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ABSTRACT 
Increasing demand for larger high-performance applications 
requires developing more complex systems with hundreds of 
processing cores on a single chip. To allow dynamic voltage scaling 
in each on-chip cores individually, many on-chip voltage regulators 
must be used. However, the limitations in implementation of on-
chip inductors can reduce the efficiency, accuracy and the number 
of voltage modes generated by regulators. Therefore the future 
voltage scheduling algorithms must be efficient, even in the 
presence of few voltage modes; and fast, in order to handle complex 
applications. Techniques proposed to date, need many fine-grained 
voltage modes to produce energy efficient results and their quality 
degrades significantly as the number of modes decreases. This paper 
presents a new technique called Adaptive Stochastic Gradient 
Voltage and Task Scheduling (ASG-VTS) that quickly generates 
very energy efficient results irrespective of the number of available 
voltage modes. The results of comparing our algorithm to the most 
efficient approaches (RVS and EE-GLSA) show that in the presence 
of only four valid modes, the ASG-VTS saves up to 26% and 33% 
more energy. On the other hand, other approaches require at least 
ten modes to reach the same level of energy saving that ASG-VTS 
achieves with only four modes. Therefore our algorithm can also be 
used to explore and minimize the number of required voltage levels 
in the system. 

Categories and Subject Descriptors 
C.3 [Special-purpose and application-based systems]: Real-time 
and embedded systems 

General Terms: Algorithms and Design. 

Keywords: Dynamic Voltage Scaling (DVS), scheduling, power 
management, optimization, stochastic gradient search, 
heterogeneous systems, and multi-processor systems. 

1 INTRODUCTION 
Design of future embedded systems becomes more challenging due 
to the increasing demand for larger high performance applications. 
Scaling the technology to deep submicron allows placement of 
hundreds or even thousands of processing cores on a single chip. 
Managing dynamic and leakage power at that scale poses a major 
challenge for future designs. The fact that dynamic power and static 
power have quadratic and exponential relationship to the supply 
voltage respectively [22] necessitates voltage scaling in components 
and subcomponents of a chip. To allow dynamic voltage scaling in 

each of the on-chip cores, it is required to have many on-chip 
voltage regulators that can provide DVS modes as well as shutdown 
mode. Currently on-chip regulators cannot provide shutdown mode, 
and have low efficiency due to the low accuracy of on-chip 
inductors [5]. Such limitations can lead to significant reduction in 
the number and accuracy of the available voltage levels especially 
in deep submicron and SoCs with many processing cores. 

Design of low power embedded systems is usually an iterative 
process that explores different resource allocations and task 
mappings to meet performance, power and cost constraints. For 
each of the system configuration generated during design space 
exploration, the application tasks are scheduled on the mapped 
resources (task scheduling) to meet real-time deadlines. The 
available slack intervals in the schedule are utilized by voltage (and 
frequency) scaling algorithm to reduce energy consumption. Figure 
1 shows the flow of a typical system design space exploration 
process [4] that uses two nested genetic algorithms (GAs) to 
generate various system configurations with different resource 
allocations and task mappings. The task scheduling and voltage 
scaling algorithms are in the inner-most loop of this iterative 
process and therefore must have a very low algorithm complexity in 
order to handle large applications with too many tasks. 

 
Figure 1. The Design Space Exploration Process proposed in [4] 

So far, the algorithms proposed for voltage scheduling either are not 
very energy efficient, or have a high order of complexity, and/or 
need many fine-grained supply voltage levels (voltage modes) to 
generate efficient results. Some of the approaches even formulate 
the problem for continuous voltage values. If few voltage modes are 
provided in a system, then they map the generated continuous 
solution to a valid mode with a relatively high energy penalty. 

