctly, each was placed on a new line (implemented by
substituting the closing tag e.g. replacing </h2>, with the closing tag and a new line
character). Once it was sure that headings were on their own lines, the text was split into an
array, each entry in the array being a separate line. A loop of code was then performed on
each line of text (each array entry). Code was only executed if the current line contained a
heading. The level of the heading was obtained and then HTML code removed, this was
necessary to ensure tags did not appear as keywords by accident. The list of non-content
words was then removed along with all one and two letter words before the text was split into
individual words. Once complete, endings of words were removed in the same way as before
to generate stemmed words. A lookup was then performed to find the current weight of the
stem, if none existed or if the weight from the current heading was found to be greater than
the stored entry, the corresponding weight for the heading level was stored. In this way,
stemmed words would always be allocated the highest score possible even if they appeared in
different levels of heading.

46

 Having completed allocating scores for heading and title words, it was necessary to allocate
keywords a score. The scoring system for this was similar to that for heading levels –
keywords higher in the ranking (i.e. those occurring most frequently) were given higher
weights than those with a lower rank. A loop was executed over the rank list of keywords
allocating weights to each stem. It should be noted that if a stem was found that already had a
weight from being in the title or in a heading, the weight was set to be the existing weight
plus the weight corresponding to the rank position. In this way, both the frequency of the
word, and any occurrence in a heading or the title could be taken into account. This shows
how it is assumed that more frequently occurring words are more important to the document
content than less frequent ones.

 Once all relevant words are allocated a weight, it is then necessary to scan the document for
high scoring sentences and to return those to the user as part of the abstract. In order to do
this, the third copy of the text was used because of the need to split into paragraphs and then
sentences (this was also used to generate the sentence and paragraph counts as described
above). Splitting into paragraphs enabled sentences to be placed in the abstract and to remain
in paragraph context – i.e. to group sentences extracted from the same paragraph within the
same paragraph in the abstract. Once sentences had been separated, each was checked for
stems of words and any found were underlined (this was implemented for testing of the
system but was left in because it provides a user information as to why the sentence was
included in the abstract). The score for each sentence was calculated as the sum of the
weights of each word in the sentence. Any sentence whose score was over a set value was
then included in the abstract with all others being discarded.

4.3. Summary
 This section has discussed the developments made to Betsie. This was possible because of the
open source nature of the language and was able to be efficient because of the powerful text
processing nature of Perl. The developments to Betsie were aimed at trying to increase the
ability of the user to orientate themselves and to provide a general view about the content of a
page. In order to assess the use of this, a further evaluation was undertaken. Not only was this
aimed at assessing the use of the new features of Betsie, but was also to ensure functionality
was not lost as a result of changes. This second evaluation is discussed in the following
chapter.

47

5. Further Evaluation
 After modifying the code for Betsie, it was thought that a further evaluation was necessary,
this was to evaluate the use of Betsie after modifications had been made and to ensure that
the changes made had not adversely affected the performance of Betsie.

 As with the first evaluation, the second evaluation used sighted users working in a non-visual
context. This was because sighted volunteers were simple to find and it was considered that
the difference between sighted and blind users’ perceptions is not significant to affect the
results. For this second evaluation only a small number of users were involved. This was
because of time constraints and hence any conclusions and opinions should be viewed as
objective and may not be truly representative of the blind community as a whole.

 In this evaluation, instead of each user accessing the Web using different tools, each was
asked to perform a set of tasks using all the available tools. The tools utilised within this
evaluation were BrookesTalk, the original Betsie script, and the modified Betsie script. The
purpose of this evaluation was to test the use of the summary and abstract information added
to Betsie and hence, a full test of general web accessibility problems was not included. It was
decided that if the user could still access and extract information easily then the modifications
to Betsie would be deemed not to have reduced functionality. It is safe to assume this because
only the way a user might navigate using the tool would be affected. This was known because
no changes were made to any other features of Betsie.

5.1. Evaluation Design
 It was decided that all volunteers would use each tool and that the order of use would be the
same. The task assigned to each tool would also be kept constant. The idea of randomising
the tool and task order was considered but rejected. This was because the aim of the
evaluation was to assess the use of the abstract and summary and not to assess the general use
of the tools on the Internet. Thus, randomising information would have little effect and may
serve to complicate analysis of the data. By using the tools in the same order, each user will
have the same experience of using them and will all have been exposed to the electronic
voice and other factors to a similar degree. It was decided that BrookesTalk would be used
first, then Betsie, and finally, the modified Betsie script. The idea behind this order was to
introduce users to the ideas behind conceptualisation models provided in BrookesTalk and
then to remove them from the user. The final task would then be used in a context where
conceptual tools were again available. It was hoped that the users would then be prompted to
use the conceptual tools when available in Betsie if found useful from browsing using
BrookesTalk.

 As with the first evaluation, each user was given a set of tasks to complete, followed by a
questionnaire. In this case, because it was only the functionality of the conceptualisation tools
being evaluated, the tasks and questionnaire did not focus on aspects of web pages such as
forms, images, or frames. Instead, the objective of the task was to find an item of information
from within a web site. Each site contained many web pages, any of which might have been
the correct one or on a different subject. The requests made to use user required them to
access several pages and try to assay if the page was relevant. In this way, the users should be
able to test the conceptualisation potential of each tool. It was checked that pages surrounding

48

the desired page contained sufficient information so that it was not immediately apparent that
any particular page was definitely relevant by simply reading the first line of a page. This
approach means that the user is required to search and extract the information in the same
way as one might in the real world when browsing for information.

5.1.1. Selecting target websites
 In selecting websites to be used as part of the evaluation, several factors were taken into
account. The first of these was that each site should require the user to traverse approximately
the same number of pages. This was to ensure that any perceptions from the user of one task
being more difficult than another was caused by the tools’ operation and not because the user
was actually required to digest the content of many more pages in any specific task.

