

Precise Timing Data for the Use of a Single Button

Gautam Bhatnagar

Submitted in part fulfilment of the BSc in Computer Science.

Department of Computer Science

March 2003

Supervised by Alistair Edwards

Number of words = 7913 as counted by Microsoft Word’s word count function

This includes the body of the report, but excludes the appendixes

2

1. Table of Contents

Precise Timing Data for the Use of a Single Button 1

1. Table of Contents 2

2. Table of Figures 4

3. Acknowledgements 5

4. Abstract 6

5. Introduction 7

6. Previous Work 10

6.1. Multiple buttons versus a Single button 10

6.2. Uses of a Single Button 11
6.2.1. Single-Click 11
6.2.2. Long-Click (Extended Click) 12
6.2.3. Double-Click 12
6.2.4. Triple-Click 13

6.3. Human-Machine Interaction Psychology 13
6.3.1. The Model Human Processor 13
6.3.2. Timing Predictions 14

6.4. Summary and Analysis of Results from Yanyu Li’s Experiment 16
6.4.1. Single-Click 16
6.4.2. Long-Click 17
6.4.3. Double-Click 18
6.4.4. Triple-Click 18
6.4.5. General Conclusions from Li’s Experiment 19

6.5. Problems with Li’s Experiment 19

7. Experimental Design 20

7.1. Hardware Design 20
7.1.1. Switch Device 20
7.1.2. Computer 21

7.2. Software Design 21
7.2.1. Original Software Code 21
7.2.2. The Test 22

8. Experimental Results and Discussion 26

8.1. Single Click 26

3

8.2. Long Click 27

8.3. Double Click 28

8.4. Triple Click 29

8.5. Errors 31

9. The Effect of Different Switches on the Timings 32

9.1. Switch A 33

9.2. Switch B 33

9.3. Switch C 35

9.4. Switch D 36

9.5. Discussion 37

10. Conclusions 38

10.1. Further Work 38
10.1.1. Problems with the current experiment 38
10.1.2. Further investigation into the effect of different types of switches 39
10.1.3. Single button usage for differently able users 40
10.1.4. Combinations of different types of presses 40
10.1.5. Relevance of the single button press 40

11. References 41

12. Bibliography 42

Appendixes 43

A. Results (translated from the hexadecimal output) 44

B. Frequency Distribution Graphs 50

C. User Instructions 52

D. Switch Schematic 53

E. Visual C++ Code 54

4

2. Table of Figures

Figure 5.i Fastap Keypad (picture courtesy of BBC News, 25th November 2002) 7
Figure 6.i A Single Click 11
Figure 6.ii A Long Click 12
Figure 6.iii A Double Click 12
Figure 6.iv A Triple Click 13
Table 6.i Processor cycle times adapted from "The Psychology of Human-Computer Interaction", Card et al. 1983 14
Figure 6.v Results for c from Li's experiment 16
Figure 6.vi Results for l from Li's experiment 17
Figure 6.vii Results for d1, d2 and d3 from Li's experiment 18
Figure 6.viii Results for t1, t2, t3, t4 and t5 from Li's experiment 18
Figure 7.i Black switch used in the experiment 20
Figure 7.ii The first test screen presented to the user 22
Figure 7.iii The legal statement to which the user must agree 23
Figure 7.iv The questionnaire the user must complete to continue with the test 23
Figure 7.v The test from which the user will launch the test 24
Figure 7.vi A sample of the prompts for clicks, in this case a triple click 24
Table 8.i Statistical data collected for c 26
Figure 8.i Frequency Distribution for c 27
Table 8.ii Statistical data collected for l 27
Figure 8.ii Frequency Distribution for l 28
Table 8.iii Statistical data collected for d1, d2, d3, d4 and d5 28
Table 8.iv Li's experimental data for double clicks in the age group 10 to 50 year olds 29
Table 8.v Statistical data collected for t1, t2, t3, t4 and t5 29
Table 8.vi Li's experimental data for triple clicks in the age group 10 to 50 year olds 30
Table 9.i Statistical results for Switch A (times in ms) 33
Figure 9.i The mouse used for Switch B 34
Table 9.ii Statistical results for Switch B (times in ms) 35
Figure 9.ii Switch C 35
Table 9.iii Statistical results for Switch C (times in ms) 36
Figure 9.iii Switch D 36
Table 9.iv Statistical results for Switch D (times in ms) 37
Table 9.v Comparison of means for the different switches (times in ms) 37
Table 10.i Suggested values for our parameters, from different error rates (times in ms) 38

5

3. Acknowledgements

I would like to thank my supervisor, Alistair Edwards, for his guidance and Richard Pack for all

of his help with the hardware. Additionally I would like to thank all my housemates for their

patience, support and proof reading skills.

6

4. Abstract

Modern portable devices, such as mobile phones, watches etc. rely on the input that can be

achieved using a small number of buttons. To maximise the range of inputs it is important to

use these buttons in as many ways as possible, e.g. using double clicks or triple clicks etc. to

provide new meanings. When developing consumer devices it is necessary to know the precise

timing parameters to be applied to these different types of button presses. It was the objective

of this study to obtain precise timings for these parameters. Data was collected from average to

above-average users within the age group 15 to 50 year olds and these results are presented.

The results can be used as a basis for interaction designs or for further research. One of the

conclusions drawn is that there is a wide range of button-pressing performance in the

population and that systems which adapt to their individual users may be more useful although

values for each click are presented, with the error rates that those values might incur.

7

5. Introduction

Traditionally and historically, buttons have been used as a way for people to interact with

electronic systems and other machinery. There are many portable devices in use today (e.g.

watches, mobile phones, portable music players etc.); in such applications, miniaturisation is a

much prized commodity. There is, however, a limit to how small these devices can be made.

One limitation of this miniaturisation process is the number of buttons (or other input devices)

that must be present for adequate interaction with the device.

Despite still being one of the primary methods of communicating with devices, there has been

little research published recently which has paid attention to the use of buttons. While,

previously it could be said that "interfaces are an unappreciated piece of the technology puzzle"

(David Levy - former head of Apple’s ergonomic design division [BBC News, 2002a]) there is an

increasing focus on interface design to increase productivity and usability, but much of the

research remains out of the public domain. This is possibly because much of the work is done

for the development of commercial products, and as such the companies involved do not feel

compelled to make their results available to their competitors.

The demand for this research comes from users of small portable devices increasingly wanting

(or needing) to input many and complex messages to their devices.

For example, mobile phones commonly have to use a ten or twelve button keypad to input fifty-

two upper and lowercase letters, in addition to spaces, punctuation and controls. Therefore it

makes sense to “make the most” of the number of buttons available by trying to use them in a

variety of ways.

Figure 5.i Fastap Keypad (picture courtesy of BBC News, 25th November 2002)

8

There has been research performed by persons such as David Levy (the former head of Apple’s

ergonomic design division) to find a way to fit individual buttons for as many letters as possible.

Levy’s method, the Fastap keyboard (Figure 5.i) works by giving each character each own button,

with numerals being produced by pressing the surrounding four buttons [BBC News, 2002b].

This is particularly useful for reducing the number of presses using “traditional” text messaging

systems (such as predictive text software), especially for languages such as Japanese where

current systems take up to 8 presses to produce some of the 120 characters in the Japanese

alphabet [BBC News, 2002a].

Despite these innovations there is a limit to how many buttons can be fitted on a small device

due to ergonomic factors. Therefore there needs to be some way of multiplying the use of a

single button.

“There are variations of elementary pressing of the button (double-clicking etc) which can be

used to broaden the input, but there is a question as to how many different button presses are

practical.” [Edwards & Li, 2000]

There are many theories available, which are useful in predicting and explaining human

performance, errors, ease of learning etc. The Model Human Processor [Card et al., 1983]

provides one way of predicting human performance in human-machine interactions and can

give us guidelines as to what the timing might be. However, a theory is just that; and as such,

obtaining the timing data required, in the accuracy required can only be done by an empirical

human experiment.

Yanyu Li [Li, 2000] attempted to answer the question of how many presses are practical by

providing detailed results, from actual user inputs, of the time taken to perform a selection of

different ways of pressing a single button (a single click, a double click, a triple click and a long

press in the case of her experiment) in an attempt to answer this question.

However Li’s project suffered from major inaccuracies in the method used to record the timings,

as the experiment was performed using a software only solution which had an accuracy of

50ms (in some cases this would make the possible error over 100%).

This project is based heavily on Li’s but is mainly concerned with collecting timing data with

increased precision, for the different types of button presses in order to provide guidelines for

appropriate time parameters for real world usage. Our project, however, used a hardware

9

based timing mechanism which increased the accuracy considerably. The hardware device

was built in the department and skeleton code was constructed in Visual C++ to interface with

the device. Part of this project was to construct a graphical user interface to communicate with

the device, and part was to perform experiments and obtain user data using the graphical

interface.

There is an importance to strike the right balance for these timings. Slow timings extend the

time of the interaction, and can frustrate the user. Faster times may, however, result in errors

(due to faster reaction times required for the actions) and once again increase the time of the

interactions (due to repetitions) and frustrate the user. This project aims to produce a range of

optimum timings which would give an appropriate balance between performance and error rates

for a generic single button situation.

10

6. Previous Work

Much of the research on previous work relating to this project has been performed by Li [Li,

2000] and this work is summarised here in this chapter.

Yanyu Li defined a button as being “a tool, a bridge that connects the user and the machine, in

order to realize the communication between them” [Li, 2000]. There are countless buttons

present in the modern world, all of varying sizes, shapes and even textures; there are even

simulated (graphical) buttons present in computer software.

The uses of these buttons are sometimes not as simple as a single press, and sometimes

involve multiple presses, or possibly a combination of other buttons being pressed as well, to

get the desired action. Additionally buttons may have multiple meanings, which change during

the course of the user’s interaction - these are sometimes known as “soft” keys.

Of course, interactions with devices are not limited to buttons (in their myriad forms); one of the

commonest ways to interact with computers is a mouse, which consists of a method (optical,

mechanical or otherwise) of translating the mouse’s movement into some meaningful action for

the computer (e.g. movement of a cursor). The mouse usually has a number of buttons present

as well.

6.1. Multiple buttons versus a Single button

Although Gregg Williams’ tests using Apple Computer’s Lisa indicated “that people aren’t

always sure which button to push on a multiple-button mouse” [Williams, 1983], a project

investigating the error rates and performance of users when using multiple buttons was

performed by Lynn Price [Price, 1983]. In this project users were asked to indicate true or false

with either a single click or double click in the first case, and with two different buttons in the

second case; the conclusions drawn were that people performed faster and with lesser errors

when using separate buttons for each action (indicating true or false in this case).

However it may be impractical to fit many buttons on small devices; the users of these devices

still expect to be able to communicate complex messages with their devices. Therefore there

needs to be a compromise; despite the conclusions of Price [Price, 1983] pointing to multiple

buttons being more efficient, multiple ways to use a single button need to be found.

11

One method of providing multiple uses of a single button is that of “soft” keys, where the

meaning of the button press changes as the user proceeds in their interaction. The meaning is

sometimes indicated on a display (if one is available). This system is commonly used on mobile

phones and PDA devices. There are other methods involving pressing different combinations of

buttons to obtain different results but, as anyone who plays videogames will tell you, these

combinations can be tricky to master and are not error free.

One of the simplest methods of increasing functionality of the buttons is that of multiple presses,

it is that which was investigated by Li [Li, 2000] and will be investigated by ourselves.

6.2. Uses of a Single Button

Yanyu Li [Li, 2000] investigated the following types of different button presses:

• Single-click

• Double-click

• Triple-Click

• Long-Click (Extended Click)

6.2.1. Single-Click

This is the commonest way of using a button; the button is pressed then released at once. This

is shown in the Figure 6.i, where one bit is transmitted, the only parameter being c, which is the

length of time that the button had been depressed for.

Figure 6.i A Single Click

12

6.2.2. Long-Click (Extended Click)

This is a sustained click i.e. the button is depressed, held in that position for some time and then

released. This differs from the single click in the duration that the button has been depressed

for, l.

Figure 6.ii A Long Click

6.2.3. Double-Click

This is two rapid clicks but differs from two single-clicks in meaning and in timing. We will try

and quantify the three timing parameters d1, d2 and d3, so as to form a characterisation of a

double-click. The parameter d2 is crucial to decide what is determined to be a double click and

what is to be taken as two single-clicks [Li, 2000].

Figure 6.iii A Double Click

13

6.2.4. Triple-Click

This is an extension of the double-click. In this case there are five timing parameters, t1, t2, t3,

t4, t5. The parameters t2 and t3 being crucial to determine whether it is a triple click, three

single clicks or a combination of a double and single click [Li, 2000].

Figure 6.iv A Triple Click

6.3. Human-Machine Interaction Psychology

6.3.1. The Model Human Processor

The Model Human Processor Theory [Card et al., 1983] describes and attempts to explain

human performance. This model views the human mind as an information-processing system

which is built up of a set of models to describe and predict human reaction times in different

operations. The interacting processors modelled are the perceptual processor, the motor

processor and the cognitive processor, all linked to memory. The innards of these processors

are not what we are concerned with however, and so the most important parameter of each of

these processors is T, the cycle time i.e. the time taken for each processor to perform their

action. Given that human brains (and human beings!) are very variable objects and there are

many uncertainties to be dealt with, three separate models have been created.

These are Slowman (worst performance), Middleman (normal performance) and Fastman (best

performance). The timings for each of the processors cycle time is presented in Table 6.i.

14

 Slowman Middleman Fastman

Perceptual

Processor Cycle

(Tp)

200ms 100ms 50ms

Cognitive

Processor Cycle

(Tc)

170ms 70ms 25ms

Motor Processor

Cycle (Tm)
100ms 70ms 30ms

Table 6.i Processor cycle times adapted from "The Psychology of Human-Computer Interaction", Card et al. 1983

These timings provide us with a way of predicting the performance in our button presses.

6.3.2. Timing Predictions

This still leaves us with two ways of modelling our button presses, depending on the level (if

any) of cognition required for the button presses. The level of cognition required could depend

not only on the complexity of the button press (although this should not be an issue as we are

only investigating relatively simple button presses) but also on the user’s familiarity with those

button presses.

This distinction affects the predictions significantly as detailed below.

Assuming the action is purely dependent on the Motor System (processor) for a single button

press, then the time is Tm + Tm [Card et al., 1983] (time to press button, time to release button)

i.e. the stroke (c) will last 140ms (60ms for Fastman, 200ms for Slowman).

Alternatively if we need to incorporate the perceptual and cognitive cycles then the time take will

be Tm + Tp + Tc + Tm = 310 ms {135 – 470}

The double-click and triple-click predictions should merely be an extension of this. However the

long-click would certainly involve the perceptual and cognitive cycles due to the user having to

determine when the time button had been pressed long enough (in real world situations the user

may receive some kind of feedback, e.g. auditory or visual, that the action is complete and then

release)

15

16

6.4. Summary and Analysis of Results from Yanyu Li’s Experiment

The results from Yanyu Li’s Experiment are presented below. The groups were segmented on

age. In general similar readings were taken for the age group of 10 to 50 years, but with

noticeably slower times for those outside the age range. The results are discussed in further

detail below.

Li also made a cursory investigation into error rates for each of the clicks, it is unclear from her

report how these errors were trapped, but the errors were listed as:

• making a long click as a single click or vice versa

• making a double click as a single click

• making a triple click as a double click

• making a double click as a triple click

The error rates for each click are given in the sections following. Jonathan Tuffin [Tuffin, 2001]

carried out a more detailed investigation into error rates, where he used values from Li’s

experiment to produce a time limit for each click based on a 40% error rate. The users were

surveyed as to their state of mind after the test, and were found to be quite resilient and

accepting of errors.

6.4.1. Single-Click

Average Time for a Single-Click (c)

0
50

100
150
200
250
300
350
400

0-10 11-20 21-30 31-40 41-50 51-60 61-70 70+

Age Group (yrs)

A
ve

ra
ge

 T
im

e
(m

s)

Figure 6.v Results for c from Li's experiment

17

The mean across the age groups was calculated as 192 ms. For the age group of 10 to 50

years the average of approximately 140 ms seems to bear out the initial prediction (with no

perceptual cycle involved) of 120 ms from the Model Human Processor. Additionally results

from the groups in this age region were closer to the normal distribution.

Error rates for this click were also recorded with a rate of 1.3% of the total single clicks made by

12.1% of the users.