This paper presents a new technique called Adaptive Stochastic 
Gradient Voltage and Task Scheduling (ASG-VTS) that selects 
voltage modes for a set of dependent tasks mapped to a 
heterogeneous system so that the energy consumption is optimized 
and no real-time deadline is violated. Our algorithm has a low 
complexity and produces highly energy efficient results even in the 
presence of few voltage modes. To achieve high energy efficiency, 
we have developed a discrete stochastic heuristic for slack 
distribution that is combined with iterative adjustment of task 
ordering. Whenever a local minimum is found, ASG-VTS 
stochastically re-claims some of the assigned slack time (slack 
recovery), and restarts the slack distribution process in order to 
search a broader space. Our experimental results show that our 
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proposed search algorithm can quickly produce very energy 
efficient results. To reduce the number of iteration in each slack 
distribution cycle, we have carefully defined the stochastic directors 
(mode transition probabilities) based on the energy gradient and the 
execution delays of the tasks. To further reduce the complexity of 
slack distribution, we introduce the notion of time-based relatives 
of a task (Section 4.2) as a heuristic that helps finding the 
candidates for slowdown and speedup quickly and efficiently. We 
compare our algorithm with two of the most energy efficient 
approaches: RVS [19] and EE-GLSA [15]. Experimental results 
from running publicly available tight-deadline benchmarks show 
that with only four modes to choose from, ASG-VTS can save up to 
26% and 33% more energy compared to RVS and EE-GLSA. Also, 
ASG-VTS can reduce the number of required voltage modes 
without any significant energy loss. In fact, by reducing the number 
of modes from thirty to four, ASG-VTS’s results are degraded by up 
to 5.26% (avg. 1.55%) while RVS and EE-GLSA lose up to 28% 
(avg. 7.3%) and 34.8% (avg. 13.1%), respectively. Furthermore, 
ASG-VTS runs 2.1 and 150 times faster than RVS and EE-GLSA, 
and thus it is a better choice for the inner-most loop of the design 
space exploration. We have also developed a web-based interface 
for the optimization engine that runs our XML-based system 
description format. 

This paper is organized as follows. Section 2 presents the related 
works. Section 3 formulates voltage scheduling as an optimization 
problem. The ASG-VTS algorithm is described in Section 4, 
followed by the experimental results and analysis in Section 5. 
Section 6 summarizes the contributions and concludes the paper. 

2 RELATED WORKS 
There is a large body of work on voltage scheduling of tasks on 
multi-processor systems. To generate energy efficient results the 
voltage-scaling algorithm must properly distribute the available 
slack time among the tasks. Also, the task scheduler needs to 
explore and adjust the ordering of the tasks to increase energy 
saving opportunities [14]. Different algorithms have addressed one 
or both of these issues differently. Luo and Jha [12] propose a 
voltage scaling algorithm that evenly distributes slacks among the 
tasks located before the slack interval. The algorithm has a low 
complexity; but it is not very efficient. Gruian and Kuchcinski [7] 
have proposed a DVS algorithm that selects voltage modes and 
decides about the execution order of the tasks based on priority 
values that are computed from the amount of energy consumption, 
delays, and deadlines of the tasks. The priority values are iteratively 
refined until a valid energy-efficient solution is generated. The 
complexity of their algorithm is O(n3), where n is number of tasks. 
Bambha et al [1] have used Monte Carlo and simulated annealing 
algorithms to find optimized voltage modes for all tasks. The time 
complexity of each iteration in their algorithm is low; however, in 
practice, it takes many iterations to converge. As a result, it is very 
slow: for instance, a runtime of up to 1200 seconds is reported for 
the testbenches with 14 to 28 tasks. Schmitz et al [14][15] 
developed an iterative slack distribution technique called EE-GLSA 
that sorts tasks based on their energy saving potential, and then 
assigns a slack time of 

�
tmin to the most eligible tasks while 

avoiding the slack assignments that violate real-time deadlines. In 
order to maximize energy saving, they apply the voltage scaling 
algorithm to various schedules generated by a genetic algorithm. 
They showed that their approach significantly outperforms the 
above approaches in energy efficiency. The order of EE-GLSA is 
O(p�i �m�n2 � log(n)), where p is the size of population in GA, i  is the 
number of iterations, n is the number of tasks and m is a factor 

