
An Efficient Voltage Scaling Algorithm for Complex SoCs
with Few Number of Voltage Modes

Bita Gorjiara, Nader Bagherzadeh, Pai Chou
Department of Electrical Engineering and Computer Science

University of California, Irvine
{bgorjiar, nader, chou}@ece.uci.edu

ABSTRACT
Increasing demand for larger high-performance applications
requires developing more complex systems with hundreds of
processing cores on a single chip. To allow dynamic voltage scaling
in each on-chip cores individually, many on-chip voltage regulators
must be used. However, the limitations in implementation of on-
chip inductors can reduce the efficiency, accuracy and the number
of voltage modes generated by regulators. Therefore the future
voltage scheduling algorithms must be efficient, even in the
presence of few voltage modes; and fast, in order to handle complex
applications. Techniques proposed to date, need many fine-grained
voltage modes to produce energy efficient results and their quality
degrades significantly as the number of modes decreases. This paper
presents a new technique called Adaptive Stochastic Gradient
Voltage and Task Scheduling (ASG-VTS) that quickly generates
very energy efficient results irrespective of the number of available
voltage modes. The results of comparing our algorithm to the most
efficient approaches (RVS and EE-GLSA) show that in the presence
of only four valid modes, the ASG-VTS saves up to 26% and 33%
more energy. On the other hand, other approaches require at least
ten modes to reach the same level of energy saving that ASG-VTS
achieves with only four modes. Therefore our algorithm can also be
used to explore and minimize the number of required voltage levels
in the system.

Categories and Subject Descriptors
C.3 [Special-purpose and application-based systems]: Real-time
and embedded systems

General Terms: Algorithms and Design.

Keywords: Dynamic Voltage Scaling (DVS), scheduling, power
management, optimization, stochastic gradient search,
heterogeneous systems, and multi-processor systems.

1 INTRODUCTION
Design of future embedded systems becomes more challenging due
to the increasing demand for larger high performance applications.
Scaling the technology to deep submicron allows placement of
hundreds or even thousands of processing cores on a single chip.
Managing dynamic and leakage power at that scale poses a major
challenge for future designs. The fact that dynamic power and static
power have quadratic and exponential relationship to the supply
voltage respectively [22] necessitates voltage scaling in components
and subcomponents of a chip. To allow dynamic voltage scaling in

each of the on-chip cores, it is required to have many on-chip
voltage regulators that can provide DVS modes as well as shutdown
mode. Currently on-chip regulators cannot provide shutdown mode,
and have low efficiency due to the low accuracy of on-chip
inductors [5]. Such limitations can lead to significant reduction in
the number and accuracy of the available voltage levels especially
in deep submicron and SoCs with many processing cores.

Design of low power embedded systems is usually an iterative
process that explores different resource allocations and task
mappings to meet performance, power and cost constraints. For
each of the system configuration generated during design space
exploration, the application tasks are scheduled on the mapped
resources (task scheduling) to meet real-time deadlines. The
available slack intervals in the schedule are utilized by voltage (and
frequency) scaling algorithm to reduce energy consumption. Figure
1 shows the flow of a typical system design space exploration
process [4] that uses two nested genetic algorithms (GAs) to
generate various system configurations with different resource
allocations and task mappings. The task scheduling and voltage
scaling algorithms are in the inner-most loop of this iterative
process and therefore must have a very low algorithm complexity in
order to handle large applications with too many tasks.

Figure 1. The Design Space Exploration Process proposed in [4]

So far, the algorithms proposed for voltage scheduling either are not
very energy efficient, or have a high order of complexity, and/or
need many fine-grained supply voltage levels (voltage modes) to
generate efficient results. Some of the approaches even formulate
the problem for continuous voltage values. If few voltage modes are
provided in a system, then they map the generated continuous
solution to a valid mode with a relatively high energy penalty.