6.4.2. Long-Click

Average Time for a Long-Click (l)

0
500

1000
1500
2000
2500
3000
3500

0-10 11-20 21-30 31-40 41-50 51-60 61-70 70+

Age Group (yrs)

A
ve

ra
ge

 T
im

e
(m

s)

Figure 6.vi Results for l from Li's experiment

The mean across the age groups for l was 1684 ms with a mode of 880 ms, a median of 1160

ms and a standard deviation of 1863 ms. The long click had an error rate of 2.8% made by

25% of the users.

18

6.4.3. Double-Click

Average Times for a Double-Click

0
50

100
150
200
250
300
350

0-10 11-20 21-30 31-40 41-50 51-60 61-70 70+

Age Group (yrs)

A
ve

ra
ge

 T
im

e
(m

s)

d1
d2
d3

Figure 6.vii Results for d1, d2 and d3 from Li's experiment

The average time for d1 was 160 ms; d2 had an average of 196 ms and d3 had an average time

of 158 ms, with an average time of 514 ms for the total click length. Again the age group of 20

to 40 year olds showed a closer match to the normal distribution (with the mode, median and

mean closer to each other).

The error rates observed were 3.2% made by 25% of users.

6.4.4. Triple-Click

Average Times for a Triple-Click

0

100

200

300

400

0-10 11-20 21-30 31-40 41-50 51-60 61-70 70+

Age Group (yrs)

A
ve

ra
ge

 T
im

e
(m

s)

t1
t2
t3
t4
t5

Figure 6.viii Results for t1, t2, t3, t4 and t5 from Li's experiment

The observed averages were: 156 ms for t1, 205 ms for t2, 147ms for t3, 217 ms for t4, and 156

ms for t5. Again, the middle age group of 10 to 40 years old produced closer to normal

19

distributions, with modes, medians and means of approximately 110 ms. The error rates were

4.4% made by 30% of the users.

6.4.5. General Conclusions from Li’s Experiment

The averages of the results seem to bear out the Middleman predictions, however more directly

from the data we can see that there were a number of people with timings more in line with

Fastman predictions (80 ms for c, d1, d3, t1, t3, t5). However the results for slower timings were

out of the Slowman range predictions; this could be due to the results from those users being

affected by unfamiliarity with the task, or lack of clarity or understanding in what they were

supposed to do.

6.5. Problems with Li’s Experiment

The major problem with the data collected so far by Li, is the accuracy of the results. Li’s

project used software to collect the data which was only accurate to 50ms. This is particularly

unacceptable due to the duration of the clicks. In some cases the inherent error from using

software would be over 100%! We will attempt to ameliorate this problem by using a hardware

timer to record the timing information and communicate with a computer which will collect and

collate the data.

This was not the only problem with the experiment. Additionally there seemed to be some

ambiguity in the experimental instructions (especially some confusion over the definition or

meaning of the long-click). We will also attempt to remedy this with clearer instructions.

The errors which users made were also not automatically trapped we will attempt to remedy this

by providing some form of error catching in software.

The last significant modification we would like to make to the experiment is to the age range that

it will be performed upon; Li’s experiment covered a very varied age range and the conclusions

reached from the results were that the timings were in general homogenous, apart for slower

timings in persons aged under 10 and over 60 [Edwards, 2002]. Our experiment will

concentrate on a intermediate age group of 15 to 50 year olds.

20

7. Experimental Design

7.1. Hardware Design

7.1.1. Switch Device

A hardware device was constructed using a PIC16745 controller (available from Microchip

(further details, such as datasheets etc. are available at http://www.microchip.com/, the

schematic is presented in Appendix D). This was attached to a switch and was used to record

the timings for that switch. The de-bouncing of the switch and timing collection is all done in the

PIC software. It interfaced with the computer over a Universal Serial Bus (USB) connection.

The switch itself was a micro-switch, with a small plastic cap (Figure 7.i).

Figure 7.i Black switch used in the experiment

The device stored the time take between any depression or release of the switch i.e. for a single

click, the device would first record data for the time between the start of the single press and the

last click (this data is not pertinent to our experiment) and the time between the release of the

button and the start of the button press – this would be the value c that we are looking for.

This works similarly for each of the other types of click we want to record, with the first value

being the time between each different type of click. i.e. for a long click the first timing returned

would be irrelevant for our experiment, the subsequent timing being l; for a double click, the

next timings retuned would correspond to d1, d2, d3; for a triple click the subsequent timings

would be t1, t2, t3, t4, t5.

21

7.1.2. Computer

The computer used was a Sony Vaio PictureBook C1-MHP. It was sufficiently specified so as to

run the test quickly and with minimal delay. The switch device was connected to the computer

via the Universal Serial Bus ports present on the machine. The device communicated via this

connection and was powered by it. Using a laptop was necessary as it is easier to go to the

users, rather than to try and get them to come to you.

7.2. Software Design

7.2.1. Original Software Code

“Skeleton” software was coded by Richard Pack in Visual C++, modified from Jan Axelson’s

book “USB Complete: Everything You Need to Develop Custom USB Peripherals” [Axelson,

2000]. This provided the routines for detecting the device and retrieving the timing data from it.

This code was modified to provide a graphical user interface for performing the test. Because

the initial code was provided in Visual C++, it was decided to maintain that language to

implement the test software rather than translate the code into a different language.

There was, however, a choice to be made of which operating system the software was to be run

of. Initial construction and testing of the skeleton code was done on Microsoft Windows 2000.

When the code was migrated to Microsoft Windows XP (the platform of the Sony laptop) it was

found to crash.

The cause of this was narrowed down to a possible Human Interface Device (HID) driver issue

or, more likely, caused by a difference in the way Windows XP handles the Windows Message

Timer (WM_TIMER) command (in Windows XP this is a low priority message and because XP

has many more background processes running, this causes the program to not respond in

time).

This problem could have been overcome by writing a separate thread to perform timer actions

to replace the WM_TIMER but this method was eschewed for simplicity and the decision was

taken to migrate to Microsoft Windows 2000 instead as there was no guarantee that further

problems (such as the possible driver issue) would not manifest themselves.

22

7.2.2. The Test

The software was coded with the purpose of conducting the experiment in mind. As such, some

of the niceties provided by the Microsoft Foundation Class (MFC) libraries (file input / output,

menu items etc.) have been dropped so as to reduce any complexity for the test subject / user

and “guide” them toward completing the test. The coding itself was very straight forward with no

major design decisions required. All the data collected was of fixed lengths and so was then

implemented in arrays for simplicity, speed and ease of access. The code is presented in

Appendix E for convenience.

The user was presented with a set of instructions to read through before performing the test;

these instructions described the test and the actions the user was to perform (single click,

double click, etc). These instructions are in Appendix C.

The following images are examples of the screens presented to the user during the test.

Figure 7.ii The first test screen presented to the user

The user is first presented with an opening screen from which they can select to start a new test

or, if they wish, to quit (Figure 7.ii).

23

Figure 7.iii The legal statement to which the user must agree

Starting a test brings up a dialog box, which contains a legal statement they must agree to

continue with the test (Figure 7.iii).

Figure 7.iv The questionnaire the user must complete to continue with the test

Having agreed to this the software then asks for statistical information about the user, that being

their age and the level of computer / mobile phone usage (Figure 7.iv). These categories were

chosen due to the being the most pertinent characteristic for user segmentation in Li’s

experiment (although the age range was chosen specifically to lessen the variation in the

timings obtained).

24

Figure 7.v The test from which the user will launch the test

Once the user has selected their information they can proceed to the next screen where they

can start the test (Figure 7.v).

Figure 7.vi A sample of the prompts for clicks, in this case a triple click

The test consists of the user performing each of the four types of click (detailed earlier) ten

times. The order was randomized (but the same for each user) to prevent the test being too

repetitive for the user. At each stage the user is presented with a dialog box which prompts

them for the type of click (Figure 7.vi). When the user has performed that click, the dialog box is

dismissed and the next prompt it produced.

Additionally routines were written to provide some basic error catching which were not present

in Li’s Experiment, such as if an incomplete click was made (e.g. if a double click was made

instead of a triple click) then the user would be prompted, after an appropriate wait, to redo the

click. The program detected if the number of readings were too few for the current type of click,

and if the user hadn’t made any further clicks, after approximately 3 seconds they would be

prompted to redo the click. Only the “re-done” click would be recorded but the clicks which were

“re-done” would be recorded in the error field in the results.

25

At the end of the test, a dialog is presented thanking the user for their participation and returns

them to the initial screen. The timings (in hexadecimal format) are then collated and written to a

file in a comma separated value format for input into a spreadsheet package for analysis (the

translated results are presented in Appendix 0).

The user is given an opportunity to exit the test at every step, if they choose to do so, then the

incomplete results will be collated, and an error message of which point the test was ended at,

noted.

26

8. Experimental Results and Discussion

Fifty users were surveyed; they were almost all in the age group 15 to 25 years old. Two users

were in the oldest age group (between 45 to 50 years old), and two were between 25 and 30

years old. The majority of users were students resident at Halifax College at the University of

York, and were tested in their kitchens, a large number of the students were personally known

to me. The remaining users were students or staff in the department of Computer Science.

Almost all the users placed themselves in the highest category of computer / mobile phone

usage, with all the users using a computer / mobile phone at least once a day.

8.1. Single Click

 c (ms)

Mean 149.83

Median 125.00

Mode 116.00

Standard

Deviation
96.04

Min 60.00

Max 1040.00

Table 8.i Statistical data collected for c

As the results above show (Table 8.i), the average timings seem to bear out the Middleman

predictions from the Model Human Processor and also agree with Li’s experimental results

which show a mean of 146 ms for the age group of 10 to 50 year olds with an standard

deviation of 96.5. The results for all the candidates’ timings for c (10 timings each for 50

people) were then processed using SPSS to produce a frequency distribution graph (Figure 8.i).

27

1050.0

950.0
850.0

750.0
650.0

550.0
450.0

350.0
250.0

150.0
50.0

300

200

100

0

Std. Dev = 96.04
Mean = 149.8

N = 500.00

Figure 8.i Frequency Distribution for c

Looking further into the results the frequency distribution shows the majority of the timings in the

Fastman region of approximately 60 ms. However the results seem to be distorted by a number

of extremely slow timings (possibly due to some misinterpretation of the click to be performed).

For the slower end of the timings, the Model Human Processor still seems to break down with a

number of timings above the 200 ms predicted for Slowman. Due to the vast majority of users

being part of the most frequent computer / mobile device usage group, unfamiliarity with task to

be performed in unlikely, though ergonomic factors of the switch have not been taken into

account previously and may have some affect on the timings.

8.2. Long Click

 l (ms)

Mean 669.54

Median 599.50

Mode 404.00

Standard

Deviation
482.67

Min 67.00

Max 8357.00

Table 8.ii Statistical data collected for l

In the case of the long click, the Model Human Processor doesn’t really apply; as there is no

feedback from the device, it was entirely subjective and was when the user “felt” that they had

28

pressed the button long enough. The results do bear some similarity with the results from the

age group of 10 to 20 year olds in Li’s experiment (which show a mean of 860 ms); the majority

of users in our study were in this age range also.

There were quite a few errors made in the recording of this measurement; many users tried to

complete the test as fast as possible and mistakenly made a single click instead of a long click

and this is shown by the skew in the results towards lower times. There was also one case

where the user appeared to be waiting for some sort of prompt and just kept on holding the

button (this is the timing recorded at 8 seconds). This is displayed in the frequency distribution

graph, Figure 8.ii.

8000.0

7500.0

7000.0

6500.0

6000.0

5500.0

5000.0

4500.0

4000.0

3500.0

3000.0

2500.0

2000.0

1500.0

1000.0

500.0
0.0

300

200

100

0

Std. Dev = 482.6
Mean = 669.5

N = 500.00

Figure 8.ii Frequency Distribution for l

8.3. Double Click

d1

(ms)

d2

(ms)

d3

(ms)

d1+d2+d3

(ms)

Mean 139.47 117.47 123.91 380.84

Median 120.00 99.00 116.00 337.50

Mode 103.00 90.00 101.00 313.00

Standard

Deviation
91.88 62.59 55.10 142.12

Min 43.00 54.00 62.00 220.00

Max 877.00 651.00 833.00 1240.00

Table 8.iii Statistical data collected for d1, d2, d3, d4 and d5

29

Again the results are in line with both Model Human Processor predictions and Li’s results for

the 10 to 50 year age group. The averages are slightly faster than the Middleman prediction of

140ms, possibly due to the number of users who would be categorised as in the Fastman

performance group but agree more with Li’s means, for the age group 10 to 50 year olds, which

are shown in Table 8.iv. Li also had similar standard deviations.

d1

(ms)

d2

(ms)

d3

(ms)

Mean 117.5 127.75 116.75

Standard

Deviation
69 73.5 58.5

Table 8.iv Li's experimental data for double clicks in the age group 10 to 50 year olds

The fastest times in our experiment are in line with Fastman prediction, with very few results

outside the Slowman prediction of 200ms. The results for d1, d2, and d3 are all similar with a

similar spread of results. The only minor difference being that of the gap between the clicks (d2)

is slightly smaller than the duration of the clicks themselves. The clicks d1 and d3 are not as

symmetric as in Li’s experiment. With the values for d1 being slightly higher than those for d3.

This is shown in the frequency distribution graphs for d1, d2 and d3 in Appendix B.

8.4. Triple Click

t1

(ms)

t2

(ms)

t3

(ms)
t4 (ms)

t5

(ms)

t1+t2+t3+t4+t5

(ms)

Mean 130.35 123.40 115.12 122.76 121.17 612.81

Median 116.50 106.00 106.00 103.00 115.00 550.50

Mode 112.00 81.00 97.00 99.00 100.00 506.00

Standard

Deviation
68.88 62.77 39.66 87.47 37.40 194.80

Min 57.00 63.00 48.00 47.00 68.00 383.00

Max 724.00 646.00 547.00 1294.00 519.00 2058.00

Table 8.v Statistical data collected for t1, t2, t3, t4 and t5

30

Similarly for the triple click the average timings fit both the model human processor and Li’s

timing data in the same age range. The values obtained for t1, t2, t3, t4 and t5 are reasonably

symmetric with a skew towards timings expected of the Fastman model. The frequency

distributions (in Appendix B) show the same patterns as we’ve seen earlier for the double click.

t1

(ms)

t2

(ms)

t3

(ms)

t4

(ms)

t5

(ms)

Mean 119.3 135 109.75 145 117.25

Standard

Deviation
62.75 91.25 56.25 102 58.75

Table 8.vi Li's experimental data for triple clicks in the age group 10 to 50 year olds

Direct comparison with Li’s results (Table 8.vi) show Li’s timings to have smaller values for the

lengths of depression of the switch (t1, t3, t5) but higher means for the “gaps” between presses

(t2, t4). This could be due to the differing actions of the switches, an investigation into how

different switches affect timings may shed some light on the difference in the results.

Additionally the symmetry of the timings is not quite as in Li’s experiment, with the first value (t1)

being higher than those of subsequent clicks, t3 and t5, (this pattern was also noted in the

timings for the double click), though the timings t3 and t5 were symmetric, as were the timings

for the “gaps”, t2 and t4.

31

8.5. Errors

The errors for the user group were minimal, with only 10 clicks having to be redone out of 2000.

There was no discernible pattern as to the types of clicks which this affected, or the types of

users that made these mistakes.

32

9. The Effect of Different Switches on the Timings

One factor that may affect the timing is the type of switch used. In this experiment a small

micro-switch was chosen with a black plastic cap. The amount of travel for this switch was

small but could be made smaller. If different switches were used, with varying amount of travel,

there may be some pattern to the variations in timings obtained. Additionally if different buttons

were used, we may want to investigate the difference when different fingers are used to press

the buttons. This experiment only really allowed for thumb presses, but changing the switch to

mouse buttons, for example, may allow us to investigate different finger presses.

Although out of the scope of this project, as a few different switches were made before the

experiment started, I chose to obtain some preliminary data, using these switches and a small

sample size of ten people (due to time constraints) each performing the test a separate time on

each switch (i.e. there were 100 values for each parameter, c, l, etc. we were investigating). All

the users had previously performed the experiment and they were familiar with what was

expected of them during the test.