related to 
�

tmin. Since they solve the problem using continuous 
voltage values, the result must be mapped to the closest discrete 
modes with some energy penalty. Zhang et al [17] developed an 
Integer Linear Programming (ILP) formulation to optimally solve 
the voltage selection problem for a fixed ordering of tasks under the 
assumption of having continuous voltage values. Although they 
optimally solve the slack distribution problem, the amount of 
energy saving is bounded by the fixed ordering of the tasks in the 
schedule. Furthermore, the generated continuous solution can lose 
its optimality after it is mapped to discrete modes and may be 
degraded significantly. They did not report the run time of their 
algorithm. In [11], a similar ILP formulation with continuous 
voltage levels is used. Since the ILP has a very long runtime, they 
have used a partitioning heuristic to compromise the optimality with 
the speed. In [19], a voltage selection technique (RVS) is proposed 
that randomly distributes the slack time among the high-power tasks 
over several iterations. It adjusts the ordering of tasks to make the 
selected modes schedulable. Although the algorithm searches in 
discrete space, it needs many fine-grained voltage modes to 
generate efficient results. To the best of our knowledge, both EE-
GLSA and RVS generate energy-efficient results and are relatively 
fast. However, as Section 5 shows that for a limited number of 
voltage modes, the quality of their results degrades significantly.  

3 PROBLEM FORMULATION 
This paper investigates the voltage scheduling aspect of the system 
design process. Therefore we assume that proper processing 
elements (PE) are allocated and tasks are already mapped to them. 
A system is usually represented by its architecture and application. 
The architecture is represented as a set of processing elements PE 
and communication channels L. Processing elements include 
general-purpose processors, DSPs, FPGAs and ASICs. A PE may 
operate at different voltage levels and hence consume different 
amounts of power. These voltage (power) levels are represented by 
voltage modes. The set of voltage modes for a processing element pj 
is denoted by non-empty set VMj={ mj,1, …, mj,maxj}. We denote the 
fastest mode of pj by fastestMode(pj). Each voltage mode m has its 
own frequency, freq(m), and power consumption, Pwr(m): 

freq(m) = k � (Vdd − Vt)
2 / Vdd (1) 

Pwr(m) = CL � N0�1 � f �  (Vdd )
2  (2) 

where Vdd is the supply voltage, CL is the switching capacitance, 
N0�1 denotes the switching activity, k is a circuit-dependent 
constant and Vt is the circuit threshold voltage. 

The application is represented by a set of periodic task graphs {TG1, 
…, TGN}. All task graphs have the same period and their own 
arrival time and deadline*. A task graph is a directed acyclic graph 
G(T, C) where T={ �1, 

�
2, …, �n} represents tasks and C={ ci,j = (�i, 

�
j, �

i,j)} represents data dependencies between pairs of tasks �i and �j, 
and �i,j indicates the communication delay of data to be transferred. 
A task may be associated with a deadline �(�) by which its execution 
must be finished. Td is the set of tasks � for which �(�) is specified. 
Td must at least contain sink tasks (tasks with no dependents) and if 
a sink does not have a deadline, then the deadline of its 
corresponding TG is assigned to it. Each task � is mapped to a 
processing element proc(�), and has an execution delay texec(

�) in the 
fastest mode of that processor. In addition to the mode of the 
processor, some specific characteristics of individual tasks may 
affect their power consumption. We model this effect by power 

                                                                 
* By considering the hyper-period of any set of multi-rate periodic task 

graphs and repeating them accordingly, such a set can be constructed. 
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dissipation factor Pwr_Factor(�) that can be extracted through 
profiling and measurement [2][3]. The total energy consumption of 
task set T in a selected mode vector M=(m1,…, mn) can be calculated 
by: 

ET(M) = ∑
=

n

i 1

(Pwr(�i , mi) � texec (�i , mi)) (3) 

where mi is the mode of proc(�i) during the execution of �i and, 

Pwr(�i , mi ) = Pwr_Factor(�i) � Pwr(mi) (4) 
texec(�i , mi )  = texec (�i) � freq(fastestMode(proc(�i))) / freq(mi)
 (5) 

The overall deadline violation of task set T in mode vector M is 
calculated by: 

)),((max)(
],1[

ii
ni

T mM τχχ
∈

=  (6) 

where �(�i, mi) is the deadline violation of task �
i in mode mi: 

� (�i , mi) = ts(�i) + texec(�i , mi) − �(�i) (7) 
Here, ts denotes the task start time assigned by the scheduler. Note 
that a positive value of �  indicates the amount of deadline violation, 
while a negative value of �  represents the amount of slack time 
available after task execution.  