This paper presents a new technique called Adaptive Stochastic
Gradient Voltage and Task Scheduling (ASG-VTS) that selects
voltage modes for a set of dependent tasks mapped to a
heterogeneous system so that the energy consumption is optimized
and no real-time deadline is violated. Our algorithm has a low
complexity and produces highly energy efficient results even in the
presence of few voltage modes. To achieve high energy efficiency,
we have developed a discrete stochastic heuristic for slack
distribution that is combined with iterative adjustment of task
ordering. Whenever a local minimum is found, ASG-VTS
stochastically re-claims some of the assigned slack time (slack
recovery), and restarts the slack distribution process in order to
search a broader space. Our experimental results show that our

Evaluation /
Selection

Task and
Voltage

Scheduler

Application
Specification

Allocation

Resource
Library

Mapping
Evaluation /
Selection

A

GA GA

B

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISLPED’04, August 9–11, 2004, Newport Beach, California, USA.
Copyright 2004 ACM 1-58113-929-2/04/0008…$5.00.

14.2

381

proposed search algorithm can quickly produce very energy
efficient results. To reduce the number of iteration in each slack
distribution cycle, we have carefully defined the stochastic directors
(mode transition probabilities) based on the energy gradient and the
execution delays of the tasks. To further reduce the complexity of
slack distribution, we introduce the notion of time-based relatives
of a task (Section 4.2) as a heuristic that helps finding the
candidates for slowdown and speedup quickly and efficiently. We
compare our algorithm with two of the most energy efficient
approaches: RVS [19] and EE-GLSA [15]. Experimental results
from running publicly available tight-deadline benchmarks show
that with only four modes to choose from, ASG-VTS can save up to
26% and 33% more energy compared to RVS and EE-GLSA. Also,
ASG-VTS can reduce the number of required voltage modes
without any significant energy loss. In fact, by reducing the number
of modes from thirty to four, ASG-VTS’s results are degraded by up
to 5.26% (avg. 1.55%) while RVS and EE-GLSA lose up to 28%
(avg. 7.3%) and 34.8% (avg. 13.1%), respectively. Furthermore,
ASG-VTS runs 2.1 and 150 times faster than RVS and EE-GLSA,
and thus it is a better choice for the inner-most loop of the design
space exploration. We have also developed a web-based interface
for the optimization engine that runs our XML-based system
description format.

This paper is organized as follows. Section 2 presents the related
works. Section 3 formulates voltage scheduling as an optimization
problem. The ASG-VTS algorithm is described in Section 4,
followed by the experimental results and analysis in Section 5.
Section 6 summarizes the contributions and concludes the paper.

2 RELATED WORKS
There is a large body of work on voltage scheduling of tasks on
multi-processor systems. To generate energy efficient results the
voltage-scaling algorithm must properly distribute the available
slack time among the tasks. Also, the task scheduler needs to
explore and adjust the ordering of the tasks to increase energy
saving opportunities [14]. Different algorithms have addressed one
or both of these issues differently. Luo and Jha [12] propose a
voltage scaling algorithm that evenly distributes slacks among the
tasks located before the slack interval. The algorithm has a low
complexity; but it is not very efficient. Gruian and Kuchcinski [7]
have proposed a DVS algorithm that selects voltage modes and
decides about the execution order of the tasks based on priority
values that are computed from the amount of energy consumption,
delays, and deadlines of the tasks. The priority values are iteratively
refined until a valid energy-efficient solution is generated. The
complexity of their algorithm is O(n3), where n is number of tasks.
Bambha et al [1] have used Monte Carlo and simulated annealing
algorithms to find optimized voltage modes for all tasks. The time
complexity of each iteration in their algorithm is low; however, in
practice, it takes many iterations to converge. As a result, it is very
slow: for instance, a runtime of up to 1200 seconds is reported for
the testbenches with 14 to 28 tasks. Schmitz et al [14][15]
developed an iterative slack distribution technique called EE-GLSA
that sorts tasks based on their energy saving potential, and then
assigns a slack time of