 Secondly, the content of each website was selected carefully in order to avoid the users
having pre-existing knowledge about each task. This was to ensure the users actually had to
find information rather than already knowing about it. To be sure that the users were
knowledgeable about the topic they were researching, some background information was
given. This was to present a more realistic view of the browsing – users will usually know
something about what they are researching. For the sites used in the evaluation, this may not
have been the case and hence the need for some background information.

 It was also verified that the information each of the tasks required was considered sufficiently
important within its page that it should be included in any conceptual information provided to
the user.

5.1.2. Websites used for testing
 The first website that was used with BrookesTalk was the Guild of students at Birmingham
University (www.guild.bham.ac.uk). The user was asked to find the mountaineering society
web page and to then find the page that talked about a “rack” which is a piece of
mountaineering equipment. The users were required to navigate through a list of links to
societies and to then browse the mountaineering society web page in order to find the
specified information. It was hoped that the conceptual model information would help
provide the user with an indication as to whether or not each page was relevant. For example,
the list containing the link to the mountaineering society also contained links to many other
(over 200) societies, and hence conceptual model information may help the user to determine
if the page contained many links or not. The actual page containing information about
equipment for mountaineering contained many references to the “rack” and hence it was
hoped that it would occur in the document keywords or abstract.

 The website that was used with Betsie was the RNIB website (www.rnib.org.uk). The users
were directed to a section of the site about accessible information. The task was to find out
about contrast and its use. This was located on a page concerning clear print guidelines. In
order for the user to find this information, they were again required to traverse a collection of
similar pages in order to find the information. Whilst not available with the version of Betsie
used, it was checked that the subject matter chosen was sufficiently important to the
document that it could be considered a key item of the page and should, therefore, appear in a
keywords list or in an abstract.

49

 The final website chosen was located on a local computer within the Department of
Computer Science. It was deemed that this would not cause a problem with users’ having pre-
existing knowledge of the site in that the volunteers were all from different University
departments. This task required the users to find the instruction manual for a specific piece of
software and to find a list of modules within that software. Once found, the users were
required to locate information about a module concerning mapping parts of the file-system.
This was considered a realistic enough example in that a real user may know of a feature,
however be unsure about the specific syntax for it and hence may be required to browse the
module-listing page to find the appropriate information. As with the first website chosen, the
user would encounter a list of links that should be indicated in conceptual information if used,
i.e. that a high number of links to paragraphs would be present. The links surrounding the
required page were also noted to contain sufficient information such that non-visual access to
the page may have been difficult without the conceptual information available. Finally, the
target page was verified to ensure that the concept being searched for was sufficiently
important to the page that it might be included in conceptual information to provide the
context of the page.

5.1.3. User Response
 As with the first evaluation, comments and ideas from the users were sought. A questionnaire
and structured interview was used to obtain each of the users’ views. The questionnaire and
interview was conducted after the user had completed the task with each browser, in this way,
conflicting views from using the different tools would be minimised. The questionnaire part
of the evaluation is shown in Figure 10.

 Browser Evaluation Questionnaire

 1. I found it difficult to identify links
 strongly agree agree no preference disagree strongly disagree

 2. I found it difficult to understand what information the pages contained
 strongly agree agree no preference disagree strongly disagree

 3. I found the process of discovering the contents of a page long and tedious
 strongly agree agree no preference disagree strongly disagree

 4. I found it difficult to quickly identify whether or not the page was relevant
 strongly agree agree no preference disagree strongly disagree

 5. I would need more time before being comfortable using this method again
 strongly agree agree no preference disagree strongly disagree

Figure 10 Closed questions each user was asked to complete after use of each tool

 As with the first evaluation, all questions were phrased negatively as can be seen from the
questions given in Figure 10. This was to ensure each user thought about the answer to each
question rather than being able to just agree with statements.

 Question 1 was a check to ensure that each user was able to navigate between pages and was
included to ensure functionality of the modified Betsie script had not been lost because of the
changes made. It was described earlier how functionality would be considered not to have
been lost if each user were able to navigate and proceed with web access as if the summary
information was not available.

 The second, third and fourth questions were included to evaluate the ease at which users
could extract information from web pages. Specifically, they were aimed at assessing how

50

well each tool supported the user in building up a conceptual model of the page being
accessed.

 The purpose of question 5 was to provide an insight into how well the user thought they
coped with each tool. It was considered that if users thought they required a lot more time
when using the tools that provided conceptual models, then they may not have fully
understood, and correctly used the conceptualisation tools. This may therefore have affected
views on their use.

 After the user had completed the questionnaire, a structured interview followed. This is
where a list of items to be discussed was pre-defined although not available to the user and
each item is used to direct the interview. This form of evaluation is often used when user
interfaces are being tested. This is because the technique allows the interviewer freedom to
obtain extended information from any comments made by a user. It is often of use if the user
makes a specific comment that was unexpected or interesting because it allows the
interviewer to expand on users’ views.

 1. What did you like most about this browsing method?
 2. What did you dislike most about this browsing method?
 3. How could browsing be made easier and what improvements would you suggest?
 4. What did you find most difficult?
 5. What do you think others would find most difficult?
 6. I felt the page summary did not help understand what information the page contained

 strongly agree agree no preference disagree strongly disagree
 7. I felt the page abstract did not give an accurate representation of the page

 strongly agree agree no preference disagree strongly disagree
 8. Did you find the page abstract useful?
 9. Other comments.