The goal of the optimization algorithm is to find a mode vector M 
such that the cost function � is minimized: 
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4 THE ASG-VTS APPROACH 
In voltage scheduling the strategy used for slack distribution can 
significantly effect the amount of energy saving. In general, the 
same amount of slack time can be applied toward different amount 
of energy savings, depending on the tasks to which the slack is 
assigned. Figure 2 shows the flow of ASG-VTS algorithm. ASG-
VTS iteratively distributes the slack time. It initially selects the 
fastest voltage mode and then derives a new mode by slack 
distribution. Next, it calculates the execution delay and the priority 
of the tasks for the generated mode, followed by list-based 
scheduling. If no real-time deadline is violated, then the old mode is 
replaced by the new one for the next iteration of slack distribution. 
Otherwise, the new mode is either discarded or is engaged in a slack 
recovery process. The slack distribution and recovery are performed 
by adding a deviation vector to the current mode. The elements of 
the deviation vector are assigned −1, 0 or 1 to indicate slowdown, 
no change, or speedup of a task respectively. These values are 
stochastically selected based on the slowdown and speedup 
probabilities (SDP and SUP). In this section, we first discuss the 
details of slack distribution as well as calculation of SDP and SUP. 
Then we present our task selection heuristic used in slack 
distribution and recovery. Finally we present the pseudo-code of the 
algorithm. 

 
Figure 2. ASG-VTS approach (A and B are the same as in Figure 1) 

4.1 Slack Distribution Heuristic 
In this paper, we use a variation of stochastic gradient search to 
explore different ways of slack distribution. Generally, in stochastic 
gradient search approaches, the probability of changing a variable in 
each iteration is calculated based on the gradient of the cost 
function with respect to that change [16]. In other words, the 
changes that can decrease the cost function more are given a higher 
chance of occurrence. In our problem, the gradient of the cost 
function � respective to the change of a mode mi∈M is calculated 
using: 
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where 
�

ET(M)/
�

mi is the gradient of energy consumption and ��
T(M)/

�
mi is the gradient of deadline violation with respect to 

changing mode mi. The slowdown and speedup probabilities are 
defined such that they favor the decrease of �(M). The slowdown 
probability of task �i can be defined as follows: 
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where norm() is a normalizing function. This equation means that 
the tasks that save the most energy and do not cause any deadline 
violation will be assigned a higher slowdown probability. Although 
calculation of energy gradient has a low cost (based on Equation 3), 
calculating the gradient of deadline violation function is very costly 
because it requires re-running the scheduling algorithm. Therefore, 
we define the slowdown probability based on energy gradient and a 
delay factor that is representative of potential deadline violations. 
Thus: 

)()( i
i

i delayFctrdelayCnst
m

E
normenergyCnstSDP ττ ⋅+�

�
�
�

���
�

∆
∆−⋅=

 (11) 

where delayFctr is: 

���
 

!!"
#

−=
exec

iiexec
i aveT

mt
normdelayFct

),(
1)(

ττ
 (12) 

The aveTexec is the average execution delay of all tasks. The first 
term of Equation (11) means that the tasks whose slowdown saves 
the most energy are assigned a higher probability of slowdown. The 
second term means the tasks with relatively high execution delays 
are assigned a lower probability of slowdown. Note that this term 
avoids slowdown of the tasks that already have high execution 
delays. The constants energyCnst and delayCnst are used to adjust 
the effect of each term. We further define speedup probability as 
follows: 

SUP($i) = 1 − SDP($i) (13) 
To understand the effectiveness of our SDP formulation, consider 
the following example: assume that we have two tasks Task1 and 
Task2, where Task2 consumes more power than Task1 while both 
have the same execution delay. To maximize energy saving a 
greater portion of the slack time must be assigned to Task2. Figure 
3.(a) shows how the definition of SDP helps achieving this goal. 
Here, the slack distribution is performed by iteratively reducing the 
voltage modes. After each slowdown the SDP of the corresponding 
task slightly drops because of an increase in execution delay and a 
small decrease in its energy gradient. As the optimization proceeds, 
several tasks, including Task2 (others are not shown), are slowed 
down and hence the aveTexec will increase (Figure 3(b)). As a result, 
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SDP of Task1 gradually increases. At some point, Task1 will also 
be slowed down. However, overall Task2 is slowed down more 
often and therefore has consumed a greater portion of available 
slack time compared to Task1. 
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Figure 3. (a) SDP of two tasks and (b) aveTexec in different iterations 