�
tmin to the most eligible tasks while

avoiding the slack assignments that violate real-time deadlines. In
order to maximize energy saving, they apply the voltage scaling
algorithm to various schedules generated by a genetic algorithm.
They showed that their approach significantly outperforms the
above approaches in energy efficiency. The order of EE-GLSA is
O(p�i �m�n2 � log(n)), where p is the size of population in GA, i is the
number of iterations, n is the number of tasks and m is a factor

related to
�

tmin. Since they solve the problem using continuous
voltage values, the result must be mapped to the closest discrete
modes with some energy penalty. Zhang et al [17] developed an
Integer Linear Programming (ILP) formulation to optimally solve
the voltage selection problem for a fixed ordering of tasks under the
assumption of having continuous voltage values. Although they
optimally solve the slack distribution problem, the amount of
energy saving is bounded by the fixed ordering of the tasks in the
schedule. Furthermore, the generated continuous solution can lose
its optimality after it is mapped to discrete modes and may be
degraded significantly. They did not report the run time of their
algorithm. In [11], a similar ILP formulation with continuous
voltage levels is used. Since the ILP has a very long runtime, they
have used a partitioning heuristic to compromise the optimality with
the speed. In [19], a voltage selection technique (RVS) is proposed
that randomly distributes the slack time among the high-power tasks
over several iterations. It adjusts the ordering of tasks to make the
selected modes schedulable. Although the algorithm searches in
discrete space, it needs many fine-grained voltage modes to
generate efficient results. To the best of our knowledge, both EE-
GLSA and RVS generate energy-efficient results and are relatively
fast. However, as Section 5 shows that for a limited number of
voltage modes, the quality of their results degrades significantly.

3 PROBLEM FORMULATION
This paper investigates the voltage scheduling aspect of the system
design process. Therefore we assume that proper processing
elements (PE) are allocated and tasks are already mapped to them.
A system is usually represented by its architecture and application.
The architecture is represented as a set of processing elements PE
and communication channels L. Processing elements include
general-purpose processors, DSPs, FPGAs and ASICs. A PE may
operate at different voltage levels and hence consume different
amounts of power. These voltage (power) levels are represented by
voltage modes. The set of voltage modes for a processing element pj
is denoted by non-empty set VMj={ mj,1, …, mj,maxj}. We denote the
fastest mode of pj by fastestMode(pj). Each voltage mode m has its
own frequency, freq(m), and power consumption, Pwr(m):

freq(m) = k � (Vdd − Vt)
2 / Vdd (1)

Pwr(m) = CL � N0�1 � f � (Vdd)
2 (2)

where Vdd is the supply voltage, CL is the switching capacitance,
N0�1 denotes the switching activity, k is a circuit-dependent
constant and Vt is the circuit threshold voltage.

The application is represented by a set of periodic task graphs {TG1,
…, TGN}. All task graphs have the same period and their own
arrival time and deadline*. A task graph is a directed acyclic graph
G(T, C) where T={ �1,

�
2, …, �n} represents tasks and C={ ci,j = (�i,

�
j, �

i,j)} represents data dependencies between pairs of tasks �i and �j,
and �i,j indicates the communication delay of data to be transferred.
A task may be associated with a deadline �(�) by which its execution
must be finished. Td is the set of tasks � for which �(�) is specified.
Td must at least contain sink tasks (tasks with no dependents) and if
a sink does not have a deadline, then the deadline of its
corresponding TG is assigned to it. Each task � is mapped to a
processing element proc(�), and has an execution delay texec(

�) in the
fastest mode of that processor. In addition to the mode of the
processor, some specific characteristics of individual tasks may
affect their power consumption. We model this effect by power

* By considering the hyper-period of any set of multi-rate periodic task

graphs and repeating them accordingly, such a set can be constructed.

382

dissipation factor Pwr_Factor(�) that can be extracted through
profiling and measurement [2][3]. The total energy consumption of
task set T in a selected mode vector M=(m1,…, mn) can be calculated
by:

ET(M) = ∑
=

n

i 1

(Pwr(�i , mi) � texec (�i , mi)) (3)

where mi is the mode of proc(�i) during the execution of �i and,

Pwr(�i , mi) = Pwr_Factor(�i) � Pwr(mi) (4)
texec(�i , mi) = texec (�i) � freq(fastestMode(proc(�i))) / freq(mi)
 (5)

The overall deadline violation of task set T in mode vector M is
calculated by:

)),((max)(
],1[

ii
ni

T mM τχχ
∈

= (6)

where �(�i, mi) is the deadline violation of task �
i in mode mi:

� (�i , mi) = ts(�i) + texec(�i , mi) − �(�i) (7)
Here, ts denotes the task start time assigned by the scheduler. Note
that a positive value of � indicates the amount of deadline violation,
while a negative value of � represents the amount of slack time
available after task execution.