Figure 11 Structure of the interview used to obtain further user comments

 The outline for the structured interview is given in Figure 11, it should be noted that
questions 6, 7 and 8 were only included when inquiring about BrookesTalk and the modified
version of Betsie. Questions 1 and 2 aimed to obtain an overview of the tools from each user
and question 3 was designed to obtain any ideas from the user for potential development of
the tools based upon their knowledge and experience of visual browsing. Whilst question 4
aims to find out what the user found difficult when using the tools, question 5 differs slightly
in that users are asked for difficulties they think other people may encounter. This is a
commonly used technique to extract further information from users. Often users will perceive
actions they took to be more difficult for other users to perform for various reasons. This type
of question also allows users who may be worried about their opinions to offer further
information in the context that the problems may also be experienced by others.

 Questions 6, 7, and 8 were aimed at obtaining feedback from the user about the conceptual
tools provided and the results of them should present an overview of the use of the document
summary and abstract generated by BrookesTalk and Betsie. Finally, an “other comments”
question is included to obtain any additional comments from the user that may not be covered
by previous questions. This is the section under which the interviewer may be required to
obtain further clarification and detail over any comments each user might make.

51

5.2. Results and analysis
 To fully represent the views of each user, analysis of results will be split into two parts. The
first of these will cover the results from the closed questions and the second on the
information extracted from the structured interview. Using a structured interview means that
comparing results from users is difficult and hence this part will be presented as a collection
of ideas and notes extracted from the information given by the users.

5.2.1. Questionnaire results
Question BrookesTalk Betsie Changed Betsie

1. I found it difficult to identify
links

Strongly disagree
Disagree
Disagree

Disagree
Strongly disagree

Disagree

Disagree
Strongly disagree

Disagree
2. I found it difficult to understand
what information the pages
contained

Strongly agree
Agree
Agree

No preference
Agree

No preference

Disagree
Agree

No Preference
3. I found the process of discovering
the contents of a page long and
tedious

Strongly agree
Disagree

Agree

Agree
Strongly agree

Agree

Disagree
Strongly agree

Agree
4. I found it difficult to quickly
identify whether or not the page was
relevant

Strongly agree
No preference
Strongly agree

Strongly agree
Strongly agree

Agree

No preference
Strongly agree
No preference

5. I would need more time before
being comfortable using this method
again

Strongly agree
Strongly agree

Agree

Agree
Disagree

Agree

No preference
Agree

No preference
6-. I felt the page summary did not
help understand what information
the page contained

Disagree
No Preference
No preference

N/A Disagree
Disagree
Disagree

7-. I felt the page abstract did not
give an accurate representation of
the page

Disagree
No preference

Disagree

N/A Disagree
No preference
No preference

8-. Did you find the page abstract
useful?

Yes
Didn’t use it

No

N/A Yes
Didn’t use it

No

Table 4 Answers given by each user to the selection answer questions in the second evaluation

 Table 4 gives the results to the questionnaire given to each user. Question numbers marked
with a “-“ are extracted from the interview part of the questionnaire and are included here
because of their similar nature. From such a small number of users, it is very difficult to
perform any kind of statistical analysis and hence the presentation of the results will be as
before, an informal overview of the results.

 The results to question 1 indicate that each user did not encounter problems when accessing
links and hence it can be assumed that no problems with general navigation were found. It
can thus be concluded that any developments to Betsie did not adversely affect its
functionality.

 It should be noted that a problem with one of the pages related to the BrookesTalk evaluation
caused some problems for the users. This was that some of the links, when followed, resulted
in an almost identical page being loaded. The difference between the pages was that
following the seemingly identical link would result in a different (and correct) page being
loaded. This might be an explanation as to why the three users all indicated problems
extracting information from the pages which can be seen from the results showing general
agreement with statements 2, 3 and 4. When talking to the users about these responses, it was

52

indeed noted that this confusion caused the users to become lost in the page structure. This
was because the user thought that they had followed a link to a different page, which they
had, however the page appeared to be identical in content. This problem may have been made
worse by the fact that sighted users, who would have noted a specific change in URL and
would acknowledge the following of the link by clicking, were used in the experimentation.
By examination of the results to statements 2, 3, and 4, it can be seen that a general change
from agreement of the statements to disagreement occurred when using the two versions of
Betsie. This indicates that in the evaluation using the modified version of Betsie, it was easier
to understand and extract useful information from the pages accessed. This could be
attributed to one of two factors, firstly that the tasks for the modified Betsie script were easier
than for the original Betsie script, or secondly, that the conceptual tools provided in the
modified version of Betsie were helpful to each user. The results from statement 6 indicate
that some of the conceptual tools were helpful to the users in that they all disagreed with the
statement that the summary was not helpful. This means they thought that the summary was
in fact useful in helping understand the page. It is however indicated that the performance of
the document abstract in helping the user orientate and conceptualise the page was not as
good for Betsie when compared to BrookesTalk. It was also observed from the talking to the
users about the modified Betsie script that they considered the summary information to be
useful but that the abstract was often too long to use and be meaningful. This is also apparent
from the results to question eight which shows that two out of the three users did not find the
abstract useful when obtaining information about a page. The fact that the users did not find
the abstract useful and that the users did find conceptualising and extracting information from
pages when using the modified Betsie script easier (indicated by the answers to questions 2-
4), strengthens the case that the summary information was accurate and useful in helping
navigation of the pages.

 It is interesting to note from the responses to statement 5 regarding needing more time that
the users thought they would need much more time to be comfortable using BrookesTalk than
for either version of Betsie. It is also interesting to note that two of the users considered
themselves competent using the modified version of Betsie compared to the original version.
When asked about this difference, both claimed that this was because in using both versions
of Betsie, a sufficient number of pages had been accessed in order to understand well the
concepts and functions of the browsing method. The second user was observed to consider
they would need more time after using the modified Betsie script. When asked why this was
so, they claimed that they would need further time to learn when it would be appropriate to
use the conceptual information provided. The response to statement 5 concerning
BrookesTalk is interesting in that all three users thought they would need time to become
comfortable using it. This can partially be attributed to the change from visual to non-visual
browsing experienced by the users. It was also noted that the users claimed that the different
ways of accessing the conceptual tool menus was complicated and thought that simply
employing the active menu would be sufficient. The active menu was where items are read
out and can be activated by pressing return. Also available is a way of reading the whole
content of the menu in a non-active format that was found to be of no use.