Four switches were used to test what effect different switches would have on the timings. The

switches were:

• A, the black switch used previously. (Figure 7.i)

• B, a left mouse button from a Logitech mouse. (Figure 9.i)

• C, a large Red push button switch. (Figure 9.ii)

• D, a micro-switch with a small white plastic cap. (Figure 9.iii)

These switches all had varying amounts of travel and resistance and all “felt” substantially

different. In addition all the switches had different levels of feedback for when the button was

sufficiently depressed. The switches and the results obtained from them are discussed in detail

in the sections following.

33

9.1. Switch A

This black switch (pictured in Figure 7.i) was used with the new sample of participants. It offered

the joint largest travel with Switch C, but offered less resistance than Switches C and D

(however this resistance increased the further the switch was depressed).

 c l d1 d2 d3 t1 t2 t3 t4 t5

Mean 123.17 574.95 118.79 92.39 111.43 109.03 96.31 97.64 92.03 105.68

Median 114.00 572.00 110.00 86.50 110.50 107.00 87.50 97.50 85.00 105.00

Mode 117.00 460.00 115.00 80.00 107.00 113.00 86.00 104.00 73.00 105.00

Standard

Deviation
53.50 191.52 53.40 23.84 14.93 20.27 33.97 13.27 34.51 14.13

Min 71.00 84.00 68.00 52.00 88.00 75.00 58.00 67.00 45.00 68.00

Max 527.00 1247.00 474.00 251.00 178.00 234.00 310.00 134.00 302.00 152.00

Table 9.i Statistical results for Switch A (times in ms)

As this was the switch used for the previous experiment we would expect to see similar results,

however with the sample size being only ten people we’ve got much smaller standard

deviations and results which closer approximate normal distribution; in addition to this we have

the means being lower, indicating that the users were between the Fastman and Middleman

models.

9.2. Switch B

The left mouse button from a Logitech mouse was used as a switch. Of the four switches used

it offered the smallest travel and the least resistance.

34

Figure 9.i The mouse used for Switch B

35

 c l d1 d2 d3 t1 t2 t3 t4 t5

Mean 93.14 709.59 81.14 87.41 99.20 86.06 90.06 88.22 87.72 90.50

Median 85.50 712.50 80.00 82.00 98.00 77.00 86.50 86.50 80.00 89.50

Mode 88.00 703.00 84.00 89.00 98.00 73.00 85.00 93.00 80.00 92.00

Standard

Deviation
41.23 249.74 21.06 49.40 18.80 58.71 31.70 15.77 53.11 14.49

Min 47.00 34.00 47.00 49.00 61.00 40.00 57.00 51.00 55.00 66.00

Max 322.00 1530.00 234.00 531.00 188.00 638.00 370.00 181.00 573.00 154.00

Table 9.ii Statistical results for Switch B (times in ms)

The mean values for the timings were lower across the board (apart from the timing for the long

switch, l – this being a more subjective timing than the others). This could be due to the fact

that there is less distance for the finger to travel or due to the fact that there is little force

opposing the movement; additionally the index finger was used in all the cases to perform this

click, whereas the thumb was used in the case of all the other switches. Interestingly the long

press came very close to a normal distribution, (and much closer than in any of the other cases)

but this could just be down to the small sample size used.

9.3. Switch C

This switch offered the most resistance and the most travel (joint with Switch A). Additionally the

action had very little to indicate when a connection had been made, with the button having to be

fully depressed to be certain of a completed connection.

Figure 9.ii Switch C

36

 c l d1 d2 d3 t1 t2 t3 t4 t5

Mean 117.98 535.07 102.83 122.79 104.00 99.83 105.91 93.42 98.95 99.36

Median 106.50 515.50 97.50 103.00 102.50 98.00 104.50 90.00 99.00 96.50

Mode 138.00 425.00 87.00 94.00 100.00 91.00 109.00 99.00 95.00 99.00

Standard

Deviation
50.98 173.67 43.83 96.51 27.08 21.77 16.25 19.75 18.44 23.77

Min 54.00 55.00 32.00 44.00 35.00 54.00 70.00 49.00 37.00 48.00

Max 419.00 994.00 337.00 843.00 200.00 164.00 148.00 172.00 166.00 170.00

Table 9.iii Statistical results for Switch C (times in ms)

Here, the results are slightly lower than those for the black switch, but still quite similar.

Additionally the majority of the timings seemed to obey a normal distribution.

9.4. Switch D

The action of this switch was quite different to the others; with the white switch there was only

felt to be a constant initial resistance, unlike Switch C where the resistance increased the further

the switch was pressed. Additionally a positive click was heard when the button was sufficiently

depressed.

Figure 9.iii Switch D

 c l d1 d2 d3 t1 t2 t3 t4 t5

Mean 138.78 639.58 116.45 73.89 115.13 118.47 74.41 105.58 77.57 110.70

Median 126.00 630.50 112.00 68.00 111.00 116.00 73.00 104.00 74.00 108.00

37

Mode 123.00 456.00 112.00 68.00 104.00 126.00 89.00 94.00 75.00 108.00

Standard

Deviation
46.54 208.77 19.30 27.01 20.43 18.47 15.97 18.71 40.58 21.88

Min 92.00 61.00 69.00 48.00 42.00 75.00 46.00 47.00 40.00 72.00

Max 363.00 1293.00 184.00 295.00 176.00 204.00 123.00 157.00 445.00 184.00

Table 9.iv Statistical results for Switch D (times in ms)

Interestingly the results show extremely short mean times for the “gaps” between the clicks (d2,

t2, t4); this could be due to a difference in the internals of how the switch operates, or the action

performed by the user in depressing and releasing the switch.

9.5. Discussion

Switch c l d1 d2 d3 t1 t2 t3 t4 t5

Switch

A
123.17 574.95 118.79 92.39 111.43 109.03 96.31 97.64 92.03 105.68

Switch

B
93.14 709.59 81.14 87.41 99.20 86.06 90.06 88.22 87.72 90.50

Switch

C
117.98 535.07 102.83 122.79 104.00 99.83 105.91 93.42 98.95 99.36

Switch

D
138.78 639.58 116.45 73.89 115.13 118.47 74.41 105.58 77.57 110.70

Table 9.v Comparison of means for the different switches (times in ms)

As you can see from the above comparison table (Table 9.v) there definitely seems to be some

factors involving either, travel, resistance or the use of different fingers, which affect the timings

obtained, a further study separating all these variables may elucidate which ones which are

most important.

38

10. Conclusions

The purpose of this project was to obtain precise timing data for the use of a single button, as

such it is important to compare the results with those collected in Li’s project using a supposedly

inaccurate software method. It is interesting to note that the results approximately agree

despite the quoted accuracy of Li’s software method of 50ms, which may suggest that the

software system is either more sensitive than its baseline error suggests, or possibly that it

“over-counts” as much as it “under-counts” and so the errors average out.

To provide guidelines as to the suitable timings for each of the parameters we were

investigating (c, l, d1, d2, d3, t1, t2, t3, t4, t5), we need to specify a level of acceptable error (i.e. a

percentage of clicks which would be wrongly classified from our data, and our cut-offs).

Previously an error rate of 40% was suggested for Tuffin’s investigation into error rates [Tuffin,

2001]; this would provide guidelines for the different values as displayed in Table 10.i. However

given that the population of this experiment is quite homogenous (unlike Li’s experiment, upon

which Tuffin’s was based) smaller error rates may be more suitable.

Error Rate c l d1 d2 d3 t1 t2 t3 t4 t5
40% < 133 > 539 < 128 < 106 < 121 < 123 < 118 < 114 < 112 < 121
20% < 159 > 411 < 150 < 133 < 137 < 142 < 141 < 130 < 132 < 138
10% < 197 > 344 < 183 < 164 < 153 < 162 < 177 < 150 < 173 < 156

Table 10.i Suggested values for our parameters, from different error rates (times in ms)

An investigation on error rates similar to that conducted by Tuffin [2001], using the new test and

equipment, should be used to verify that those error rates occur from the suggested values.

During the course of the project more questions raised themselves; these will be discussed in

the next sections.

10.1. Further Work

10.1.1. Problems with the current experiment

One major problem still outstanding from the previous project was the ambiguity of the definition

for the long click. In most portable systems there is feedback (e.g. auditory or visual feedback

in terms of beeps or confirmation screens) for the single, double and triple clicks the user was

39

given feedback as the prompt for those clicks disappeared. For the long click there was no

visual feedback as, clearly, for feedback to be given, the timing for this click needs to be known

in advance, but it is exactly this timing we are trying to investigate.

An investigation similar to Tuffin’s [2001], but using the new apparatus, may be able to give

clearer timing data on the long click, but it remains to be seen whether it is better to define the

long click in terms of the single click, i.e. anything longer than the range allowed for a single

click would be classified as a long click.

Additionally, the test allowed no time for between the prompts; this led, in some cases, to errors

caused by clicks “carrying over” to the next part of the test. For example if the user was

prompted for a double click and made a triple click, due to the timing of the program, the last

part of the triple click would be captured as part of the next click. This could cause errors to

carry forward (but these cases were easy to spot and the users were asked to let the test

prompt them to remake the current click; this would “reset” the buffers).

If a gap was placed between the tests, some of these errors would be caught automatically by

routines already present. However some of the errors were caused due to users trying to

complete the test in the quickest time, perhaps aided by the fact that there was no gap between

the prompts. Changing the size of any gap may have some affect on reducing these types of

errors.

Furthermore the switch timing, although more accurate than the previous software method, was

only accurate to 10ms due to the de-bouncing of the switch.

10.1.2. Further investigation into the effect of different types of switches

The aim of this experiment was to obtain accurate timing results for various different types of

button clicks. However the relationship between the timings and various factors were not

investigated fully. A more detailed experiment than my second experiment (Section 7) covering

a larger range of switches could also involve other ergonomic factors for the switch such as

texture. When using multiple switches a set of different textures or shapes could be used for

each switch. “A set of in-confusable shapes have been produced by different investigators over

the years (for example, Hunt, 1953; Jenkins, 1947; Moore, 1974)” [Oborne, 1982].

40

10.1.3. Single button usage for differently able users

This experiment was designed to find optimal timings for able bodied candidates in a very

restrictive age group. “Such users are only one point on a wide and varied scale of physical

capabilities” [Keates et al., 2002]. One would expect the timings to vary considerably for

candidates of different abilities. Keates et al. [2002] attempted to quantify where those

differences occurred in the interaction cycle based on the Model Human Processor [Card et al.,

1983]. A repeat of the experiment using a wider range of candidates of differing abilities could

be based on Keates et al.’s revised models.

10.1.4. Combinations of different types of presses

There are also other types of button press we did not investigate, such as different lengths of

the long click for repeated actions. These may be investigated in context to actually operations.

An experiment designed within a set context using the data from this experiment as a base,

may provide more useful results, for example testing a specific arrangement of buttons for set

tasks. In many cases where the number of different functions for a single button need to be

maximised (e.g. text input on mobile phones) a combination of different button presses are

used. These combinations were not investigated, but may affect the timings obtained;

additionally different combinations may affect the gaps needed between button presses and

error rates for different presses. For example, if a double click were to be made following a

single click (or vice versa) the gap between the clicks would have to be greater than the the

value of d2 to prevent the click registering as a triple click

10.1.5. Relevance of the single button press

One final criticism of this project could be the relevance of a single button press. There have

been advancements in the field of human interface design; many of these are to do with

maximising the functionality of the buttons present. For example most modern mobile phones

use a system of “soft buttons”, where the buttons have no fixed meaning, but change depending

on what screen is currently displayed. Additionally on some systems the users themselves can

set the desired timings for double clicks (for example on Microsoft Windows), this could easily

be extended for other types of clicks making the system respond optimally after an initial

configuration period.

41

11. References

Axelson, 2000 J. Axelson, “USB Complete: everything you need to develop custom

USB peripherals”, Madison: Lakeview Research, 2001

BBC News, 2002a BBC News, “Mobile Keypad Reinvented”, BBC News, May 2002

<http://news.bbc.co.uk/1/hi/sci/tech/1990855.stm>

BBC News, 2002b BBC News, “Mobile Keypad Gets Real”, BBC News, November 2002

<http://news.bbc.co.uk/1/hi/technology/2504091.stm>

Card et al., 1983 S.K. Card, A. Newell, T.P. Moran, “The Psychology of Human-Computer

Interaction”, Hillsdale: Lawrence Erlbaum Associates, 1983

Edwards, 2002 A. Edwards, “Alistair Edwards’ Project Suggestions”, March 2002

<http://www-users.cs.york.ac.uk/%7Ealistair/projects/projects2002.html>

Edwards & Li, 2000 A. Edwards, Y. Li, “How Many Ways Can You Use One Button? Timing

Data for Button Presses”, York: University of York, 2000

Keates et al., 2002 S. Keates, P. Langdon, P.J. Clarkson, P. Robinson, “User Models and

User Physical Capability”, Cambridge: University of Cambridge, 2002

Li, 2000 Y. Li, “Timing Data for the Use of a Single Button”, York: University of

York, 2000

Oborne, 1982 D.J.Oborne, “Ergonomics at Work”, Chichester: John Wiley, 1982

Price, 1983 L. Price, “Use of Mouse Buttons”, Chicago: CHI’83 Proceedings, 1983

Tuffin, 2001 J. Tuffin, “Error Rates and User Perception in the Operation of a Single

Button”, York: University of York, 2001

Williams, 1983 G. Williams, “The Lisa Computer System”, Byte Magazine, 1983

42

12. Bibliography

B. Huckle, “The Man-Machine Interface”, Carnforth: Savant Institute, 1981

W.H. Murray, C.H. Pappas, “Visual C++ .NET : Complete Reference”, Berkeley: Osborne, 2002

S. Oualline, “Practical C Programming, 3rd Ed”., Sebastapol: O’Reilly, 1997

J. Preece, “Human Computer Interaction”, Wokingham: Addison-Wesley, 1994

B. Stroustrup, “The C++ Programming Language, 3rd Ed.”, New Jersey: Addison-Wesley, 1997

43

Appendixes

A. Results (translated from the hexadecimal output) 44

B. Frequency Distribution Graphs 50

C. User Instructions 52

D. Switch Schematic 53

E. Visual C++ Code 54

I. USB Switch Timer.h 54

II. USB Switch Timer.cpp 55

III. USB Switch TimerDlg.h 57

IV. USB Switch TimerDlg.cpp 58

V. LegalDlg.h 63

VI. LegalDlg.cpp 64

VII. QuestionnaireDlg.h 67

VIII. QuestionnaireDlg.cpp 68

IX. StartTestDlg.h 73

X. StartTestDlg.cpp 75

XI. ClickSingleDlg.h 98

XII. ClickSingleDlg.cpp 99

44

A. Results (translated from the hexadecimal output)
User Age User Computer Usage 0t1 0t2 0t3 0t4 0t5 0l 0c 1c0 1t1 1t2 1t3 1t4 1t5 2c0