4.2 Task Selection Heuristic for Slack 
Distribution/Recovery 

As mentioned earlier, the algorithm determines the tasks that have 
violated their deadlines (�>0), and the ones that have some slack 
time (�<0). To eliminate the deadline-miss time of a task, ASG-VTS 
randomly speeds up some of the tasks that have caused the deadline 
violation (relative tasks). We define relatives of a task � as the set of 
all tasks whose execution delay will affect the finish time of �. By 
definition, whenever a task has missed its deadline, speeding up a 
subset of its relatives must be able to fix the problem (assuming the 
application is schedulable in the highest voltage mode). The set of 
relatives includes predecessors of a task in the task graph as well as 
its resource-based relatives. We define resource-based relatives of a 
task �, R(�), as those tasks that are mapped to the same resource as � 
and are finished between the arrival of � and its start time. Hence, 
the finish time of the resource-based relatives of � will affect the 
finish time of � itself. Note that the set of resource-based relatives of 
tasks may change in different iterations because the slack 
distribution and recovery affects execution delay of the tasks and 
their schedule. We recursively define the relatives of a task � as: 

relatives(�) = { �} � {  
)()(Pr ττ Reds �

�
∈

relatives(s)}  (14) 

where Pred(�) is the set of predecessors of τ in task graph. 
Whenever a task misses its deadline, the set of its relative tasks 
becomes the candidates for speedup. Also, the slack time after a task 
can be distributed among its relatives. Note that each task is 
considered a relative of itself and is therefore a candidate for 
speedup or slowdown. 

Most of the techniques proposed so far extract the set of relatives of 
a task for slack distribution. However, extracting the set of relatives 
is complex and time consuming, because keeping track of resource-
based relatives requires an additional data structure that captures 
and updates the links between consecutive tasks mapped to the 
same resource. Note that the links may change as the slack is 
iteratively distributed. To avoid the overhead of constructing and 
updating the links between the relative tasks, we approximate the 
above relationship with one that is easier to compute: time-based 
relationship. 

We define the set of time-based relatives of a task �, TBR(�), as the 
set of all tasks whose finish times lie within the live interval of �. 
The live interval of a task � is the interval between the arrival of the 
host TG and �’s finish time. This set includes some of the real 
relatives, such as predecessors and resource-based relatives, and 
some other non-relative tasks. The advantage with this 
approximation is that extracting time-based relatives is simple and 

fast. More importantly, it does not require any modification to the 
task scheduler. Using the time-based relationship reduces the order 
of slack distribution algorithm at least by a factor of n. 

4.3 ASG-VTS Algorithm 
Figure 4 shows the pseudo-code of our voltage selection algorithm. 
It starts by selecting the fastest mode vector, which must be 
schedulable and has the highest energy consumption. The 
CALCULATEEXECDELAY function (lines 3, 7) calculates the new 
execution delay of all tasks based on the selected mode vector. The 
new execution delays are used by the SCHEDULE algorithm to 
generate a new task schedule. Scheduling of dependent tasks on a 
multi-processor system is an NP-complete problem [8]. ASG-VTS 
uses priority-based list scheduling algorithm, which is a well-known 
heuristic. After generating the initial schedule for the fastest mode 
(lines 2-4), in each iteration of the loop (lines 5-12), a new mode 
vector is generated by evolving the previous one (line 6) and is used 
to produce a new schedule (line 8). If the evolved mode is more 
energy efficient than the best mode so far (optMode), and the new 
schedule is valid, then the evolved mode is selected for the next 
iteration. Otherwise (line 13), the selection will be based on a 
probability function. This function gives a higher chance of 
selection to the better mode.  