53

5.2.2. Interview results
 In order to represent the comments made by the users, it has been decided to present an
overview of ideas based upon the users comments rather than enumerating all comments and
then attempting to try to perform any kind analysis. The format for the interview results will
be to split into those relating to BrookesTalk and those relating to Betsie.

BrookesTalk
 Various aspects of browsing were brought up from talking to the users about BrookesTalk.
The first point worth noting was that the implementation of a search within page would be a
useful feature. The use of search was also noted during the first evaluation. Implementing a
search feature would allow users to look for specific keywords associated to the information
being researched. It was noted that this was frequently used during the Betsie evaluations as
users searched for words relevant to the task as hand.

 It was noted that when long lists of links were presented to the user, they found it difficult to
search for a relevant link. This was shown when the users were required to find the
Mountaineering society web page from a list of over 200 societies. Again, this is reasoning
for implementing a search mechanism into the tool.

 All of the users commented that it was often difficult to remember how much of the page had
been accessed. The users suggested knowing the amount of page left to read may have helped
indicate whether the page could contain relevant information further down in the page and
hence if it was worth continuing to read the page. It was suggested that some way of checking
how much of the page had been accessed was made available. The exact technique for doing
this would have to be researched, it may be suitable to present a percentage of page viewed as
a measure or to develop some other technique.

 It was interesting to note that whilst users perceived the abstract information to be of use,
they also commented on a mistrust of technology. Two of the three users made this comment
and when asked to explain, said that they did not believe that a computer could generate an
accurate representation of the content of a page. When asked if this view had any bearing on
whether the user thought more time was necessary before being comfortable, an interesting
response was received. This was that whilst a mistrust of technology did exist, users thought
more time was necessary to learn when the use of summary and abstract information was
useful and to learn the features of BrookesTalk in detail.

 The topic of having to learn the features of BrookesTalk was discussed with the users.
Comments were received about needing to learn when to use each of the conceptual tools, but
most importantly, users commented on the different ways to access conceptual information.
The users thought that having an active and non-active version of the menu was pointless and
this was one aspect of the program that took time for the volunteers to learn to use correctly.
It was also noted that the different document reading modes were strange and that paragraph
and sentence were the only modes necessary. This was because the users found it difficult to
understand the information being presented to them when not in small chunks and reflects a
major problem of auditory browsing. This aspect is that the cognitive load of auditory
browsing is very high, especially when the user is normally able to use visual senses to obtain
data and information.

54

 It was noted that several of the users complained about the loading mechanism BrookesTalk
implemented. This was also an observation made by myself during personal evaluation of the
page. The complaint was that the user did not actually care how much of the document was
loaded – only that a link had been followed and another document was being loaded. It was
noted that claiming “21k of 20k” was thought to be pointless and confusing. When asked how
an alternative indication of loading could be implemented, general comments were received
that being told “page loading” when a link is followed and “loading complete, ready” were
useful but that anything else was pointless. It was suggested to the users that many people
might become worried that the browser had stopped working if no information was given
during loading. The users then agreed that a message such as “loading” would be appropriate
occasionally during the loading process because this was of more use, and less confusing than
being told the amount of data loaded.

 One user commented that sometimes they found the voice difficult to understand. The user
commented on how they considered this to make using the tool more difficult because they
were already using a strange technique to access the web, that of non-visual access.

 Finally, it was interesting to note that two of the users, whilst commenting that they found
browsing using non-visual methods difficult, thought that both BrookesTalk and Betsie
would be useful to blind people who may otherwise be unable to access information from the
Web.

Betsie
 One of the first comments made by all users was that the method of browsing using Betsie
was simpler than that of BrookesTalk. This was because the users did not have to remember a
collection of F-key combinations in order to extract information from the pages. One user
said that the whole system of Betsie was simpler to use, but lacked some of the refinements
of BrookesTalk. It was noted that it was much easier to read one sentence at a time (provided
by the screen-reader and not Betsie) than when using BrookesTalk in one of its many reading
modes. This was because of the use of auditory output to provide the user with a page
representation that is found difficult to understand by sighted users.

 It was mentioned by the users, after using the original version of Betsie, that the availability
of the page summary and abstract in BrookesTalk was useful and a similar implementation
into Betsie could be helpful. After using the modified version of Betsie, it was noted that the
summary information was of use, however, the abstract generated was too long to be useful.
One user suggested separating the abstract and summary into separately accessible pieces of
information, whilst another suggested that the abstract should come before the summary
information because, in general, it was of more use. Clearly, it would only be suitable to
order information in this way if the abstract generated was sufficiently short and concise. It
was clear from the users’ comments that the abstract implemented into Betsie was not
sufficiently short and that a different, or modified algorithm should be used to generate
abstract information.

 One user mentioned that they found the list of links provided by BrookesTalk to have been
useful and commented that finding someway to integrate this into Betsie might be
advantageous.

55

 A comment from one user was received relating to the original Betsie script, this was that it
was not as good for general browsing purposes as BrookesTalk. When asked to explain this,
the user said that it was annoying to have to load a separate page containing the document
summary and abstract, and that because of the implementation used, the user had to
remember to refresh the page each time. An associated comment was made by another user
who complained about having to refresh the summary page once loaded before it could be
used. This is because of the technique used to store the summary page in that it will be loaded
into a local cache by the browser and hence not reloaded from the server when the summary
is requested for a different page.