2 1 103 84 88 86 91 597 145 87 84 93 87 83 101 124

1 1 89 414 137 97 119 521 120 118 135 182 111 99 122 125

1 1 123 124 100 156 111 587 103 92 142 160 130 176 130 188

1 1 120 144 137 130 131 512 179 154 158 180 162 104 161 197

1 1 129 140 148 136 155 858 105 95 112 177 125 151 137 105

2 1 126 126 108 119 118 626 127 119 110 99 110 118 119 139

1 2 218 96 172 106 227 1027 108 133 108 119 186 105 157 113

1 2 145 261 128 235 116 786 113 116 141 202 136 164 131 108

1 1 191 159 130 114 181 389 193 112 114 116 118 90 137 139

1 1 132 73 100 86 128 674 129 121 99 91 111 92 117 118

2 4 99 127 100 112 96 830 140 123 106 120 102 92 105 128

1 1 118 113 119 136 134 684 148 122 121 115 133 119 143 156

1 1 106 157 135 120 108 349 100 151 150 185 141 111 122 149

1 1 126 90 113 109 114 688 97 97 98 103 97 86 101 110

2 1 148 78 132 105 127 857 128 125 121 129 128 128 146 131

1 1 118 123 95 103 96 338 154 111 110 122 79 104 120 130

1 2 116 86 139 102 133 891 153 121 134 96 113 118 83 115

1 3 135 107 150 115 151 1161 232 238 377 276 229 184 181 455

1 1 132 152 129 142 149 1267 318 90 116 137 123 121 111 131

1 2 117 77 126 101 140 653 101 102 80 89 77 81 97 118

1 1 147 127 155 132 138 974 131 147 148 164 138 172 158 143

1 1 112 263 145 157 138 500 131 609 459 140 306 74 259 605

1 1 369 133 204 132 197 679 119 124 127 118 91 117 151 146

1 1 152 130 167 138 207 739 168 177 133 110 130 100 164 186

1 1 100 96 132 107 136 456 163 181 164 121 125 109 136 170

7 1 70 137 71 121 121 704 91 132 106 249 142 690 95 338

7 1 207 242 298 251 335 1032 305 303 226 298 234 305 219 245

2 1 108 113 113 114 131 739 135 124 110 120 90 113 120 128

2 1 145 97 175 92 186 859 125 120 163 135 175 98 176 169

2 1 71 146 48 179 109 632 99 110 106 110 101 111 104 99

1 1 121 79 91 83 86 385 105 110 91 90 95 83 105 119

1 1 286 76 142 130 131 372 114 98 92 68 106 47 94 100

1 1 109 75 96 88 79 384 141 140 112 101 101 99 112 113

1 1 99 66 78 71 70 828 118 112 102 78 91 77 94 98

2 1 121 63 80 56 113 620 79 93 101 79 94 76 106 100

1 1 147 153 122 164 129 1014 126 112 123 172 115 126 106 114

1 2 121 195 116 342 116 897 148 146 174 156 150 180 148 143

1 1 134 87 97 90 101 660 123 103 130 78 114 74 114 134

1 1 133 86 105 134 109 1026 122 114 109 86 106 91 111 108

2 1 93 78 108 65 128 753 97 94 99 99 92 81 104 88

2 1 171 262 197 109 177 552 102 80 94 91 77 112 89 81

3 1 123 76 109 82 108 398 103 106 116 68 102 79 100 126

1 1 117 69 93 75 104 424 114 116 90 77 111 74 114 106

1 1 95 95 117 64 103 396 107 112 92 89 77 91 89 99

1 1 116 79 90 73 101 380 108 144 102 72 95 79 107 78

1 1 101 78 81 70 103 372 106 115 117 66 95 72 114 110

2 2 138 67 82 63 117 467 152 94 154 69 122 84 132 121

3 1 142 63 124 63 139 414 103 93 82 81 89 69 93 97

3 1 99 81 94 79 94 391 122 115 98 76 100 74 107 101

1 1 112 81 88 68 120 381 126 98 128 76 97 69 116 113

45

0d1 0d2 0d3 3c0 2t1 2t2 2t3 2t4 2t5 1l0 1d1 1d2 1d3 2d1 2d2 2d3 3t1 3t2 3t3 3t4 3t5

78 95 77 115 103 95 85 89 104 537 112 74 115 94 88 101 83 97 94 87 104

115 108 125 129 146 100 126 95 130 128 304 113 126 94 111 97 114 118 89 119 98

128 194 133 174 130 224 121 243 136 676 159 174 138 172 173 153 159 213 135 228 149

151 125 153 144 139 148 117 121 138 163 109 217 141 147 132 138 140 129 152 133 155

129 110 135 130 113 93 96 99 127 376 129 100 131 125 95 123 100 113 104 118 121

136 100 112 119 143 229 138 812 124 762 134 111 127 155 94 152 140 94 114 119 123

143 108 134 135 112 89 110 96 132 540 157 96 127 142 127 150 135 83 114 107 122

115 135 122 133 124 135 119 202 135 781 142 192 128 140 170 134 122 196 119 200 116

138 91 133 177 150 77 381 1294 156 130 159 150 137 158 132 125 136 129 114 125 113

120 96 97 110 102 102 97 95 109 690 116 120 101 101 110 99 116 120 96 115 112

98 90 119 103 111 107 119 85 93 547 95 92 103 102 87 103 79 109 110 87 98

132 116 139 156 141 114 137 117 157 538 141 115 158 143 126 152 115 134 114 149 111

188 108 118 171 159 118 116 177 127 575 152 133 125 165 119 132 132 146 121 129 133

111 87 115 119 98 98 101 105 114 486 105 101 110 75 89 104 86 94 117 116 133

113 89 127 114 168 146 166 130 121 8357 75 101 69 3094 103 125 79 124 82 112 111

111 110 105 127 115 123 86 128 112 309 102 110 105 113 114 103 121 124 75 117 123

104 88 101 107 94 92 114 79 121 492 75 99 117 107 82 126 125 105 96 89 130

121 120 139 254 104 128 169 91 170 941 151 93 137 179 82 157 178 121 151 77 186

118 106 113 113 120 142 78 115 93 4162 84 112 127 167 143 139 125 121 97 128 111

67 67 91 99 80 84 88 62 91 552 84 73 94 76 76 97 75 81 93 68 113

168 159 148 182 170 174 145 191 158 805 154 193 141 157 217 154 150 205 133 170 130

138 99 63 555 698 139 114 112 97 657 448 140 74 964 122 69 500 135 96 122 78

100 138 148 166 105 125 135 127 172 620 118 219 145 126 168 123 124 151 135 216 159

138 141 133 128 134 143 92 99 127 197 189 127 146 136 137 172 172 135 170 96 204

138 97 119 156 123 126 114 114 118 1289 129 105 134 129 100 132 127 94 123 104 124

125 80 113 126 123 92 105 79 111 723 123 82 110 122 90 118 123 90 91 97 118

192 185 240 229 181 214 186 254 220 982 232 260 269 234 239 191 195 239 179 308 229

124 117 123 121 105 97 114 120 124 657 106 140 120 110 107 124 115 124 117 125 133

146 108 176 169 157 128 126 118 168 943 153 130 163 142 127 170 157 135 131 116 152

106 63 109 81 88 122 66 112 106 608 106 70 103 115 71 108 107 135 79 106 105

97 98 99 97 95 102 83 101 90 365 100 94 86 87 120 86 95 109 83 93 93

97 67 108 99 79 77 93 425 102 475 93 66 110 101 74 112 93 79 98 68 113

97 84 107 115 136 91 106 75 106 689 106 99 108 125 86 102 103 95 101 112 76

110 81 109 110 99 90 85 98 73 448 113 74 95 103 68 122 116 88 141 136 519

86 91 93 105 94 81 100 67 104 581 109 79 105 99 73 106 117 78 101 75 98

129 111 103 200 131 227 104 325 144 1126 127 107 113 136 109 114 126 224 124 186 82

157 142 135 155 138 118 117 173 130 129 148 105 122 116 103 111 124 135 155 166 136

118 75 113 138 100 97 104 99 104 493 122 92 126 101 89 123 99 84 118 108 89

118 85 113 137 116 81 97 104 87 1089 103 91 102 121 72 110 111 103 100 106 104

92 94 99 104 97 82 78 81 93 690 91 98 91 98 75 100 104 86 86 96 83

77 104 86 93 90 97 83 104 79 715 105 89 98 158 95 96 112 82 85 74 91

134 106 87 128 120 96 100 102 96 651 101 85 122 101 108 103 121 113 83 131 89

91 86 104 86 100 95 87 81 97 540 89 89 93 72 99 97 94 95 93 95 101

106 87 90 113 99 98 85 86 101 101 143 74 118 205 84 132 129 95 96 76 115

102 81 98 90 101 88 92 89 90 303 101 88 89 86 87 103 93 76 105 99 74

100 88 97 109 100 85 93 95 107 398 92 83 110 115 84 98 98 81 83 83 103

104 71 91 104 96 83 93 71 106 437 160 97 126 92 75 103 120 76 97 69 105

70 87 79 92 76 94 64 94 74 344 80 92 81 81 103 71 74 107 62 95 76

92 67 108 91 97 93 78 95 95 473 119 76 124 98 83 123 113 84 103 82 103

93 88 104 193 112 84 100 74 117 389 126 109 126 99 76 109 99 81 100 85 99

46

3d1 3d2 3d3 4c0 4d1 4d2 4d3 5c0 4t1 4t2 4t3 4t4 4t5 5t1 5t2 5t3 5t4 5t5 5d1 5d2 5d3

81 92 104 90 113 80 103 96 80 98 100 95 79 109 100 94 92 94 85 106 85

132 124 95 140 107 101 108 113 101 143 93 128 78 143 141 125 119 107 112 133 123

166 171 137 131 125 111 120 118 111 129 139 117 165 139 143 144 123 154 127 132 132

146 131 144 158 196 134 142 161 134 135 144 140 127 159 146 152 135 127 154 153 158

127 99 145 132 117 98 131 120 98 128 78 126 86 141 119 82 104 81 137 99 95

135 110 133 152 146 88 133 146 88 146 98 108 110 126 132 99 123 95 137 142 88

131 113 131 113 120 98 121 165 98 118 94 107 105 113 116 106 101 108 111 114 99

153 173 122 125 118 188 110 129 188 141 222 120 180 135 127 188 119 187 139 129 180

133 121 121 155 110 114 130 162 114 126 123 123 120 154 128 148 113 124 125 125 149

107 97 112 114 161 118 114 146 118 134 104 129 105 135 142 81 121 100 141 149 99

98 95 107 115 94 78 96 95 78 89 94 108 74 101 110 106 96 80 120 101 100

106 123 112 669 439 127 96 417 127 382 139 119 128 94 410 118 125 143 111 435 134

144 137 142 139 149 105 137 136 105 139 134 128 137 139 136 157 129 150 144 144 129

120 98 112 142 133 74 113 136 74 111 89 98 123 144 115 107 99 123 139 123 99

98 102 74 139 833 110 72 1040 110 139 106 80 100 84 142 100 84 96 103 104 81

146 99 117 117 109 115 113 137 115 123 103 109 97 118 130 113 97 100 128 105 100

100 97 122 131 170 152 115 141 152 136 84 91 71 123 94 89 108 80 107 129 499

163 91 177 190 159 92 168 189 92 137 96 112 85 138 107 106 117 81 130 113 109

131 98 125 152 113 87 121 164 87 109 162 102 139 115 131 165 82 169 134 128 154

92 75 110 306 76 73 88 65 73 67 86 83 76 85 82 83 73 80 93 71 85

139 133 110 123 143 195 132 151 195 159 132 131 169 134 161 141 122 179 144 148 153

479 116 91 513 422 96 66 481 96 468 129 240 134 94 367 113 83 114 83 443 116

123 196 150 159 142 162 135 219 162 110 150 128 110 162 91 142 127 131 138 119 181

220 243 167 158 131 161 82 167 161 143 280 165 151 125 180 154 130 149 198 117 153

138 92 144 146 117 110 119 147 110 115 103 114 93 108 113 101 118 92 127 117 101

140 107 120 143 128 95 118 124 95 113 97 84 100 108 129 100 107 106 105 122 96

198 192 223 207 217 276 209 215 276 183 242 208 257 219 219 295 213 277 223 220 246

118 136 124 159 123 117 118 123 117 122 126 115 112 123 128 113 130 126 130 119 78

144 108 171 150 163 108 155 184 108 123 142 128 126 153 135 126 131 112 170 133 119

118 95 106 108 113 75 104 129 75 99 150 85 107 105 89 108 103 117 94 92 77

88 99 106 86 82 115 81 112 101 88 98 87 99 94 92 102 99 84 92 90 106

76 91 97 288 92 91 102 69 68 88 80 64 94 74 81 92 74 92 61 87 79

122 86 121 129 105 80 128 257 104 87 95 79 108 92 98 97 98 89 100 98 116

90 89 101 120 91 79 91 92 94 68 81 80 93 91 95 68 91 81 73 74 76

106 75 98 199 103 79 84 84 97 83 83 82 86 82 266 87 76 101 104 81 98

118 156 94 128 114 314 136 144 124 132 96 179 121 132 111 105 156 94 136 113 90

121 120 128 198 97 156 120 154 115 136 121 153 100 111 124 110 148 109 154 118 130

120 114 119 122 143 90 140 131 117 131 102 103 103 117 523 125 99 113 90 90 111

95 85 99 83 103 86 104 116 117 118 112 97 103 117 90 100 107 86 144 79 114

163 101 109 129 94 68 110 90 80 80 73 81 88 69 85 72 86 76 87 82 91

86 74 90 98 76 87 88 85 108 86 86 89 68 83 92 86 91 88 156 93 83

117 89 107 136 109 104 108 100 119 107 91 100 92 79 95 84 105 83 84 104 114

105 84 118 143 96 134 119 108 116 78 103 79 102 107 82 110 85 121 210 160 111

84 100 101 90 107 83 113 173 90 92 91 82 121 87 88 98 80 103 129 338 137

95 94 95 95 104 84 99 103 89 93 85 94 79 113 73 93 88 101 71 86 85

82 97 97 134 92 91 94 116 79 93 86 87 100 111 78 87 98 89 111 88 117

102 74 112 111 112 62 99 113 113 95 91 79 99 123 83 95 77 101 117 74 102

103 86 88 101 71 88 88 124 96 83 88 87 105 101 86 87 93 97 97 96 107

105 78 111 133 88 84 103 116 100 92 92 86 111 97 99 90 85 98 86 99 99

93 87 105 123 122 77 102 109 101 77 95 86 99 91 79 93 90 94 92 85 91

47

6t1 6t2 6t3 6t4 6t5 2l0 3l0 6c0 4l0 7c0 6d1 6d2 6d3 7t1 7t2 7t3 7t4 7t5 5l0 7d1

91 98 92 91 97 569 638 110 605 148 83 85 97 124 75 103 89 119 532 127

122 341 126 87 110 129 143 158 156 193 188 441 139 130 116 112 202 141 149 121

146 154 116 160 146 450 577 107 725 116 109 112 123 148 188 122 153 129 632 133

113 155 158 145 155 591 684 332 642 185 226 142 157 136 145 135 124 161 127 124

81 115 92 121 97 416 429 140 415 253 124 87 129 119 86 103 93 119 570 131

135 92 113 91 125 476 430 111 487 184 130 104 129 112 92 129 96 139 473 146

115 116 80 101 119 892 910 126 786 133 127 99 108 112 95 103 102 124 1024 114

132 204 121 200 138 715 691 129 796 136 137 202 130 124 214 123 209 131 904 132

139 135 117 133 139 474 639 168 515 160 113 159 123 143 129 104 98 139 431 158

139 140 159 97 154 743 795 125 754 134 141 131 129 125 94 125 96 121 669 140

95 102 110 82 117 646 596 91 544 116 83 90 106 112 100 108 90 112 664 103

447 134 151 140 128 344 1591 408 434 946 447 236 82 425 121 99 137 109 536 282

122 140 120 117 119 502 563 155 698 160 736 139 163 825 172 105 132 110 642 396

114 101 96 116 146 149 837 116 752 171 139 87 134 143 88 123 100 131 489 88

112 73 98 103 101 94 723 111 952 100 99 82 101 132 111 108 112 100 864 114

114 92 127 226 112 290 346 110 394 172 193 107 126 101 102 123 88 146 365 134

136 76 123 85 128 509 565 108 304 100 393 82 153 142 89 111 83 118 759 122

120 97 126 111 128 749 902 139 880 138 178 93 148 159 104 114 100 162 1571 403

142 134 116 163 132 1044 1365 130 1246 128 107 114 117 106 319 150 190 161 1159 130

106 71 92 70 116 544 552 96 570 72 63 82 102 70 82 79 68 100 67 72

162 149 131 156 120 830 756 210 707 158 161 97 120 149 164 135 108 138 749 155

498 139 186 141 100 573 377 482 529 312 804 129 68 724 116 70 112 68 762 1250

145 152 114 305 187 561 656 120 665 165 152 178 172 142 161 114 181 153 694 193

157 125 119 137 110 551 668 123 628 130 365 149 129 164 144 150 132 202 595 172

136 105 108 91 130 566 648 146 763 150 135 74 131 106 106 109 80 124 531 130

126 98 96 99 121 772 1052 117 837 150 137 95 115 113 102 93 100 119 1015 114

226 274 202 270 210 920 851 370 742 386 217 242 212 196 214 190 203 197 724 212

112 71 111 76 109 232 497 133 807 136 115 90 120 101 106 115 117 112 846 93

132 132 132 125 169 1154 1092 147 900 181 143 131 121 130 129 113 114 149 974 134