01  ASG-VTS_VS ( ) 
02  optMode = M1 = SELECTTHEFASTESTMODESET( ) 
03  CALCULATEEXECDELAY ( M1 ) 
04  currSched  = SCHEDULE(  M1 ) 
05  while( noOfIter < 10000 and noOfUselessIter < 100) 
06   M2 = EVOLVE( M1 ) 
07   CALCULATEEXECDELAY (  M2 ) 
08   currSched = SCHEDULE(  M2 ) 
09   if (�T(M)

�
0 and M2 is better than optMode)     //no deadline is missed 

10    optMode = M1 = M2 
11    noOfUselessIter = 0 
12   else  
13    M1 = select  between  M1 and  M2 
14    noOfUselessIter ++ 
15   noOfIter ++ 
16  return optMode 

Figure 4. ASG-VTS algorithm 

 
EVOLVE( M ) 
 Calculate SUP and SDP for each task using mode vector M. 
 �M = (0, 0, …)  // initialize the mode deviation vector with 0 
 if no deadline is violated 
  SLOWDOWN( T, availableSlack, 	M)    // stochastically slows down all the tasks 
 else 
  for all 
∈Td 

   if (χ(�) > 0 )                               // � has missed its deadline  
    if (χ(�) is small) 
     SPEEDUP( Pred(�), χ(�), 	M) 
    else 
     SPEEDUP( TBR(�), χ(�), 	M) 
   if (χ(�) < 0 )                               // � has some slack 
    if (χ(�) is small) 
     SLOWDOWN( Pred(�), −χ(�), 	M) 
    else 
     SLOWDOWN( TBR(�), −χ(�), 	M) 
 return M + 	M 

Figure 5. EVOLVE algorithm 

Figure 5 shows EVOLVE algorithm that calculates mode deviation 
vector �M and returns the evolved mode. It starts by calculating 
speedup and slowdown probabilities of all tasks using Equations 
(11) and (13). Then, if no real time deadline is violated, it 
stochastically slows down the entire task set T. In case of deadline 
violation, it performs slack distribution and recovery by using the 
tasks in Td as starting points. As defined in Section 3, Td is a set of 
tasks whose deadline is explicitly specified and includes all the sink 
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tasks. For each �∈Td, if the amount of deadline-miss (slack) time is 
relatively small, the speed-up (slow-down) operation is performed 
only on its predecessors, Pred(�). However, if the amount of 
deadline-miss (slack) time is large, the mode transitions will be 
performed on time-based relatives of �, TBR(�). 

Figure 6 shows SLOWDOWN() function that stochastically distributes 
the slack among elements of set S. As long as slack is not zero, a 
task � is selected stochastically based on its SDP, and its voltage 
mode is reduced by one (slowdown). To do so, a random number 
between 0 and 1 is generated, and if it is less than SDP(�) then � is 
slowed down. SPEEDUP() function is similar to SLOWDOWN() 
function. 

In the ASG-VTS algorithm, except for EVOLVE(), all of the 
functions in the loop have linear complexity. In EVOLVE(), 
SPEEDUP() and SLOWDOWN() functions are called for all the 
members of Td. The worst case, SPEEDUP() and SLOWDOWN() 
functions must process all the predecessors or time-based relatives 
of a task. Therefore the complexity of ASG-VTS is O(i �nd�n), where 
i is the number of iterations, nd is the total number of tasks whose 
deadline is explicitly specified (including all sink tasks), and n is 
number of all tasks. 

SLOWDOWN ( S, slack, �M ) { 
 while ( (slack > 0 ) and (S ≠ ∅) ) 
  select �  randomly from S 
  r = generate a random number 
  if ( r < SDP(�) ) 
   �M[�] = − 1 
   update slack 
  S = S − { � } 

Figure 6. SLOWDOWN function 

5 EXPERIMENTAL RESULTS 
We compare our algorithm to EE-GLSA and RVS in terms of 
energy savings, runtime complexity and sensitivity to the number of 
voltage modes. To the best of our knowledge, EE-GLSA and RVS 
are the best published approaches both in terms of performance and 
energy savings. EE-GLSA and ILP approaches [17][11] formulate 
the optimization problem for continuous voltage values. In the 
mode sensitivity comparisons of this section, we use EE-GLSA as a 
representative for other continuous approaches. Schmitz et al [15] 
have presented the results of EE-GLSA on a set of tight-deadline 
benchmarks using a Pentium III/750 MHz PC. We also used the 
same set of benchmarks and a similar PC (PIII/700 MHz) to 
produce the results of RVS and ASG-VTS. The second column of 
the Table 1 presents the characteristics of the benchmarks in terms 
of the number of tasks and edges in the task graphs. 