 Whilst not a feature of Betsie, rather one of the web browser used, all users noted that the
availability of a search within page was useful, and again commented on its integration into
BrookesTalk.

 It was observed from all users that a degree of patience is required when using non-visual
browsing. This is probably caused by users being accustomed to visual access to information.
Users noted that it was easier to extract information from pages using the modified version of
Betsie compared to the original one, but that extraction was simpler using the more powerful
tools available in BrookesTalk

 Finally, two of the users commented about problems of internation with the screen-reader.
Whilst not directly a problem with Betsie, it is worth noting that users were sometimes
disorientated by parenthesis being read aloud and found being informed of commas and full-
stops (or “periods”) patronising and thought that this should be represented using internation.

5.3. Summary
 This chapter outlines the evaluation that attempted to test the use of the developments made
to Betsie. Two points were chosen over which information should be obtained, the first of
these was to ensure functionality of Betsie had not been lost as a result of development. It
was decided that this would be evaluated by ensuring that users could still navigate
successfully between pages. The developments of Betsie were found not to have adversely
affected its use, this can be concluded because each user was still able to navigate between
pages and extract information contained within them when using the modified Betsie script.

 As well as ensuring Betsie was still functional, it was thought necessary to evaluate the use of
the additional features added. It is clear that whilst thought useful to BrookesTalk, the
abstract that was generated by Betsie was considered excessively long and that further work
to improve its accuracy is necessary. Users of the tools said that they thought the summary
information provided could potentially be useful, but was not for any pages involved in this
evaluation. Comments were also made by the users over their lack of trust for technology to
generate meaningful data from documents but said they could probably learn to do so over
time.

 The next chapter brings together the results of the project to form a conclusion and outlines
some of the areas of both tools recommended for development in the future.

56

6. Conclusion and recommended work
 This chapter of the document brings together the results of the evaluations to present a
comparison of the two accessibility tools studied. This will include an outline of problematic
and useful features of each tool. Following the comparison, an outline of developments
required to the two tools will be given. Suggestions on areas for further work as well as a
project criticism are also given.

6.1. Comparison of the tools
 The initial aim of this project was to compare the two web accessibility tools, Betsie and
BrookesTalk. In order to perform this comparison, aspects of each tool will be compared with
corresponding aspects in the other tool. It is important to note that some problematic areas are
not covered here, these relate to tool specific aspects that do not adversely affect the
application use. An example is the loading information messages that BrookesTalk provides
to the user. Whilst being an issue that requires discussion, it is not an issue that has a
corresponding aspect within Betsie and hence discussion is left to the section on development
ideas. This is because of the differences in approach used by the two tools – one is a gateway
script, the other is a full browser.

6.1.1. General navigation
 The two tools being evaluated by this project are designed to aid web navigation by blind
users. In order to do this, several core features are required to be available. This first of these
is link capability. BrookesTalk presents the user with a menu containing a list of links
available in the page currently being viewed. It is possible to follow a link by pressing return
whilst being read out from the links menu. It is also possible to follow a link by clicking on it
in the visual representation of the page being accessed. Using this method results in a window
focus problem and is unavailable for use by blind people. In contrast to this, Betsie simply
provides inline links within the current loaded page, the activation of which is dependant on
the screen reader being used. In many cases, this will be the ability to follow a link whilst it is
being read. Whilst the BrookesTalk method of link implementation means that links within a
page are easily found, they can be out of context when in the menu and hence the method
used by Betsie can be advantageous. On the other hand, one user involved in an evaluation
task using BrookesTalk was noted to locate information and to build up a mental picture of
the structure of the web site through the use of the links menu. It is difficult to say which
method is better, however, it is suggested that greater understanding of the result of following
a link could be obtained from the inline method of link access.

6.1.2. Images
 Images are used everywhere on the Web and as such, it is important for blind users to be able
to access information that may be contained within them. The current HTML standard
supports a feature to allow page designers to provide information about the content of an
image in a non-visual manner. This is by using the ALT text attribute of the tag. To
support this, Betsie provides the user with the text specified by the ALT attribute when it is
available. This has the effect that blind users are able to access information about images if
provided by the web page designer. BrookesTalk does not however take advantage of this

57

feature of the HTML standard. This is a definite problematic area of BrookesTalk because it
does not allow blind users access to hidden image information. Instead, BrookesTalk displays
the picture in the visual page representation. Whilst this is excellent for partially sighted
users, it does not provide access for blind people. This problem may be made worse on
certain websites that use images to provide navigation around the site because a blind user
will be unaware of the presence of images.

6.1.3. Conceptualisation tools
 The initial version of the Betsie script contained no methods or tools to help users build up a
conceptual model of a web page. That is to say, the user was left to obtain all information
about the page with no electronic assistance. BrookesTalk, on the other hand has many
features built into it to help users obtain information about the page being accessed. This
includes information such as headings contained in the page, number of words and links as
well as document keywords and abstract. It was found through evaluation tasks that these
conceptual model tools were useful in helping a user to understand the content of a page
quickly and easily. It is for this reason that some of these features were implemented in
Betsie. The modified version of Betsie was found to produce reasonably good results in terms
of document summary, however the abstract that was generated was frequently found to be
too long and hence of only limited use. In this respect, BrookesTalk performs better than
Betsie in that it helps users to quickly understand the content of a page. This is important
because sighted users will often perform this task by simply glancing at the visual
information.

6.1.4. Search
 It is interesting that BrookesTalk provides a way to perform an Internet-wide search using a
common search engines, however no search within page is available. Whilst not explicitly a
feature of Betsie, the majority of web browsers available provide a search within page feature
as standard and because Betsie is used through a web browser, is available for use whilst on
pages returned by Betsie. It was noted that some users involved in evaluations used the search
within page regularly to help decide if the page being accessed contained certain information
that they were looking for. It is therefore suggested that by adding a search feature to
BrookesTalk in association with the existing tools will result in greater functionality along
with provision of easier access to information within a page.