88 161 103 124 95 953 770 116 822 138 132 54 115 103 95 97 107 87 736 80

103 81 94 86 90 424 541 90 475 107 234 114 100 110 95 100 93 101 418 98

105 77 106 60 102 1128 1012 65 854 83 75 79 103 118 66 93 71 112 668 109

108 101 104 107 81 478 781 118 655 119 126 86 115 135 72 110 100 102 875 126

70 92 65 85 71 660 792 108 1245 115 106 61 116 81 86 104 84 98 1311 132

90 92 97 70 100 1163 874 115 967 121 115 90 100 111 93 91 93 90 720 103

121 102 103 129 99 1123 963 116 783 121 497 130 115 135 97 114 111 118 865 120

119 127 126 156 116 1421 904 151 741 118 136 104 125 145 132 134 172 121 894 191

130 118 90 283 128 544 867 126 828 122 131 98 119 136 89 95 117 88 712 108

135 83 98 110 80 1050 1613 127 1661 118 107 94 110 97 94 97 95 100 891 93

58 86 78 90 80 967 1016 107 640 107 74 97 82 92 81 85 82 93 470 94

93 87 81 93 80 371 378 117 345 109 109 83 120 102 95 95 105 109 342 111

113 97 86 284 137 608 576 110 523 125 128 91 124 103 92 113 92 108 601 134

116 117 78 146 111 564 519 162 583 127 201 103 126 119 100 107 78 119 310 130

106 106 119 100 103 676 485 90 491 173 155 84 133 112 97 112 97 128 411 115

76 87 87 77 91 404 451 86 383 81 90 88 94 66 87 81 93 76 256 91

94 90 97 96 116 414 458 96 351 60 105 69 120 101 80 100 86 107 490 126

88 96 78 77 108 390 418 96 79 110 79 91 101 106 79 101 70 113 506 100

91 98 91 99 108 385 362 88 371 104 113 75 282 120 89 115 81 118 397 121

102 94 98 84 109 445 502 115 289 105 150 94 128 127 86 106 98 104 360 136

111 86 99 85 96 126 302 98 317 120 106 67 115 107 80 90 76 116 272 99

48

7d2 7d3 8d1 8d2 8d3 9d1 9d2 9d3 8t1 8t2 8t3 8t4 8t5 6l0 8c0 7l0 9t1 9t2 9t3 9t4 9t5

86 113 102 87 93 111 104 86 96 90 99 87 92 444 119 555 124 89 98 97 94

585 176 132 651 198 130 124 120 156 121 147 305 172 466 169 166 156 300 160 141 148

138 135 137 124 139 175 125 147 134 144 127 154 147 869 153 741 123 142 136 107 149

144 153 137 146 165 154 148 149 149 96 242 181 165 592 163 148 143 141 140 519 146

113 138 106 94 127 100 99 123 111 164 114 141 109 417 135 506 114 112 121 106 122

102 140 129 105 143 151 90 149 139 104 104 87 124 353 139 356 171 119 113 109 121

95 134 102 92 116 108 101 117 109 102 93 92 123 774 106 683 120 92 99 85 121

216 118 150 165 128 128 166 121 166 172 126 188 144 848 136 831 132 181 123 187 131

123 151 127 106 159 144 124 161 147 129 123 117 120 386 181 440 172 145 124 129 152

100 127 121 96 127 117 109 136 93 116 151 103 105 781 141 718 136 123 105 84 126

83 127 114 98 101 64 116 112 90 95 124 83 116 115 122 667 112 107 111 62 120

381 75 279 138 230 363 119 122 388 137 112 122 95 383 107 576 332 141 93 155 126

92 187 877 164 118 769 168 129 620 141 122 117 100 504 437 475 218 148 149 139 137

135 833 76 85 643 541 157 542 85 114 547 142 69 87 739 676 339 112 109 102 90

93 142 106 93 119 125 94 138 126 128 121 165 123 934 107 1126 112 146 107 140 131

91 115 183 327 136 152 389 120 137 89 108 102 133 284 153 357 154 78 121 83 143

84 114 119 97 100 120 74 114 135 84 116 58 142 481 116 889 139 76 121 72 120

106 152 120 106 150 157 86 143 137 99 122 113 141 1751 205 1358 134 127 93 144 155

124 134 117 124 115 133 153 111 108 113 117 127 108 1031 143 1352 107 133 117 94 128

78 101 43 80 97 85 88 105 110 131 105 90 120 84 150 525 57 100 81 83 101

162 126 159 149 113 144 232 140 153 210 121 217 133 827 359 806 136 223 148 236 153

95 76 462 114 131 412 120 70 448 276 109 113 145 487 319 392 282 114 76 120 82

144 188 165 140 150 171 143 173 145 137 147 147 160 813 179 806 146 114 131 127 156

142 147 158 158 182 173 146 110 166 125 123 115 147 642 184 570 157 284 154 116 186

97 121 134 95 143 210 115 112 110 114 90 95 126 642 150 739 131 113 108 104 130

95 103 123 88 116 115 101 123 135 91 96 98 114 838 96 819 121 81 104 115 126

223 211 200 274 210 217 260 253 207 303 209 309 226 979 330 894 214 214 228 231 236

93 107 100 93 120 98 97 111 119 94 97 87 119 833 86 976 129 89 109 75 131

125 121 124 118 154 125 100 171 120 133 115 108 159 869 138 889 105 146 135 106 153

81 98 135 74 102 107 89 101 132 101 73 70 121 638 116 541 137 86 101 103 98

84 107 119 76 109 118 96 98 107 87 97 104 85 438 100 447 101 92 111 91 111

85 90 90 85 97 103 77 101 89 74 101 81 93 585 101 545 100 87 94 79 113

98 102 119 90 117 105 84 107 78 109 91 96 98 1022 131 655 129 74 115 76 114

296 133 109 70 105 103 63 102 88 81 84 82 86 1162 122 1228 118 87 82 84 119

86 103 114 88 101 123 83 104 108 99 68 266 125 623 131 472 99 84 95 74 107

199 131 144 141 86 136 185 151 131 151 133 158 125 768 132 903 136 131 115 162 125

373 169 174 287 165 202 298 156 235 309 175 467 155 1254 394 1273 181 438 176 323 155

102 111 104 95 107 113 86 112 61 106 97 106 84 489 115 176 114 104 103 84 101

95 110 110 101 98 104 105 80 128 81 113 107 94 88 119 1402 106 109 98 100 102

84 107 108 92 117 91 83 125 99 88 103 95 107 558 90 485 132 79 101 90 97

105 100 117 68 124 100 87 113 108 85 101 91 105 574 124 409 114 82 104 88 118

81 126 127 100 106 115 92 113 134 87 120 86 117 554 92 572 92 165 92 94 116

79 122 103 90 116 111 75 107 111 87 99 89 290 487 121 404 101 93 90 152 93

86 128 110 80 133 126 87 111 162 132 91 115 84 476 140 413 119 646 126 157 123

346 62 79 90 81 75 93 91 80 93 87 95 89 445 97 324 94 81 98 83 102

89 116 103 90 105 104 93 100 78 262 119 89 123 453 105 342 139 111 87 93 118

90 110 95 107 88 93 90 102 102 99 95 82 125 567 153 526 123 100 94 89 115

76 132 103 93 120 127 85 122 201 106 117 104 134 528 167 126 178 107 127 99 136

146 113 122 77 140 109 72 116 168 68 125 65 138 131 227 480 163 65 155 97 165

80 102 98 82 97 86 85 94 105 71 101 81 104 94 111 610 123 185 103 595 142

49

8l0 9c0 9l0 Errors

571 122 444

748 147 470

708 104 827

880 157 145

503 129 759

383 125 330 R:0.

819 122 665

707 124 830

449 137 537

749 139 792

800 135 814

595 251 474

404 426 390

695 301 563

786 142 919 R:19.

357 147 153

686 100 915

1213 203 949

1448 110 1433 R:11.

619 114 554

771 114 806

421 288 389

641 158 721 R:0.

717 164 598

960 161 805

815 113 1183

708 274 755

1186 125 596

928 125 882

704 112 1014

372 95 377

483 126 522 R:27.

539 139 1273 R:34.

1326 149 1507 R:28.

1094 100 1039

670 170 166

828 162 679

968 128 780

2056 120 1567 R:34.

414 121 481

430 138 462

677 135 574

465 169 475

404 141 525

287 80 72

424 130 590 R:4.

460 120 545 R:15.

488 116 400

452 298 481

471 133 471

50

B. Frequency Distribution Graphs

C

1050.0

950.0
850.0

750.0
650.0

550.0
450.0

350.0
250.0

150.0
50.0

300

200

100

0

Std. Dev = 96.04
Mean = 149.8

N = 500.00

L

8000.0

7500.0

7000.0

6500.0

6000.0

5500.0

5000.0

4500.0

4000.0

3500.0

3000.0

2500.0

2000.0

1500.0

1000.0

500.0
0.0

300

200

100

0

Std. Dev = 482.6
Mean = 669.5

N = 500.00

D1

900.0
850.0

800.0
750.0

700.0
650.0

600.0
550.0

500.0
450.0

400.0
350.0

300.0
250.0

200.0
150.0

100.0
50.0

300

200

100

0

Std. Dev = 91.88
Mean = 139.5

N = 500.00

D2

650.0
600.0

550.0
500.0

450.0
400.0

350.0
300.0

250.0
200.0

150.0
100.0

50.0

300

200

100

0

Std. Dev = 62.59
Mean = 117.5

N = 500.00

D3

850.0
800.0

750.0
700.0

650.0
600.0

550.0
500.0

450.0
400.0

350.0
300.0

250.0
200.0

150.0
100.0

50.0

400

300

200

100

0

Std. Dev = 55.10
Mean = 123.9

N = 500.00

51

T1

850.0
800.0

750.0
700.0

650.0
600.0

550.0
500.0

450.0
400.0

350.0
300.0

250.0
200.0

150.0
100.0

50.0

400

300

200

100

0

Std. Dev = 75.56
Mean = 131.8

N = 500.00

T2

625.0
575.0

525.0
475.0

425.0
375.0

325.0
275.0

225.0
175.0

125.0
75.0

200

100

0

Std. Dev = 62.77
Mean = 123.4

N = 500.00

T3

550.0
500.0

450.0
400.0

350.0
300.0

250.0
200.0

150.0
100.0

50.0

300

200

100

0

Std. Dev = 39.66
Mean = 115.1

N = 500.00

T4

1250.0

1150.0

1050.0

950.0
850.0

750.0
650.0

550.0
450.0

350.0
250.0

150.0
50.0

400

300

200

100

0

Std. Dev = 87.47
Mean = 122.8

N = 500.00

T5

525.0
500.0

475.0
450.0

425.0
400.0

375.0
350.0

325.0
300.0

275.0
250.0

225.0
200.0

175.0
150.0

125.0
100.0

75.0

200

100

0

Std. Dev = 37.40
Mean = 121.2

N = 500.00

52

C. User Instructions

About the Test

The experiment consists of prompts for different types of button presses. The four

different kinds of button presses you will be asked to perform are detailed below:

Single Click

This is when the button is pushed down and then immediately released.

Long Click

This is when the button is pushed down, held in this position for an extended

period of time and then released. The time taken should be long enough to

distinguish it from a single-click but not so long as to induce impatience if someone

were asked to repeat this action. The time for which the button is held down is

determined by you.

Double Click

This is the equivalent of two single clicks in rapid succession

Triple Click

This is the equivalent of three single clicks in rapid succession

53

D. Switch Schematic

 54

E. Visual C++ Code

I. USB Switch Timer.h

// USB Switch Timer.h : main header file for the USB Switch Timer application

//

#pragma once

#ifndef __AFXWIN_H__

 #error include 'stdafx.h' before including this file for PCH

#endif

#include "resource.h" // main symbols

// CUSBSwitchTimerApp:

// See USB Switch Timer.cpp for the implementation of this class

//

class CUSBSwitchTimerApp : public CWinApp

{

public:

 CUSBSwitchTimerApp();

// Overrides

 public:

 virtual BOOL InitInstance();

// Implementation

 DECLARE_MESSAGE_MAP()

};

extern CUSBSwitchTimerApp theApp;

 55

II. USB Switch Timer.cpp

// USB Switch Timer.cpp : Defines the class behaviours for the application.

//

#include "stdafx.h"

#include "USB Switch Timer.h"

#include "USB Switch TimerDlg.h"

#ifdef _DEBUG

#define new DEBUG_NEW

#endif

// CUSBSwitchTimerApp

BEGIN_MESSAGE_MAP(CUSBSwitchTimerApp, CWinApp)

 ON_COMMAND(ID_HELP, CWinApp::OnHelp)

END_MESSAGE_MAP()

// CUSBSwitchTimerApp construction

CUSBSwitchTimerApp::CUSBSwitchTimerApp()

{

 // TODO: add construction code here,

 // Place all significant initialization in InitInstance

}

// The one and only CUSBSwitchTimerApp object

CUSBSwitchTimerApp theApp;

// CUSBSwitchTimerApp initialization

BOOL CUSBSwitchTimerApp::InitInstance()

{

 // InitCommonControls() is required on Windows XP if an application

 // manifest specifies use of ComCtl32.dll version 6 or later to enable

 // visual styles. Otherwise, any window creation will fail.

 InitCommonControls();

 CWinApp::InitInstance();

 AfxEnableControlContainer();

 56

 CUSBSwitchTimerDlg dlg;

 m_pMainWnd = &dlg;

 INT_PTR nResponse = dlg.DoModal();

 if (nResponse == IDOK)

 {

 // TODO: Place code here to handle when the dialog is

 // dismissed with OK

 }

 else if (nResponse == IDCANCEL)

 {

 // TODO: Place code here to handle when the dialog is

 // dismissed with Cancel

 }

 // Since the dialog has been closed, return FALSE so that we exit the

 // application, rather than start the application's message pump.

 return FALSE;

}

 57

III. USB Switch TimerDlg.h

// USB Switch TimerDlg.h : header file

//

#pragma once

// CUSBSwitchTimerDlg dialog

class CUSBSwitchTimerDlg : public CDHtmlDialog

{

// Construction

public:

 CUSBSwitchTimerDlg(CWnd* pParent = NULL); // standard constructor

// Dialog Data

 enum { IDD = IDD_USBSWITCHTIMER_DIALOG, IDH = IDR_HTML_USBSWITCHTIMER_DIALOG };

 protected:

 virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV support

 HRESULT OnButtonOK(IHTMLElement *pElement);

 HRESULT OnButtonCancel(IHTMLElement *pElement);

// Implementation

protected:

 HICON m_hIcon;

 // Generated message map functions

 virtual BOOL OnInitDialog();

 afx_msg void OnPaint();

 afx_msg HCURSOR OnQueryDragIcon();

 DECLARE_MESSAGE_MAP()

 DECLARE_DHTML_EVENT_MAP()

};

 58

IV. USB Switch TimerDlg.cpp

// USB Switch TimerDlg.cpp : implementation file

//

#include "stdafx.h"

#include "USB Switch Timer.h"

#include "USB Switch TimerDlg.h"

#include "LegalDlg.h"

#ifdef _DEBUG

#define new DEBUG_NEW

#endif

// 1 or 0 depending on whether the legal agreement box is checked

int legal_agree;

// 0 (null) to 7 depending on what radio button the user selects for age

int user_age;

// 0 (null) to 7 depending on what radio button the user selects for age

int user_computer_usage;

// 1 or 0 depending on whether the test was finished or not

int unfinished=0;

// the test headings for the top of the csv file

CString test_headings[100] = {

 "0t1","0t2","0t3","0t4","0t5","0l0","0c0","1c0","1t1","1t2",

 "1t3","1t4","1t5","2c0","0d1","0d2","0d3","3c0","2t1","2t2",

 "2t3","2t4","2t5","1l0","1d1","1d2","1d3","2d1","2d2","2d3",

 "3t1","3t2","3t3","3t4","3t5","3d1","3d2","3d3","4c0","4d1",

 "4d2","4d3","5c0","4t1","4t2","4t3","4t4","4t5","5t1","5t2",

 "5t3","5t4","5t5","5d1","5d2","5d3","6t1","6t2","6t3","6t4",

 "6t5","2l0","3l0","6c0","4l0","7c0","6d1","6d2","6d3","7t1",

 "7t2","7t3","7t4","7t5","5l0","7d1","7d2","7d3","8d1","8d2",

 "8d3","9d1","9d2","9d3","8t1","8t2","8t3","8t4","8t5","6l0",

 59

 "8c0","7l0","9t1","9t2","9t3","9t4","9t5","8l0","9c0","9l0"};