The first part of Table 1 (columns 3 to 5) shows the energy saving 
results of EE-GLSA, using continuous voltage values, as well as 
that of RVS and ASG-VTS, using 30 fine-grained modes†. We 
observed that using more than 30 modes does not improve the 
amount of energy savings any further. Note that, when given 30 
modes, all three algorithms achieve comparable energy savings. 
However as the number of modes is reduced the algorithms start to 
behave differently. Note that even for a small number of modes, 
exhaustive search is not a viable option. For example, for a system 
with 20 tasks and four modes the number of possible mode 
permutations is 420 or 1012. Assuming the optimization algorithm 
can process 1000 permutations per second, it takes 34 years to find 
the optimal solution by exhaustively searching the entire space. 

                                                                 
† The modes are generated by dividing the voltage range into 30 or 4 steps 

The second part of Table 1 (columns 6 to 8) shows the energy 
saving result of the algorithms when only four voltage modes are 
given†. In continuous approaches, such as EE-GLSA, the optimized 
solution is produced using continuous and potentially unavailable 
voltage levels. To map the solution to a valid one while meeting all 
real-time deadlines, Schmitz et al suggest replacing unavailable 
modes by the next higher available ones. However, this mapping 
results in energy penalty. In discrete approaches, such as RVS and 
ASG-VTS, the mapping is not needed because the optimization is 
based on only the available modes. Furthermore, ASG-VTS applies 
complementary cycles of slack distribution and recovery, which 
enables searching a broader space and finding more optimized 
solutions under the constraint imposed by the limited number of 
modes. As shown in Table 1, when number of modes is reduced to 
four, the ASG-VTS loses 1.55% energy in average while RVS and 
EE-GLSA lose 7.3% and 13.1%, respectively. In the worst case 
RVS and EE-GLSA lose as much as 28% (tgff1) and 34.8% (tgff10) 
respectively while ASG-VTS loses only 5.26% (tgff20). This shows 
that the result of continuous approaches, even if calculated 
optimally, can not only lose its optimality after the mapping, but 
also degrade significantly.  

  30 modes (savings %) 4 modes (savings %) 
Test 

benches 
No of 

tasks/edges 
EE-GLSA 

[15] 
RVS 
[19] 

ASG-VTS EE-GLSA RVS ASG-VTS 

tgff 1 8/9 71.05 69.63 69.89 43.25 41.6 66.67 
tgff 2 26/43 26.79 27.1 27.69 0.23 1.03 26.7 
tgff 3 40/77 69.18 68.86 71.81 64.72 57.33 66.72 
tgff 4 20/33 12.99 12.6 12.71 10.18 11.18 11.83 
tgff 5 40/77 17.14 19.15 18.92 0.35 15.44 18 
tgff 6 20/26 1.61 1.59 1.54 1.17 1.41 1.53 
tgff 7 20/27 29.90 30.41 30.25 0.65 20.15 28.29 
tgff 8 18/26 13.83 13.77 14.16 12.84 13.56 13.56 
tgff 9 16/15 24.85 19.31 16.1 0.23 9.64 19.19 
tgff 10 16/21 35.77 35.08 35.38 0.98 12.28 33.9 
tgff 11 30/29 16.96 16.83 15.49 5.67 15.22 16.04 
tgff 12 36/50 5.11 4.99 4.99 4.05 3.84 4.31 
tgff 13 37/36 20.71 20.48 20.94 10.5 17.66 19.37 
tgff 14 24/33 28.12 28.3 28.07 19.42 24.29 26.92 
tgff 15 40/63 4.15 4.3 4.47 3.93 4.02 4.3 
tgff 16 31/56 29.88 29.22 29.8 17.43 27.95 28.12 
tgff 17 29/56 22.20 21.4 21.97 19.27 20.29 20.76 
tgff 18 12/15 23.44 22.74 22.45 0.76 19.26 20.48 
tgff 19 14/19 27.84 26.92 27.17 23.64 23.53 26.16 
tgff 20 19/25 52.30 47.9 50.69 34.61 41.48 45.43 
tgff 21 70/99 19.45 20.25 21.37 0.36 2.04 19.89 
tgff 22 100/135 29.10 33.66 34.45 24.39 32.49 33.14 
tgff 23 84/151 23.20 26.18 25.08 1.34 18.31 21.75 
tgff 24 80/112 8.53 10.02 10.22 0.22 3.01 7.81 
tgff 25 49/92 20.16 23.85 24.41 0.65 15.14 20.28 