6.1.5. Forms
 It was noted during evaluation that Betsie was capable of allowing blind users to access web
forms. This is an essential aspect to be included in an accessibility tool because many search
engines and web pages use forms to obtain information from users. It was found that whilst
BrookesTalk did support forms for partially sighted people, there was no support for blind
users. This was because it was not possible to access each element of the form without
resorting to clicking in the visual representation provided. Betsie only uses one browser
window and, if the browser in use supports keyboard access to forms, (it is expected that all
browsers do) then blind users can access and complete forms well.

58

6.1.6. Tables
 Tables are becoming widespread on the Web and hence access to the data contained within a
table is often important. It was found that both Betsie and BrookesTalk presented a similar
representation of tabular information, this was to read each cell one at a time. Whilst this is
sufficient for small tables, it is likely (although this has not been tested) that when large
amount of data, or when similar data exists in several columns, that the user may quickly
become disorientated about their location within a table. No alternative solutions to this
problem have become apparent as a result of the evaluations undertaken and hence this is left
as a future research topic.

6.1.7. Installation Issues
 It was noted early on in this project that various issues regarding installation exist with both
Betsie and BrookesTalk. In the case of Betsie, it is possible that no installation is required –
this is the case if a user knows of an installation of Betsie and has a screen reader/web
browser combination. The installation of Betsie, and/or a screen reader/web browser
combination may be required in other cases. If Betsie is required to be installed, then either
the user wishing to use Betsie needs to be computer literate and have access to a web server,
or needs to ask another user to install the Betsie script. Depending on the installation level
required, the difficulty level to use Betsie varies greatly. In contrast to this, all prospective
BrookesTalk users will have to perform some installation. It was noted earlier how the
installation process is complex for BrookesTalk because of the nature of the installation
programs. It is difficult to draw any conclusions over which tool is easier to install because of
the varying nature of installation requirements for Betsie.

6.1.8. Financial Implications
 At present, BrookesTalk is a free product. Other than a computer with Microsoft Windows
and a sound card (a standard for almost all computers sold within the last five years), a blind
user needs to purchase no specialist software to access the Web using BrookesTalk. This is
because BrookesTalk is distributed with part of the Microsoft Speech Development kit and
hence a blind user may be able to access the web with no financial cost. In contrast to this,
Betsie is a platform independent tool – provided a web browser and screen reader are
available for the operating system the user wishes to use, Betsie will be able to help provide
more accessible web pages. Using Betsie to access the Web does however require that the
user is aware of an installation of Betsie on a web-server that can be used with the pages
required and that a screen reader and web browser are available. Whilst web browsers are
available free of charge for most operating systems, screen readers can be very expensive. In
this respect, Betsie is potentially very costly to use. It could be considered that any blind user
wishing to use a computer for any means other than web browsing would require a screen
reader to be installed and it can be accepted that any blind user with a computer will have a
screen reader available hence the cost of installation is difficult to gauge and compare.

6.2. Development ideas for each tool
 This section outlines areas in which each tool requires development in order to provide
greater use and functionality to blind users for web access. These developmental ideas have
been extracted from the results of the two evaluations undertaken.

59

6.2.1. Ideas for developing Betsie
 It should be clear that as a result of the second evaluation performed, the document abstract
implemented into Betsie was considered useful, but too long. It is therefore recommended
that the abstract algorithm be modified or replaced and that further testing be performed
concerning the use of such a tool into web navigation and page conceptualisation for blind
users. Research into other methods of automated document abstract generation is
recommended in order that different methods and techniques may be evaluated to find an
optimal system.

 Different ways into presenting the summary and abstract information may also be worth
considering. Implementing a different method of presentation may remove the requirement
for the summary to be refreshed each time a different page is loaded through Betsie. During
the second evaluation, some comments were received from a user that indicated that the
BrookesTalk links mechanism was an excellent concept and therefore an inclusion of a
separate set of links as well as inline links may be advantageous to browsing. Again, this
would require research into presentation methods and user evaluations to test the performance
of any implemented ideas.

 It was noted early on in the project, but only mentioned as a passing comment, that Betsie
struggled when password protected pages were accessed. It is therefore recommended that
research into methods used for authentication is undertaken and some form of
implementation to allow password-protected pages to be accessed is included.

 Overall, it can be seen that the majority of development to Betsie concerns conceptualisation
tools. This is not the case for BrookesTalk, and it more recommendations for development
are given for BrookesTalk, this is not a reflection of poor design to BrookesTalk and it should
be understood that BrookesTalk is a much more complex tool than Betsie. It is a whole web-
browser in its own right and many of the development recommendations relate to general
browser development and not to conceptualisation as in the case of Betsie.

6.2.2. Ideas for developing BrookesTalk
 Three major issues concerning the development of BrookesTalk have been discovered as a
result of this project. The first of these is the problem of image information representation.
Images are widely used in web pages and therefore, it is essential that blind users should be
able to access the information stored behind them. This is of special important because of the
efforts of the w3c to implement the ALT textual description into the HTML standard. It is
therefore vital that development of BrookesTalk is undertaken to ensure that, where available,
ALT text is presented to the user of the browser. If this is not implemented then a blind user
will not be able to access the information provided.

 Secondly, the focus problem of the browser windows needs to be resolved. This problem
could easily disorientate a blind user if they accidentally switched focus to the visual
representation window because they may be unaware of the action and hence may not
understand why the application has ceased to respond to keyboard actions concerning reading
the page content. It is therefore important that a solution to this problem be found.