// int indicating the test position an unfinished test was halted at

int halt = 0;

// Cfile setup

CFile out_file;

CFileException fileException;

CFileStatus f_status;

// CUSBSwitchTimerDlg dialog

BEGIN_DHTML_EVENT_MAP(CUSBSwitchTimerDlg)

 DHTML_EVENT_ONCLICK(_T("ButtonOK"), OnButtonOK)

 DHTML_EVENT_ONCLICK(_T("ButtonCancel"), OnButtonCancel)

END_DHTML_EVENT_MAP()

CUSBSwitchTimerDlg::CUSBSwitchTimerDlg(CWnd* pParent /*=NULL*/)

 : CDHtmlDialog(CUSBSwitchTimerDlg::IDD, CUSBSwitchTimerDlg::IDH, pParent)

{

 m_hIcon = AfxGetApp()->LoadIcon(IDR_MAINFRAME);

 //Open the file

 char* pszFileName = "./output.csv";

 bool file_new = FALSE;

 if(CFile::GetStatus(pszFileName, f_status))

 {

 // Open the file without the Create flag

 if(!out_file.Open(pszFileName, CFile::modeCreate | CFile::modeNoTruncate |

CFile::modeWrite, &fileException))

 {

 #ifdef _DEBUG

 afxDump << "File could not be opened " << fileException.m_cause << "\n";

 #endif

 }

 out_file.SeekToEnd();

 }

 else

 {

 if(!out_file.Open(pszFileName, CFile::modeCreate | CFile::modeNoTruncate |

CFile::modeWrite, &fileException))

 {

 60

 #ifdef _DEBUG

 afxDump << "File could not be opened " << fileException.m_cause << "\n";

 #endif

 }

 out_file.SeekToEnd();

 // write heading to file if empty

 CString Headings;

 Headings += "User Age,User Computer Usage,";

 int i;

 for (i=0;i<100;i++)

 {

 Headings += test_headings[i];

 Headings += ",";

 }

 Headings += "Errors\n";

 out_file.Write(Headings,Headings.GetLength());

 }

}

void CUSBSwitchTimerDlg::DoDataExchange(CDataExchange* pDX)

{

 CDHtmlDialog::DoDataExchange(pDX);

}

BEGIN_MESSAGE_MAP(CUSBSwitchTimerDlg, CDHtmlDialog)

 //}}AFX_MSG_MAP

END_MESSAGE_MAP()

// CUSBSwitchTimerDlg message handlers

BOOL CUSBSwitchTimerDlg::OnInitDialog()

{

 CDHtmlDialog::OnInitDialog();

 // Set the icon for this dialog. The framework does this automatically

 // when the application's main window is not a dialog

 SetIcon(m_hIcon, TRUE); // Set big icon

 SetIcon(m_hIcon, FALSE); // Set small icon

 ShowWindow(SW_MAXIMIZE);

 // TODO: Add extra initialization here

 61

 return TRUE; // return TRUE unless you set the focus to a control

}

// If you add a minimize button to your dialog, you will need the code below

// to draw the icon. For MFC applications using the document/view model,

// this is automatically done for you by the framework.

void CUSBSwitchTimerDlg::OnPaint()

{

 if (IsIconic())

 {

 CPaintDC dc(this); // device context for painting

 SendMessage(WM_ICONERASEBKGND, reinterpret_cast<WPARAM>(dc.GetSafeHdc()),

0);

 // Center icon in client rectangle

 int cxIcon = GetSystemMetrics(SM_CXICON);

 int cyIcon = GetSystemMetrics(SM_CYICON);

 CRect rect;

 GetClientRect(&rect);

 int x = (rect.Width() - cxIcon + 1) / 2;

 int y = (rect.Height() - cyIcon + 1) / 2;

 // Draw the icon

 dc.DrawIcon(x, y, m_hIcon);

 }

 else

 {

 CDHtmlDialog::OnPaint();

 }

}

// The system calls this function to obtain the cursor to display while the user drags

// the minimized window.

HCURSOR CUSBSwitchTimerDlg::OnQueryDragIcon()

{

 return static_cast<HCURSOR>(m_hIcon);

}

// if the New User button is pressed

HRESULT CUSBSwitchTimerDlg::OnButtonOK(IHTMLElement* /*pElement*/)

{

 // initialise all the variables

 legal_agree = 0;

 user_age = 0;

 user_computer_usage = 0;

 unfinished = 0;

 62

 halt = 0;

 // call the legal dialog

 CLegalDlg Dlg;

 Dlg.DoModal();

 return S_OK;

}

// if the Quit button is pressed

HRESULT CUSBSwitchTimerDlg::OnButtonCancel(IHTMLElement* /*pElement*/)

{

 //Close file

 out_file.Close();

 OnCancel();

 return S_OK;

}

 63

V. LegalDlg.h

// LegalDlg.h

#pragma once

// CLegalDlg dialog

class CLegalDlg : public CDHtmlDialog

{

 DECLARE_DYNCREATE(CLegalDlg)

public:

 CLegalDlg(CWnd* pParent = NULL); // standard constructor

 virtual ~CLegalDlg();

// Overrides

 HRESULT OnButtonOK(IHTMLElement *pElement);

 HRESULT OnButtonCancel(IHTMLElement *pElement);

// Dialog Data

 enum { IDD = IDD_LEGAL, IDH = IDR_HTML_LEGALDLG };

protected:

 virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV support

 virtual BOOL OnInitDialog();

 DECLARE_MESSAGE_MAP()

 DECLARE_DHTML_EVENT_MAP()

public:

 afx_msg void OnBnClickedLegalok();

 afx_msg void OnBnClickedLegalcancel();

 afx_msg void OnBnClickedLegalagree();

 afx_msg void OnEnChangeLegal();

};

 64

VI. LegalDlg.cpp

// LegalDlg.cpp : implementation file

// This is the file which controls the legal agreement dialog

#include "stdafx.h"

#include "USB Switch Timer.h"

#include "LegalDlg.h"

#include "QuestionnaireDlg.h"

extern int legal_agree;

// CLegalDlg dialog

IMPLEMENT_DYNCREATE(CLegalDlg, CDHtmlDialog)

CLegalDlg::CLegalDlg(CWnd* pParent /*=NULL*/)

 : CDHtmlDialog(CLegalDlg::IDD, CLegalDlg::IDH, pParent)

{

}

CLegalDlg::~CLegalDlg()

{

}

void CLegalDlg::DoDataExchange(CDataExchange* pDX)

{

 CDHtmlDialog::DoDataExchange(pDX);

}

BOOL CLegalDlg::OnInitDialog()

{

 CDHtmlDialog::OnInitDialog();

 return TRUE; // return TRUE unless you set the focus to a control

}

BEGIN_MESSAGE_MAP(CLegalDlg, CDHtmlDialog)

 ON_BN_CLICKED(IDLEGALOK, OnBnClickedLegalok)

 ON_BN_CLICKED(IDLEGALCANCEL, OnBnClickedLegalcancel)

 ON_BN_CLICKED(IDC_LEGALAGREE, OnBnClickedLegalagree)

 ON_EN_CHANGE(IDC_LEGAL, OnEnChangeLegal)

END_MESSAGE_MAP()

BEGIN_DHTML_EVENT_MAP(CLegalDlg)

 DHTML_EVENT_ONCLICK(_T("ButtonOK"), OnButtonOK)

 65

 DHTML_EVENT_ONCLICK(_T("ButtonCancel"), OnButtonCancel)

END_DHTML_EVENT_MAP()

// CLegalDlg message handlers

HRESULT CLegalDlg::OnButtonOK(IHTMLElement* /*pElement*/)

{

 OnOK();

 return S_OK; // return TRUE unless you set the focus to a control

}

HRESULT CLegalDlg::OnButtonCancel(IHTMLElement* /*pElement*/)

{

 OnCancel();

 return S_OK; // return TRUE unless you set the focus to a control

}

// if the continue button is pressed check to see if agreement box is checked then

continue

// else prompt for the user to check the box

void CLegalDlg::OnBnClickedLegalok()

{

 // TODO: Add your control notification handler code here

 if (legal_agree == 1)

 {

 CQuestionnaireDlg Dlg2;

 OnCancel();

 Dlg2.DoModal();

 }

 else

 {

 MessageBox("You must agree to continue.","Legal Agreement");

 }

}

// dismiss the dialog if quit button is pressed

void CLegalDlg::OnBnClickedLegalcancel()

{

 // TODO: Add your control notification handler code here

 OnCancel();

}

// when the check button is clicked, change value

void CLegalDlg::OnBnClickedLegalagree()

 66

{

 // TODO: Add your control notification handler code here

 if (legal_agree == 0)

 {

 legal_agree = 1;

 }

 else

 {

 legal_agree = 0;

 }

}

void CLegalDlg::OnEnChangeLegal()

{

 // TODO: If this is a RICHEDIT control, the control will not

 // send this notification unless you override the CDHtmlDialog::OnInitDialog()

 // function and call CRichEditCtrl().SetEventMask()

 // with the ENM_CHANGE flag ORed into the mask.

 // TODO: Add your control notification handler code here

}

 67

VII. QuestionnaireDlg.h

// QuestionnaireDlg.h

#pragma once

// CQuestionnaireDlg dialog

class CQuestionnaireDlg : public CDHtmlDialog

{

 DECLARE_DYNCREATE(CQuestionnaireDlg)

public:

 CQuestionnaireDlg(CWnd* pParent = NULL); // standard constructor

 virtual ~CQuestionnaireDlg();

// Overrides

 HRESULT OnButtonOK(IHTMLElement *pElement);

 HRESULT OnButtonCancel(IHTMLElement *pElement);

// Dialog Data

 enum { IDD = IDD_QUESTIONNAIRE, IDH = IDR_HTML_QUESTIONNAIREDLG };

protected:

 virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV support

 virtual BOOL OnInitDialog();

 DECLARE_MESSAGE_MAP()

 DECLARE_DHTML_EVENT_MAP()

public:

 afx_msg void OnBnClickedAge1();

 afx_msg void OnBnClickedAge2();

 afx_msg void OnBnClickedAge3();

 afx_msg void OnBnClickedAge4();

 afx_msg void OnBnClickedAge5();

 afx_msg void OnBnClickedAge6();

 afx_msg void OnBnClickedAge7();

 afx_msg void OnBnClickedCompusage1();

 afx_msg void OnBnClickedCompusage2();

 afx_msg void OnBnClickedCompusage3();

 afx_msg void OnBnClickedCompusage4();

 afx_msg void OnBnClickedCompusage5();

 afx_msg void OnBnClickedCompusage6();

 afx_msg void OnBnClickedOk();

 afx_msg void OnBnClickedCancel();

};

 68

VIII. QuestionnaireDlg.cpp

// QuestionnaireDlg.cpp : implementation file

// This is the file which controls the questionnaire dialog

#include "stdafx.h"

#include "USB Switch Timer.h"

#include "QuestionnaireDlg.h"

#include "StartTestDlg.h"

extern int user_age;

extern int user_computer_usage;

// CQuestionnaireDlg dialog

IMPLEMENT_DYNCREATE(CQuestionnaireDlg, CDHtmlDialog)

CQuestionnaireDlg::CQuestionnaireDlg(CWnd* pParent /*=NULL*/)

 : CDHtmlDialog(CQuestionnaireDlg::IDD, CQuestionnaireDlg::IDH, pParent)

{

}

CQuestionnaireDlg::~CQuestionnaireDlg()

{

}

void CQuestionnaireDlg::DoDataExchange(CDataExchange* pDX)

{

 CDHtmlDialog::DoDataExchange(pDX);

}

BOOL CQuestionnaireDlg::OnInitDialog()

{

 CDHtmlDialog::OnInitDialog();

 return TRUE; // return TRUE unless you set the focus to a control

}

BEGIN_MESSAGE_MAP(CQuestionnaireDlg, CDHtmlDialog)

 ON_BN_CLICKED(IDC_AGE1, OnBnClickedAge1)

 ON_BN_CLICKED(IDC_AGE2, OnBnClickedAge2)

 ON_BN_CLICKED(IDC_AGE3, OnBnClickedAge3)

 ON_BN_CLICKED(IDC_AGE4, OnBnClickedAge4)

 ON_BN_CLICKED(IDC_AGE5, OnBnClickedAge5)

 ON_BN_CLICKED(IDC_AGE6, OnBnClickedAge6)

 ON_BN_CLICKED(IDC_AGE7, OnBnClickedAge7)

 ON_BN_CLICKED(IDC_COMPUSAGE1, OnBnClickedCompusage1)

 ON_BN_CLICKED(IDC_COMPUSAGE2, OnBnClickedCompusage2)

 69

 ON_BN_CLICKED(IDC_COMPUSAGE3, OnBnClickedCompusage3)

 ON_BN_CLICKED(IDC_COMPUSAGE4, OnBnClickedCompusage4)

 ON_BN_CLICKED(IDC_COMPUSAGE5, OnBnClickedCompusage5)

 ON_BN_CLICKED(IDC_COMPUSAGE6, OnBnClickedCompusage6)

 ON_BN_CLICKED(IDOK, OnBnClickedOk)

 ON_BN_CLICKED(IDCANCEL, OnBnClickedCancel)

END_MESSAGE_MAP()

BEGIN_DHTML_EVENT_MAP(CQuestionnaireDlg)

 DHTML_EVENT_ONCLICK(_T("ButtonOK"), OnButtonOK)

 DHTML_EVENT_ONCLICK(_T("ButtonCancel"), OnButtonCancel)

END_DHTML_EVENT_MAP()

// CQuestionnaireDlg message handlers

HRESULT CQuestionnaireDlg::OnButtonOK(IHTMLElement* /*pElement*/)

{

 OnOK();

 return S_OK; // return TRUE unless you set the focus to a control

}

HRESULT CQuestionnaireDlg::OnButtonCancel(IHTMLElement* /*pElement*/)

{

 OnCancel();

 return S_OK; // return TRUE unless you set the focus to a control

}

// sets the appropriate value for user_age

void CQuestionnaireDlg::OnBnClickedAge1()

{

 // TODO: Add your control notification handler code here

 user_age = 1;

}

void CQuestionnaireDlg::OnBnClickedAge2()

{

 // TODO: Add your control notification handler code here

 user_age = 2;

}

void CQuestionnaireDlg::OnBnClickedAge3()

{

 // TODO: Add your control notification handler code here

 user_age = 3;

 70

}

void CQuestionnaireDlg::OnBnClickedAge4()

{

 // TODO: Add your control notification handler code here

 user_age = 4;

}

void CQuestionnaireDlg::OnBnClickedAge5()

{

 // TODO: Add your control notification handler code here

 user_age = 5;

}

void CQuestionnaireDlg::OnBnClickedAge6()

{

 // TODO: Add your control notification handler code here

 user_age = 6;

}

void CQuestionnaireDlg::OnBnClickedAge7()

{

 // TODO: Add your control notification handler code here

 user_age = 7;

}

// sets the appropriate value for user_computer_usage

void CQuestionnaireDlg::OnBnClickedCompusage1()

{

 // TODO: Add your control notification handler code here

 user_computer_usage = 1;

}

void CQuestionnaireDlg::OnBnClickedCompusage2()

{

 // TODO: Add your control notification handler code here

 user_computer_usage = 2;

}

void CQuestionnaireDlg::OnBnClickedCompusage3()

{

 // TODO: Add your control notification handler code here

 user_computer_usage = 3;

}

void CQuestionnaireDlg::OnBnClickedCompusage4()

{

 71

 // TODO: Add your control notification handler code here

 user_computer_usage = 4;

}

void CQuestionnaireDlg::OnBnClickedCompusage5()

{

 // TODO: Add your control notification handler code here

 user_computer_usage = 5;

}

void CQuestionnaireDlg::OnBnClickedCompusage6()

{

 // TODO: Add your control notification handler code here

 user_computer_usage = 6;

}

// if the continue button is clicked

void CQuestionnaireDlg::OnBnClickedOk()

{

 // TODO: Add your control notification handler code here

 char errors[75] = " ";

 // check to see if both radio boxes are checked

 if (user_age == 0 || user_computer_usage == 0)

 {

 // else write an appropriate error

 if (user_age == 0)

 {

 strcat(errors,"Please select your age group.\n");

 }

 if (user_computer_usage == 0)

 {

 strcat(errors,"Please select your computer usage.\n");

 }

 MessageBox(errors,"Questionaire");

 }

 else

 {

 // dismiss this dialog and call the start test dialog

 OnCancel();

 CStartTestDlg Dlg1;

 Dlg1.DoModal();

 }

}

 72

// if the quit button is pressed, dismiss the dialog

void CQuestionnaireDlg::OnBnClickedCancel()

{

 // TODO: Add your control notification handler code here

 OnCancel();

}

 73

IX. StartTestDlg.h

// StartTestDlg.h

#pragma once

// CStartTestDlg dialog

class CStartTestDlg : public CDHtmlDialog

{

 DECLARE_DYNCREATE(CStartTestDlg)

public:

 CStartTestDlg(CWnd* pParent = NULL); // standard constructor

 virtual ~CStartTestDlg();

 void StartTest(int test, bool openclose, bool redo);

 void OnStart();

 void OnStop();

 void OnClose();

 void ReadAndWriteToDevice();

 void ReadReport();

 void WriteReport();

 void Next();

 void CollectErrors();

 void EndTest();

// Overrides

 HRESULT OnButtonOK(IHTMLElement *pElement);

 HRESULT OnButtonCancel(IHTMLElement *pElement);

// Dialog Data

 enum { IDD = IDD_DIALOG1, IDH = IDR_HTML_STARTTESTDLG };

protected:

 virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV support

 virtual BOOL OnInitDialog();

 bool FindTheHID();

 void DisplayInputReport();

 void DisplayReceivedData(char ReceivedByte);

 void GetDeviceCapabilities();

 void PrepareForOverlappedTransfer();

 void ScrollToBottomOfListBox(USHORT idx);

 void OnTimer(UINT nIDEvent);

 DECLARE_MESSAGE_MAP()

 74

 DECLARE_DHTML_EVENT_MAP()

};

 75

X. StartTestDlg.cpp

// StartTestDlg.cpp : implementation file

// This is the main test procedure dialog, it calls all the prompt dialogs.