Average  25.37 25.38 25.60 12.2 18.08 24.05 
Table 1. Energy Savings of all algorithms for testbenches of [15] 

Figure 7 shows the average energy saving computed by applying the 
three algorithms to all of the benchmarks over different number of 
modes. As shown, the energy saving achieved by ASG-VTS using 
four modes is achievable by RVS and EE-GLSA using at least ten 
modes. This also shows that ASG-VTS can reduce the number of 
required modes without any significant energy loss (1.55% on 
average).  

As mentioned earlier ASG-VTS searches a broader space for better 
optimization. However, it runs faster than the other algorithms. Our 
heuristic in calculation of Slowdown Probability (Section 4.1) 
significantly helps reducing the number of iterations in slack 
distribution cycles. Furthermore, each iteration in ASG-VTS has a 

385



very low algorithm complexity partly because of our low cost 
heuristic for task selection (Section 4.2). The reported worst case 
execution time of EE-GLSA is 17.99 seconds while that of RVS 
and ASG-VTS are 0.255s and 0.12s respectively (in presence of 30 
voltage modes and on a similar machine). Therefore, ASG-VTS 
runs 2.1 times faster than RVS, and 150 times faster than EE-
GLSA. Since ASG-VTS has a very short run time, it is ideal for the 
inner-most loop of design explorations.  
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Figure 7. Sensitivity of different algorithms to the number of modes 

 

Table 2. Energy Savings of AS-VTS alg. on E3S benchmarks [6] 
Test benches No of tasks/edges Saving (%) 30 mode Saving (%) 4 mode 

Consumer (Multimedia) 27/24 63.9 62.6 
Networking 31/21 33.24 32.7 
Automotive 28/24 27.02 26.2 

In addition to the above benchmarks, we ran our optimization 
algorithm on another set of publicly available benchmarks [6] 
developed based on data from the Embedded Microprocessor 
Benchmark Consortium (EEMBC). The benchmarks describe the 
application task graphs as well as a resource library. For each 
application, we allocated a set of resources from the resource library 
and mapped the tasks to them. Table 2 shows the characteristics of 
benchmarks and the result of optimization. After reducing the 
number of modes to four, the energy degradation of the algorithm is 
similar to the previous results. 

We have developed a publicly available web interface for the ASG-
VTS optimization engine [18]. The users can upload the system 
description file and run the optimizer to get the optimized modes.  

6 CONCLUSIONS 
This paper presents a new technique called Adaptive Stochastic 
Gradient Voltage and Task Scheduling (ASG-VTS) that selects 
voltage modes for a set of dependent tasks mapped to a 
heterogeneous system so that the energy consumption is optimized 
and no real-time deadline is violated. Our algorithm has a low 
complexity and produces highly energy efficient results even when 
limited to few voltage modes. To achieve high energy efficiency, we 
have developed a discrete stochastic heuristic for slack distribution, 
which is combined with iterative adjustment of tasks ordering. 
Whenever a local minimum is found, ASG-VTS performs slack 
recovery by stochastically reclaiming some of the assigned slack 
time, and restarts the slack distribution process to search a broader 
space. To further reduce the complexity of slack distribution, we 
introduced the notion of time-based relatives of a task as a heuristic 
to quickly and efficiently find the candidates for slowdown and 
speedup. The results of comparing our algorithm to the most 
efficient approaches (RVS and EE-GLSA) show with only four 
valid modes, the ASG-VTS saves up to 26% and 33% more energy 
compared to RVS and EE-GLSA, while being up to 2 and 150 times 

faster, respectively. Our algorithm is an ideal choice for design 
space exploration as well as mode exploration. 
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