 Whilst not apparent in the non-visual browsing exercises used for the evaluations, personal
experience indicated a problem existed when links within pages referred to objects that were

60

not web pages. In many visual-based web-browsers, if an object is linked that is not a web
page, the user is given the opportunity to save the file locally. This occurs regularly in web
browsing because people wish to download files off the Internet. Whether the file may be a
virus checker update, or a music file, blind users should still be able to access the information
and hence providing a save to disk feature is important in any web browsing tool and
therefore requires implementation within BrookesTalk.

 It was noted during the first evaluation that problems with the installation procedures could
cause difficulty to blind users and as such, modifications to the install procedure are
recommended. It is accepted that the current version of BrookesTalk is only for evaluation
purposes, but it is important to note that a formal release should provide a full and accessible
installation procedure. This topic is also relevant to documentation provided with
BrookesTalk. At present, the main way to access documentation is thorough visual means
and whilst an electronic version of the documentation is provided on the installation CD, it is
important that a method for indicating this to a blind user be implemented. Again, it is
expected that a formal release of BrookesTalk would include such items.

 By using Betsie and a screen reader/web-browser combination, it was apparent that access to
inline links was useful. This means that whilst blocks of text are being read, if a link is
encountered the user is notified and has the option to follow the link by pressing the return
key. Implementing such a feature into BrookesTalk may reduce the cognitive load on a user if
they wish to follow a link – it may be difficult to find a link relevant to a block of text within
a long list of links.

 The use of forms on the Internet is growing, and it was noted that unless some form of visual
access was used, it was not possible to complete web-based forms in BrookesTalk. In fact, it
was only possible to complete a form by clicking into the visual representation window.
Clearly, this is not an option for a blind user who would not be able to see each element of a
form. It is therefore necessary to research and implement non-visual ways of accessing form.
If this is not undertaken, blind users may be excluded from accessing certain information and
pages.

 It was noted many times throughout the evaluations that users either used (in the case of
Betsie evaluations), or requested the use of a search within page mechanism. The use of this
has been reinforced several times throughout the evaluations and hence an implementation is
recommended. The search mechanism would allow users to jump quickly to relevant
information within a document without the need to listen to irrelevant items.

 Finally, it was noted from the user evaluations performed that the information concerning
page loading needs modification to simplify the use of the tool. The biggest problem with the
existing system was the disorientation potential when messages such as “21k of 20k” or “22k
of 22k” were received. The first of these examples could clearly confuse a user of the tool
and also it gives no indication concerning the amount of data that remains to be loaded. The
second example often confused users because they assumed data loading was complete when
in fact further data remained to be loaded. It is accepted that some mechanism to reassure the
user that information was still being retrieved is required so that users do not become
concerned that processing has ceased. It is however recommended that either the existing

61

system being modified to be more accurate or a different message be implemented, for
example simply, “Loading”.

6.3. Areas for further work
 As well as developing the tools in the manner described above, suggestions on additional
work should be considered. These suggestions provide scope for further research on the topic
of web-accessibility for blind people.

Images
 Whilst the ALT attribute of images allows page designers to provide a textual description of
pictures, this is not always used. It was suggested how future image types could have an
embedded textual description and hence research into the development of image standards to
include such a description could have vast implications on web-accessibility. This is of
special importance if image-editing applications were to query the user for a description
whenever a file is being saved. This would prompt users to provide the information rather
than having to remember each time that an image was placed in a web page. It is clear how
the creation of a new standard or development of existing standards to include such text has
great potential and hence research into this area is encouraged.

Abstract generation
 It was noted how the method used to generate an abstract in Betsie was often over ambitious
in that it provided too many sentences. Research and implementation of a different algorithm
is therefore a potential area for future development.

Tables
 It was noted that both tools used a similar method to present tabular information. This method
was to represent one cell of a table at a time. Whilst this provides the user with all the
information available in the table, once a sizeable amount of data is stored in the table,
orientation of columns and rows would become difficult. This means that the user may
quickly forget the column headings as well as forget which column they are currently
accessing. In cases where numerical or similar data is stored in each column, the user may be
unable to distinguish the context of the current cell. Investigation into ways sighted users
conceptualise and work with tabular data may present new ideas for non-visual access. Not
only has this the potential to help with web access, but could also be applied to spreadsheet
applications. Studies into the ways sighted users manipulate data (e.g. comparison of columns
1 and 6) may lead to ways in which blind users can also manipulate fully data provided to
them.

XHTML
 Recently, the w3c decided that the HTML standard should be developed to be more powerful.
It was considered that the XML [XML] standard was a good direction to use. XHTML
[XHTML1 2000], issued on 26th January 2000, was the result of this. Further evaluation of
the existing tools with this standard provides scope for further research. Testing the
accessibility of XHTML in general could also provide an interesting research project.

62

Style-sheets
 Style-sheets [CSS] have the potential to provide web accessibility with greater ease because
of the vast amount of information that users can encode into them. This includes the ability to
provide information concerning non-visual access. At present, no known browsers support
the voice-speed and pitch styles included within the definition. Research with developmental
browsers could provide indications as to the use of these specialist features and the effects in
general on web accessibility when style sheets are used.

6.4. Self-criticism
 Having completed the project, it is recognised that if a similar project were to be undertaken,
several changes and improvements could be made:

• Due to time constraints, only a small number of users were involved in the second
evaluation procedure. In order to obtain a better, more accurate set of results, a larger
number of people should be involved in the evaluation process.

• Whilst difficult to find, it is suggested that evaluation procedures are undertaken using
both blind and sighted users in order to obtain a more general view. This should help to
reduce any differences in opinion through the use of sighted users.

• It is also accepted that not all aspects of web-access for blind people has been covered
and in any further work, it would be necessary to investigate the effects of various
technologies such as ActiveX, and their implications over the tools evaluated.

• The second evaluation performed involved several volunteers all using the same web-
browser and page combinations. In order to increase the accuracy of results, it is
suggested that further sites are evaluated using each browser and that the web sites used
for each browser are randomised. This is necessary to minimise the impact on results if
any specific task is found to be easier than others are.