// it also controls the order of the test and output.

#include "stdafx.h"

#include "USB Switch Timer.h"

#include "USB Switch TimerDlg.h"

#include "StartTestDlg.h"

#include "Resource.h"

#include "ClickSingleDlg.h"

#include "ClickDoubleDlg.h"

#include "ClickTripleDlg.h"

#include "ClickLongDlg.h"

#include "ClickSingleRedo.h"

#include "ClickDoubleRedo.h"

#include "ClickTripleRedo.h"

#include "ClickLongRedo.h"

#include <fstream.h>

extern "C" {

#include "hidsdi.h"

#include <setupapi.h>

}

extern void WINAPI HIDIOCompletionRoutine(DWORD, DWORD, LPOVERLAPPED);

//Application global variables

 DWORD Actual;

 DWORD BytesRead;

 HIDP_CAPS Capabilities;

 DWORD cbBytesRead;

 PSP_DEVICE_INTERFACE_DETAIL_DATA detailData;

 bool DeviceDetected;

 HANDLE DeviceHandle;

 DWORD dwError;

 HANDLE hEventObject;

 HANDLE hDevInfo;

 GUID HidGuid;

 OVERLAPPED HIDOverlapped;

 char InputReport[4];

 ULONG Length;

 76

 LPOVERLAPPED lpOverLap;

 DWORD NumberOfBytesRead;

 HANDLE ReadHandle;

 ULONG Required;

 CHAR path_file_name[11];

 WORD path_file_size;

 bool running = FALSE;

 CString Buffer[20]; //contains buffered data from the switch

 int Current_Buffer_Size=0; //current size of the buffer

 int Previous_Buffer_Size; //previous size of the buffer - used

for picking up incomplete actions

 int Counter=0; //increments if buffer stays the same

on subsequent timer events

 int No_Reports=0; //the number of reports expected from

each action

 CString Errors; //errors during the experiment are

placed here

 CString Results; //experimental result string to be

written to the file

 int test_position=0; //current test position

 UINT_PTR Timer; //timer!

 CDialog *m_pDlg; //pointer to a dialog - used for

opening and closing modeless dialogs

Int test_sequence[40] = { 3,4,1,1,3,1,2,1,3,4,

2,2,3,2,1,2,1,3,3,2,

3,4,4,1,4,1,2,3,4,2,

2,2,3,4,1,4,3,4,1,4};

 CString test_results[40][5]; //Array into which the results are

added after buffering

 extern CFile out_file; //The output.csv file used for the

results

 extern CString test_headings[100];

 extern int user_age;

 extern int user_computer_usage;

 extern int unfinished;

 bool Redo=FALSE;

 extern int halt;

// CStartTestDlg dialog

IMPLEMENT_DYNCREATE(CStartTestDlg, CDHtmlDialog)

CStartTestDlg::CStartTestDlg(CWnd* pParent /*=NULL*/)

 : CDHtmlDialog(CStartTestDlg::IDD, CStartTestDlg::IDH, pParent)

{

 //Contains all actions performed when Start Test Dialog Box is opened

 //Detect Device

 77

 FindTheHID();

 // Initialise the Buffer

 int i;

 for (i=0;i<20;i++)

 {Buffer[i]="000000";}

 Current_Buffer_Size=0;

 Previous_Buffer_Size=0;

 //Initialise the test results array

 int j;

 for (i=0;i<40;i++)

 {

 for (j=0;j<5;j++)

 {

 test_results[i][j] = "000000";

 }

 }

}

CStartTestDlg::~CStartTestDlg()

{

}

void CStartTestDlg::DoDataExchange(CDataExchange* pDX)

{

 CDHtmlDialog::DoDataExchange(pDX);

}

BOOL CStartTestDlg::OnInitDialog()

{

 CDHtmlDialog::OnInitDialog();

 return TRUE; // return TRUE unless you set the focus to a control

}

BEGIN_MESSAGE_MAP(CStartTestDlg, CDHtmlDialog)

 //{{AFX_MSG_MAP(CStartTestDlg)

 ON_WM_SYSCOMMAND()

 ON_WM_PAINT()

 ON_WM_QUERYDRAGICON()

 ON_WM_CLOSE()

 ON_WM_TIMER()

 //}}AFX_MSG_MAP

END_MESSAGE_MAP()

BEGIN_DHTML_EVENT_MAP(CStartTestDlg)

 78

 DHTML_EVENT_ONCLICK(_T("ButtonOK"), OnButtonOK)

 DHTML_EVENT_ONCLICK(_T("ButtonCancel"), OnButtonCancel)

END_DHTML_EVENT_MAP()

// CStartTestDlg message handlers

HRESULT CStartTestDlg::OnButtonOK(IHTMLElement* /*pElement*/)

{

 Results = "";

 Errors = "";

 StartTest(test_sequence[test_position], TRUE, FALSE);

 return S_OK; // return TRUE unless you set the focus to a control

}

HRESULT CStartTestDlg::OnButtonCancel(IHTMLElement* /*pElement*/)

{

 if (unfinished == 1)

 {

 //Write the results and errors of unfinished test to a file

 //Questionnaire

 char temp[2];

 _itoa(user_age,temp,10);

 Results += temp;

 Results += ",";

 _itoa(user_computer_usage,temp,10);

 Results += temp;

 Results += ",";

 // Experiment

 int i;

 int j;

 for(i=0;i<40;i++)

 {

 for(j=0;j<5;j++)

 {

 if (test_results[i][j] != "000000")

 {

 Results += test_results[i][j];

 Results += ",";

 }

 }

 79

 if ((test_results[i][0] == "000000")&&(test_results[i][1] ==

"000000")&&(test_results[i][2] == "000000")&&(test_results[i][3] ==

"000000")&&(test_results[i][4] == "000000"))

 {

 Results += ",";

 }

 }

 char newtemp[3];

 _itoa(halt,newtemp,10);

 // append the halt to the error file

 Errors += "E:Test Halted ";

 Errors += newtemp;

 // append the errors to the results

 Results += Errors;

 Results += "\n";

 //write the results to the file

 out_file.Write(Results, Results.GetLength());

 }

 OnStop();

 OnClose();

 OnCancel();

 return S_OK; // return TRUE unless you set the focus to a control

}

// This function handles all the calling and dismissing of the prompts for different

clicks

void CStartTestDlg::StartTest(int test, bool openclose, bool redo)

{

 //Detect whether the dialog needs to be opened or closed

 if (openclose)

 {

 //Start Timer

 OnStart();

 //Detect whether the dialog needs to be a retry one

 if (redo)

 {

 Errors += "R:";

 char temp[3];

 80

 _itoa(test_position,temp,10);

 Errors += temp;

 Errors += ".";

 switch (test)

 {

 case 1:

 No_Reports = 2;

 // Display the modal redo a Single Click dialog box

 m_pDlg = new CClickSingleRedo;

 m_pDlg->Create(IDD_CLK_SINGLE_REDO);

 m_pDlg->ShowWindow(SW_SHOW);

 break;

 case 2:

 No_Reports = 4;

 // Display the modal redo a Double Click dialog box

 m_pDlg = new CClickDoubleRedo;

 m_pDlg->Create(IDD_CLK_DOUBLE_REDO);

 m_pDlg->ShowWindow(SW_SHOW);

 break;

 case 3:

 No_Reports = 6;

 // Display the modal redo a Triple Click dialog box

 m_pDlg = new CClickTripleRedo;

 m_pDlg->Create(IDD_CLK_TRIPLE_REDO);

 m_pDlg->ShowWindow(SW_SHOW);

 break;

 case 4:

 No_Reports = 2;

 // Display the modal redo a Long Click dialog box

 m_pDlg = new CClickLongRedo;

 m_pDlg->Create(IDD_CLK_LONG_REDO);

 m_pDlg->ShowWindow(SW_SHOW);

 break;

 }

 }

 else

 81

 {

 switch (test)

 {

 case 1:

 No_Reports = 2;

 // Display the modal Single Click dialog box

 m_pDlg = new CClickSingleDlg;

 m_pDlg->Create(IDD_CLK_SINGLE);

 m_pDlg->ShowWindow(SW_SHOW);

 break;

 case 2:

 No_Reports = 4;

 // Display the modal Double Click dialog box

 m_pDlg = new CClickDoubleDlg;

 m_pDlg->Create(IDD_CLK_DOUBLE);

 m_pDlg->ShowWindow(SW_SHOW);

 break;

 case 3:

 No_Reports = 6;

 // Display the modal Triple Click dialog box

 m_pDlg = new CClickTripleDlg;

 m_pDlg->Create(IDD_CLK_TRIPLE);

 m_pDlg->ShowWindow(SW_SHOW);

 break;

 case 4:

 No_Reports = 2;

 // Display the modal Long Click dialog box

 m_pDlg = new CClickLongDlg;

 m_pDlg->Create(IDD_CLK_LONG);

 m_pDlg->ShowWindow(SW_SHOW);

 break;

 }

 }

 }

 else

 {

 switch (test)

 82

 {

 // close the dialog box

 case 1:

 m_pDlg->EndDialog(IDCANCEL);

 delete m_pDlg;

 break;

 case 2:

 m_pDlg->EndDialog(IDCANCEL);

 delete m_pDlg;

 break;

 case 3:

 m_pDlg->EndDialog(IDCANCEL);

 delete m_pDlg;

 break;

 case 4:

 m_pDlg->EndDialog(IDCANCEL);

 delete m_pDlg;

 break;

 }

 //Stop Timer

 OnStop();

 }

}

// routines butchered from uswitch

void CStartTestDlg::OnStart()

{

 if (running == FALSE)

 {

 //Enable periodic exchanges of reports.

 //Start by reading and writing one pair of reports.

 ReadAndWriteToDevice();

 running = TRUE;

 //Enable the timer to cause periodic exchange of reports.

 //The second parameter is the number of milliseconds between report

requests.

 Timer = SetTimer(ID_CLOCK_TIMER, 50, NULL);

 }

}

 83

void CStartTestDlg::OnStop()

{

 if (running)

 {

 //Disable the timer.

 KillTimer(Timer);

 running = FALSE;

 }

}

void CStartTestDlg::OnClose()

{

 //Anything that needs to occur on closing the application goes here.

 //Free any resources used by previous API calls and still allocated.

 //Close open handles.

 CloseHandle(DeviceHandle);

 CloseHandle(ReadHandle);

}

void CStartTestDlg::OnTimer(UINT nIDEvent)

{

 //The timer event.

 //Read and Write one pair of reports.

 ReadAndWriteToDevice();

 // if there are enough reports for the current click

 if (Current_Buffer_Size >= No_Reports)

 {

 // dismiss current dialog

 StartTest(test_sequence[test_position], FALSE, Redo);

 // if the test is not finished yet

 if (test_position < 40)

 {

 // call the next function

 Next();

 }

 // else end the test

 else

 {

 EndTest();

 }

 }

 // the routine calls the redo dialog after a set amount of cycles

 if (Current_Buffer_Size > 0)

 {

 84

 // if the buffer size hasn't changed since the last cycle

 // (i.e. the user has made no further presses)

 if (Current_Buffer_Size == Previous_Buffer_Size)

 {

 Counter++;

 // when counter reaches cycle limit (60 = 3 seconds approx)call the

redo dialog

 if (Counter > 60)

 {

 Redo=TRUE;

 StartTest(test_sequence[test_position], FALSE, TRUE);

 Current_Buffer_Size = 0;

 Counter = 0;

 StartTest(test_sequence[test_position], TRUE, TRUE);

 }

 }

 else

 {

 // reset the counter

 Previous_Buffer_Size = Current_Buffer_Size;

 Counter = 0;

 }

 }

}

// the dialog which calls the next dialog and prepares the output

void CStartTestDlg::Next()

{

 int i;

 for (i=1;i<No_Reports;i++)

 {

 // chuck away the first value

 test_results[test_position][i-1] = Buffer[i];

 }

 // collect errors if extra clicks are detected

 if (Current_Buffer_Size > No_Reports)

 {

 CollectErrors();

 }

 // reset values

 No_Reports = 0;

 Current_Buffer_Size = 0;

 Previous_Buffer_Size = 0;

 test_position++;

 Redo = FALSE;

 // call the next dialog

 85

 StartTest(test_sequence[test_position], TRUE, FALSE);

}

// collect the extra outputs

void CStartTestDlg::CollectErrors()

{

 Errors += "E";

 Errors += ":";

 int i;

 for (i=No_Reports;i<=Current_Buffer_Size; i++)

 {

 Errors += test_headings[test_position + i];

 Errors += Buffer[i];

 Errors += ".";

 }

}

void CStartTestDlg::EndTest()

{

 //Write the results and errors to a file

 //Questionnaire

 char temp[2];

 _itoa(user_age,temp,10);

 Results += temp;

 Results += ",";

 _itoa(user_computer_usage,temp,10);

 Results += temp;

 Results += ",";

 // Experiment

 int i;

 int j;

 for(i=0;i<40;i++)

 {

 for(j=0;j<5;j++)

 {

 if (test_results[i][j] != "000000")

 {

 Results += test_results[i][j];

 Results += ",";

 }

 }

 86

 }

 Results += Errors;

 Results += "\n";

 out_file.Write(Results, Results.GetLength());

 OnStop();

 OnCancel();

 OnClose();

 test_position = 0;

 // display the thankyou box

 MessageBox("Thankyou for your co-operation","Test Completed");

}

// These functions are more or less unchanged except where noted with GB:

bool CStartTestDlg::FindTheHID()

{

 //Use a series of API calls to find a HID with a matching Vendor and Product ID.

 HIDD_ATTRIBUTES Attributes;

 SP_DEVICE_INTERFACE_DATA devInfoData;

 bool LastDevice = FALSE;

 int MemberIndex =

0;

 bool MyDeviceDetected =

FALSE;

 LONG Result;

 //These are the vendor and product IDs to look for.

 //Uses Lakeview Research's Vendor ID.

 const unsigned int VendorID = 0x0925;

 const unsigned int ProductID = 0x1234;

 Length = 0;

 detailData = NULL;

 DeviceHandle=NULL;

 /*

 API function: HidD_GetHidGuid

 Get the GUID for all system HIDs.

 Returns: the GUID in HidGuid.

 */

 HidD_GetHidGuid(&HidGuid);

 /*

 API function: SetupDiGetClassDevs

 Returns: a handle to a device information set for all installed devices.

 87

 Requires: the GUID returned by GetHidGuid.