• Part of the implementation of this project involved the development of Betsie. The
document abstract algorithm used was found to be inefficient and generated an abstract
that was too long to be of much use. It is therefore suggested that further abstract
generation algorithms are investigated and implemented.

 Despite these criticisms, it should be noted that much information has been learnt about web-
accessibility that was not previously considered. Any future web sites that I may be involved
in designing will be checked for their accessibility. It has been interesting to note that I have
started looking at the accessibility of web pages I have visited and it is surprising the number
of pages found which do not provide support for non-visual access.

 Overall, this project has been interesting and enjoyable and has resulted in greater personal
knowledge of web accessibility as well as learning a new programming language – Perl. This
will have many uses in the future because of its general nature in use on the Web.

63

7. References
 Speech Project “The Speech Project - BrookesTalk - A Web Browser for the Blind and Visually

Impaired”
 http://www.brookes.ac.uk/schools/cms/research/speech/

 Betsie 1999 “BBC Education Betsie Site”
 http://www.bbc.co.uk/education/betsie/inverse/index.html
 BBC “BBC Online Homepage”
 http://www.bbc.co.uk/

 NatWest “The NatWest bank online”
 http://www.natwest.com/

 W3C “W3C – The World Wide Web Consortium”
 http://www.w3.org/

 WAI “W3C Web Accessibility Initiative (WAI) Home Page”
 http://www.w3.org/WAI

 HTML4.01 1999 “HTML 4.01 Specification”
 http://www.w3.org/TR/html4

 HTML4.0 1998 “HTML 4.0 Specification”
 http://www.w3.org/TR/1998/REC-html40-19980424/

 HTML3.2 1997 “HTML 3.2 Reference Specification”
 http://www.w3.org/TR/REC-html32.html

 HTML2.0 1995 “HTML 2.0 Materials”
 http://www.w3.org/MarkUp/html-spec/

 VALIDATER “W3C HTML Validation Service”
 http://validator.w3.org/
 BOBBY “CAST - Bobby”
 http://www.cast.org/bobby

 Haywood 1997 Haywood, R, “Accessibility Issues of Web Browsers for Blind People”, Department
of Computer Science, The University of York, 1997

 Blair 1999 Taylor, R, “Embrace the internet or go bust, Blair tells British business”, The
Guardian, September 13th, 1999

 http://www.guardianunlimited.co.uk/Archive/Article/0,4273,39014
37,00.html

 Jones, G, “Use Net or fail, Blair tells business”, The Telegraph, September 16th, 1999
 http://www.telegraph.co.uk/et?ac=002468295856081&rtmo=LbxLl3bd&

atmo=tttttttd&pg=/et/99/9/16/ecnblair16.html

 ADA 1990 “Americans with Disabilities Act”, US Department of Justice, 1990
 http://www.usdoj.gov/crt/ada/adahom1.htm

 DDA 1995 “Disability Discrimination Act”, 1995
 http://www.disability.gov.uk/dda/index.html

 Mendels 1999 Mendels, P, “Lawsuit Says AOL Shuts Out the Blind”, New York Times, 1999
 http://www.ilusa.com/News/110599aol_suit4n.htm

 JAWS “Henter-Joyce, Inc. - Developers of JAWS and MAGic!”
 http://www.hj.com/
 Edwards 1997 Edwards, A, “Legislation and access to the World-Wide Web” , CD Edition of

proceedings at the Sixth International World Wide Web conference, Santa Clara,
California USA, 1997

 SNS 1999 “Web Accessibility”,1999 , IBM Special Needs Systems
 http://www.austin.ibm.com/sns/accessweb.html

 Jenkins 1997 Jenkins, P, “Experiences Implementing Web Accessibility Guidelines in IBM”, 1997
 http://www.austin.ibm.com/sns/phillj.htm

64

 Edwards & Stevens 1997 Edwards, A, Stevens, R, “Visual Dominance and The World-Wide Web”, CD Edition
of proceedings at the Sixth International World Wide Web conference, Santa Clara,
California USA, 1997

 Zajicek & Powell 1997 Zajicek, M, Powell, C, “Building a conceptual model of the World Wide Web for
visually impaired users”, Proc. Ergonomics Society 1997 Annual Conference,
Grantham

 http://www.brookes.ac.uk/schools/cms/research/speech/publicatio
ns//40ergsoc.htm

 Zajicek, Powell & Reeves 1998 Zajicek, M, Powell, C, Reeves, C, “Orientation of Blind users on the World
Wide Web”, M. Hanson (ed) Contemporary Ergonomics 1998 (Taylor and Francis,
London)

 http://www.brookes.ac.uk/schools/cms/research/speech/publicatio
ns/56_ergsc.htm

 SHOCK “Macromedia Flash”
 http://www.macromedia.com/software/flash/

 JAVA “java.sun.com - The Source for Java™ Technology”
 http://java.sun.com/

 ACTIVEX “ActiveX Controls - Microsoft Papers, Presentations, Web Sites, and Books, for
ActiveX Controls”

 http://www.microsoft.com/com/tech/activex.asp?RLD=18

 RAUDIO “real.com”
 http://www.real.com/

 Perl Wall, L, Christiansen, T, Schwartz, R, “Programming Perl”, O’Reilly & Associates,
1996

 YorkWeb “University of York, UK: Welcome page”
 http://www.york.ac.uk/

 XML “Extensible Markup Language (XML)”
 http://www.w3.org/XML/

 HXTML1 2000 “XHTML 1.0: The Extensible HyperText Markup Language”
 http://www.w3.org/TR/xhtml1/

65

Appendix I

Code for Betsie

 Note that the code added as part of this project is located as the end of the script in the
function called “summary”