 */

 hDevInfo=SetupDiGetClassDevs

 (&HidGuid,

 NULL,

 NULL,

 DIGCF_PRESENT|DIGCF_INTERFACEDEVICE);

 devInfoData.cbSize = sizeof(devInfoData);

 //Step through the available devices looking for the one we want.

 //Quit on detecting the desired device or checking all available devices without

success.

 MemberIndex = 0;

 LastDevice = FALSE;

 do

 {

 MyDeviceDetected=FALSE;

 /*

 API function: SetupDiEnumDeviceInterfaces

 On return, MyDeviceInterfaceData contains the handle to a

 SP_DEVICE_INTERFACE_DATA structure for a detected device.

 Requires:

 The DeviceInfoSet returned in SetupDiGetClassDevs.

 The HidGuid returned in GetHidGuid.

 An index to specify a device.

 */

 Result=SetupDiEnumDeviceInterfaces

 (hDevInfo,

 0,

 &HidGuid,

 MemberIndex,

 &devInfoData);

 if (Result != 0)

 {

 //A device has been detected, so get more information about it.

 /*

 API function: SetupDiGetDeviceInterfaceDetail

 Returns: an SP_DEVICE_INTERFACE_DETAIL_DATA structure

 containing information about a device.

 To retrieve the information, call this function twice.

 The first time returns the size of the structure in Length.

 88

 The second time returns a pointer to the data in DeviceInfoSet.

 Requires:

 A DeviceInfoSet returned by SetupDiGetClassDevs

 The SP_DEVICE_INTERFACE_DATA structure returned by

SetupDiEnumDeviceInterfaces.

 The final parameter is an optional pointer to an SP_DEV_INFO_DATA

structure.

 This application doesn't retrieve or use the structure.

 If retrieving the structure, set

 MyDeviceInfoData.cbSize = length of MyDeviceInfoData.

 and pass the structure's address.

 */

 //Get the Length value.

 //The call will return with a "buffer too small" error which can be

ignored.

 Result = SetupDiGetDeviceInterfaceDetail

 (hDevInfo,

 &devInfoData,

 NULL,

 0,

 &Length,

 NULL);

 //Allocate memory for the hDevInfo structure, using the returned

Length.

 detailData = (PSP_DEVICE_INTERFACE_DETAIL_DATA)malloc(Length);

 //Set cbSize in the detailData structure.

 detailData -> cbSize = sizeof(SP_DEVICE_INTERFACE_DETAIL_DATA);

 //Call the function again, this time passing it the returned buffer

size.

 Result = SetupDiGetDeviceInterfaceDetail

 (hDevInfo,

 &devInfoData,

 detailData,

 Length,

 &Required,

 NULL);

 //Open a handle to the device.

 /*

 API function: CreateFile

 Returns: a handle that enables reading and writing to the device.

 89

 Requires:

 The DevicePath in the detailData structure

 returned by SetupDiGetDeviceInterfaceDetail.

 */

 DeviceHandle=CreateFile

 (detailData->DevicePath,

 GENERIC_READ|GENERIC_WRITE,

 FILE_SHARE_READ|FILE_SHARE_WRITE,

 NULL,

 OPEN_EXISTING,

 0,

 NULL);

 TRACE("CreateFile\n");

 /*

 API function: HidD_GetAttributes

 Requests information from the device.

 Requires: the handle returned by CreateFile.

 Returns: a HIDD_ATTRIBUTES structure containing

 the Vendor ID, Product ID, and Product Version Number.

 Use this information to decide if the detected device is

 the one we're looking for.

 */

 //Set the Size to the number of bytes in the structure.

 Attributes.Size = sizeof(Attributes);

 Result = HidD_GetAttributes

 (DeviceHandle,

 &Attributes);

 TRACE("HidD_GetAttributes\n");

 //Is it the desired device?

 MyDeviceDetected = FALSE;

 if (Attributes.VendorID == VendorID)

 {

 if (Attributes.ProductID == ProductID)

 {

 //Both the Product and Vendor IDs match.

 MyDeviceDetected = TRUE;

 //TRACE("Device detected\n");

 //Get the device's capablities.

 GetDeviceCapabilities();

 90

 PrepareForOverlappedTransfer();

 } //if (Attributes.ProductID == ProductID)

 else

 //The Product ID doesn't match.

 CloseHandle(DeviceHandle);

 } //if (Attributes.VendorID == VendorID)

 else

 //The Vendor ID doesn't match.

 CloseHandle(DeviceHandle);

 //Free the memory used by the detailData structure (no longer needed).

 free(detailData);

 } //if (Result != 0)

 else

 //SetupDiEnumDeviceInterfaces returned 0, so there are no more

devices to check.

 LastDevice=TRUE;

 //If we haven't found the device yet, and haven't tried every available

device,

 //try the next one.

 MemberIndex = MemberIndex + 1;

 } //do

 while ((LastDevice == FALSE) && (MyDeviceDetected == FALSE));

 if (MyDeviceDetected == FALSE)

 TRACE("Device not detected\n");

 else

 TRACE("Device detected");

 //Free the memory reserved for hDevInfo by SetupDiClassDevs.

 SetupDiDestroyDeviceInfoList(hDevInfo);

 return MyDeviceDetected;

}

void CStartTestDlg::GetDeviceCapabilities()

{

 //Get the Capabilities structure for the device.

 PHIDP_PREPARSED_DATA PreparsedData;

 /*

 API function: HidD_GetPreparsedData

 91

 Returns: a pointer to a buffer containing the information about the device's

capabilities.

 Requires: A handle returned by CreateFile.

 There's no need to access the buffer directly,

 but HidP_GetCaps and other API functions require a pointer to the buffer.

 */

 HidD_GetPreparsedData

 (DeviceHandle,

 &PreparsedData);

 /*

 API function: HidP_GetCaps

 Learn the device's capabilities.

 For standard devices such as joysticks, you can find out the specific

 capabilities of the device.

 For a custom device, the software will probably know what the device is capable

of,

 and the call only verifies the information.

 Requires: the pointer to the buffer returned by HidD_GetPreparsedData.

 Returns: a Capabilities structure containing the information.

 */

 HidP_GetCaps

 (PreparsedData,

 &Capabilities);

 //No need for PreparsedData any more, so free the memory it's using.

 HidD_FreePreparsedData(PreparsedData);

}

void CStartTestDlg::PrepareForOverlappedTransfer()

{

 //Get another handle to the device for the overlapped ReadFiles.

 ReadHandle=CreateFile

 (detailData->DevicePath,

 GENERIC_READ|GENERIC_WRITE,

 FILE_SHARE_READ|FILE_SHARE_WRITE,

 NULL,

 OPEN_EXISTING,

 FILE_FLAG_OVERLAPPED,

 NULL);

 //Get an event object for the overlapped structure.

 /*API function: CreateEvent

 Requires:

 92

 Security attributes or Null

 Manual reset (true). Use ResetEvent to set the event object's state to non-

signaled.

 Initial state (true = signaled)

 Event object name (optional)

 Returns: a handle to the event object

 */

 if (hEventObject == 0)

 {

 hEventObject = CreateEvent

 (NULL,

 TRUE,

 TRUE,

 "");

 //Set the members of the overlapped structure.

 HIDOverlapped.hEvent = hEventObject;

 HIDOverlapped.Offset = 0;

 HIDOverlapped.OffsetHigh = 0;

 }

}

void CStartTestDlg::ReadAndWriteToDevice()

{

 //If we haven't done so already, find the device and learn its capabilities.

 //Then send a report and request a report.

 //The test device firmware (usbhidio) adds 1 to each byte received in an OUT

report

 //and sends the results back in the next IN report.

 //Clear the List Box (optional).

 {

 //If the device hasn't been detected already, look for it.

 if (DeviceDetected==FALSE)

 DeviceDetected=FindTheHID();

 if (DeviceDetected==TRUE)

 {

 //TRACE("Device detected true \n");

 //Write a report to the device.

 WriteReport();

 //Read a report from the device.

 ReadReport();

 }

 }

 93

}

void CStartTestDlg::ReadReport()

{

 CString ByteToDisplay = "";

 CString MessageToDisplay = "";

 CString strBytesRead = "";

 DWORD Result;

 //Read a report from the device.

 /*API call:ReadFile

 'Returns: the report in InputReport.

 'Requires: a device handle returned by CreateFile

 '(for overlapped I/O, CreateFile must be called with FILE_FLAG_OVERLAPPED),

 'the Input report length in bytes returned by HidP_GetCaps,

 'and an overlapped structure whose hEvent member is set to an event object.

 */

 Result = ReadFile

 (ReadHandle,

 InputReport,

 Capabilities.InputReportByteLength,

 &NumberOfBytesRead,

 (LPOVERLAPPED) &HIDOverlapped);

 /*API call:WaitForSingleObject

 'Used with overlapped ReadFile.

 'Returns when ReadFile has received the requested amount of data or on timeout.

 'Requires an event object created with CreateEvent

 'and a timeout value in milliseconds.

 */

 Result = WaitForSingleObject

 (hEventObject,

 6000);

 //DisplayLastError("WaitForSingleObject: ") ;

 switch (Result)

 {

 case WAIT_OBJECT_0:

 {

 //TRACE("wait object \n");

 //DisplayData(ValueToDisplay);

 strBytesRead.Format("%s%d", "No. Bytes Read: ",NumberOfBytesRead);

 94

 break;

 }

 case WAIT_TIMEOUT:

 {

 //ValueToDisplay.Format("%s", "ReadFile timeout");

 //DisplayData(ValueToDisplay);

 //Cancel the Read operation.

 /*API call: CancelIo

 Cancels the ReadFile

 Requires the device handle.

 Returns non-zero on success.

 */

 Result = CancelIo(ReadHandle);

 //A timeout may mean that the device has been removed.

 //Close the device handles and set DeviceDetected = False

 //so the next access attempt will search for the device.

 CloseHandle(ReadHandle);

 CloseHandle(DeviceHandle);

 TRACE("Can't read from device\n");

 DeviceDetected = FALSE;

 break;

 default:

 //ValueToDisplay.Format("%s", "Undefined error");

 break;

 }

 }

 /*

 API call: ResetEvent

 Sets the event object to non-signaled.

 Requires a handle to the event object.

 Returns non-zero on success.

 */

 ResetEvent(hEventObject);

 //Display the report data.

 DisplayInputReport();

}

void CStartTestDlg::WriteReport()

{

 //Send a report to the device.

 //The maximum size of an output report. (This can be increased).

 95

 const unsigned short int MAXREPORTSIZE = 256;

 DWORD BytesWritten = 0;

 INT Index =0;

 CHAR OutputReport[MAXREPORTSIZE];

 ULONG Result;

 CString strBytesWritten = "";

 //The first byte is the report number.

 OutputReport[0]=0;

 //Can set the other report values here, or get them from the combo boxes.

 OutputReport[1]=33;

 OutputReport[2]=6;

 OutputReport[3]=15;

 /*

 API Function: WriteFile

 Sends a report to the device.

 Returns: success or failure.

 Requires:

 The device handle returned by CreateFile.

 The Output Report length returned by HidP_GetCaps,

 A report to send.

 */

 Result = WriteFile

 (DeviceHandle,

 OutputReport,

 Capabilities.OutputReportByteLength,

 &BytesWritten,

 NULL);

 if (Result == 0)

 {

 //The WriteFile failed, so close the handle, display a message,

 //and set DeviceDetected to FALSE so the next attempt will look for the

device.

 CloseHandle(DeviceHandle);

 CloseHandle(ReadHandle);

 DeviceDetected = FALSE;

 }

 //Display the result of the API call and the report bytes.

 strBytesWritten.Format("%s%d", "Bytes Written: ", BytesWritten);

 }

 96

/*

Display-related routines

*/

void CStartTestDlg::DisplayInputReport()

{

 USHORT ByteNumber;

 CHAR ReceivedByte,x,y;

 int total,string_index;

 CString timing_string("000000");

 CString comma(",");

 total = 0;

 for (ByteNumber=0; ByteNumber < Capabilities.InputReportByteLength;

ByteNumber++)

 total += InputReport[ByteNumber];

 if(total != 0)

 {

 //Display the received data in the Bytes Received List boxes.

 //Step through the received bytes and display each.

 //for (ByteNumber=0; ByteNumber <

Capabilities.InputReportByteLength; ByteNumber++)

 TRACE("\n");

 string_index = 0;

 if(running){

 for (ByteNumber = Capabilities.InputReportByteLength -

1;ByteNumber > 0; ByteNumber--)

 {

 //Get a byte.

 ReceivedByte = x = InputReport[ByteNumber];

 //Get high nibble

 y = x & 0xF0;

 //move to low nibble

 y = y >> 4;

 y &= 0xF;

 (y < 10) ? TRACE("%c",(y + '0')) : TRACE("%c", (y + 'A' -

10));

 (y < 10) ? y += '0' : y = y + 'A' - 10;

 //out_file.Write(&x,1);

 timing_string.SetAt(string_index,y);

 string_index++;

 //Get low nibble

 x &= 0xF;

 (x < 10) ? TRACE("%c",(x + '0')) : TRACE("%c", (x + 'A' -

10));

 (x < 10) ? x += '0': x = x + 'A' - 10;

 timing_string.SetAt(string_index,x);

 string_index++;

 }

 97

 //GB: Added Buffering for Error Catching.

 //out_file.Write(timing_string,6);

 Buffer[Current_Buffer_Size] = timing_string;

 Current_Buffer_Size++;

 }

 }

}

 98

XI. ClickSingleDlg.h

// ClickSingleDlg.h

// it is almost identical to the other headers of the

// dialogs for double, triple and long clicks, as well as the prompts

// for redone clicks

#pragma once

// CClickSingleDlg dialog

class CClickSingleDlg : public CDHtmlDialog

{

 DECLARE_DYNCREATE(CClickSingleDlg)

public:

 CClickSingleDlg(CWnd* pParent = NULL); // standard constructor

 virtual ~CClickSingleDlg();

// Overrides

 HRESULT OnButtonOK(IHTMLElement *pElement);

 HRESULT OnButtonCancel(IHTMLElement *pElement);

// Dialog Data

 enum { IDD = IDD_CLK_SINGLE, IDH = IDR_HTML_CLICKSINGLEDLG };

protected:

 virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV support

 virtual BOOL OnInitDialog();

 DECLARE_MESSAGE_MAP()

 DECLARE_DHTML_EVENT_MAP()

};

99

XII. ClickSingleDlg.cpp

// ClickSingleDlg.cpp : implementation file

// This is the file which controls the single click dialog

// it is almost identical to the other dialogs for double, triple

// and long clicks, as well as the prompts for redone clicks

#include "stdafx.h"

#include "USB Switch Timer.h"

#include "ClickSingleDlg.h"

extern int unfinished;

extern int test_position;

extern int halt;

// CClickSingleDlg dialog

IMPLEMENT_DYNCREATE(CClickSingleDlg, CDHtmlDialog)

CClickSingleDlg::CClickSingleDlg(CWnd* pParent /*=NULL*/)

 : CDHtmlDialog(CClickSingleDlg::IDD, CClickSingleDlg::IDH, pParent)

{

}

CClickSingleDlg::~CClickSingleDlg()

{

}

void CClickSingleDlg::DoDataExchange(CDataExchange* pDX)

{

 CDHtmlDialog::DoDataExchange(pDX);

}

BOOL CClickSingleDlg::OnInitDialog()

{

 CDHtmlDialog::OnInitDialog();

 return TRUE; // return TRUE unless you set the focus to a control

}

BEGIN_MESSAGE_MAP(CClickSingleDlg, CDHtmlDialog)

END_MESSAGE_MAP()

BEGIN_DHTML_EVENT_MAP(CClickSingleDlg)

 DHTML_EVENT_ONCLICK(_T("ButtonOK"), OnButtonOK)

 DHTML_EVENT_ONCLICK(_T("ButtonCancel"), OnButtonCancel)

END_DHTML_EVENT_MAP()

// CClickSingleDlg message handlers

HRESULT CClickSingleDlg::OnButtonOK(IHTMLElement* /*pElement*/)

{

 OnOK();

 return S_OK; // return TRUE unless you set the focus to a control

100

}

// if the quit button is pressed, dismiss the dialog and indicate in the halt position

// and unfinished variables

HRESULT CClickSingleDlg::OnButtonCancel(IHTMLElement* /*pElement*/)

{

 unfinished = 1;

 halt = test_position;

 OnCancel();

 return TRUE; // return TRUE unless you set the focus to a control

}