The goal of the optimization algorithm is to find a mode vector M
such that the cost function � is minimized:

�
�
	

>∞
≤

=Ψ
0)(

0)()(
)(

Mif

MifME
M

T

TT

χ
χ (8)

4 THE ASG-VTS APPROACH
In voltage scheduling the strategy used for slack distribution can
significantly effect the amount of energy saving. In general, the
same amount of slack time can be applied toward different amount
of energy savings, depending on the tasks to which the slack is
assigned. Figure 2 shows the flow of ASG-VTS algorithm. ASG-
VTS iteratively distributes the slack time. It initially selects the
fastest voltage mode and then derives a new mode by slack
distribution. Next, it calculates the execution delay and the priority
of the tasks for the generated mode, followed by list-based
scheduling. If no real-time deadline is violated, then the old mode is
replaced by the new one for the next iteration of slack distribution.
Otherwise, the new mode is either discarded or is engaged in a slack
recovery process. The slack distribution and recovery are performed
by adding a deviation vector to the current mode. The elements of
the deviation vector are assigned −1, 0 or 1 to indicate slowdown,
no change, or speedup of a task respectively. These values are
stochastically selected based on the slowdown and speedup
probabilities (SDP and SUP). In this section, we first discuss the
details of slack distribution as well as calculation of SDP and SUP.
Then we present our task selection heuristic used in slack
distribution and recovery. Finally we present the pseudo-code of the
algorithm.

Figure 2. ASG-VTS approach (A and B are the same as in Figure 1)

4.1 Slack Distribution Heuristic
In this paper, we use a variation of stochastic gradient search to
explore different ways of slack distribution. Generally, in stochastic
gradient search approaches, the probability of changing a variable in
each iteration is calculated based on the gradient of the cost
function with respect to that change [16]. In other words, the
changes that can decrease the cost function more are given a higher
chance of occurrence. In our problem, the gradient of the cost
function � respective to the change of a mode mi∈M is calculated
using:

�

�

>
∆

∆
+∞

≤
∆

∆
+

∆
∆

=
∆
∆Ψ

0
)(

)(

0
)(

)(
)(

i

T
T

i

T
T

i

T

i

m

M
Mif

m

M
Mif

m

ME

m χχ

χχ (9)

where
�

ET(M)/
�

mi is the gradient of energy consumption and ��
T(M)/

�
mi is the gradient of deadline violation with respect to

changing mode mi. The slowdown and speedup probabilities are
defined such that they favor the decrease of �(M). The slowdown
probability of task �i can be defined as follows:

�
�
�

���

�

<
∆
∆Ψ���

�
���
�

∆
∆Ψ−

≥
∆
∆Ψ

=
0

00

)(

ii

i

i

m
if

m
norm

m
if

SDPτ

 (10)

where norm() is a normalizing function. This equation means that
the tasks that save the most energy and do not cause any deadline
violation will be assigned a higher slowdown probability. Although
calculation of energy gradient has a low cost (based on Equation 3),
calculating the gradient of deadline violation function is very costly
because it requires re-running the scheduling algorithm. Therefore,
we define the slowdown probability based on energy gradient and a
delay factor that is representative of potential deadline violations.
Thus:

)()(i
i

i delayFctrdelayCnst
m

E
normenergyCnstSDP ττ ⋅+�

�
�
�

���
�

∆
∆−⋅=

 (11)

where delayFctr is:

���

!!"
#

−=
exec

iiexec
i aveT

mt
normdelayFct

),(
1)(

ττ
 (12)

The aveTexec is the average execution delay of all tasks. The first
term of Equation (11) means that the tasks whose slowdown saves
the most energy are assigned a higher probability of slowdown. The
second term means the tasks with relatively high execution delays
are assigned a lower probability of slowdown. Note that this term
avoids slowdown of the tasks that already have high execution
delays. The constants energyCnst and delayCnst are used to adjust
the effect of each term. We further define speedup probability as
follows:

SUP($i) = 1 − SDP($i) (13)
To understand the effectiveness of our SDP formulation, consider
the following example: assume that we have two tasks Task1 and
Task2, where Task2 consumes more power than Task1 while both
have the same execution delay. To maximize energy saving a
greater portion of the slack time must be assigned to Task2. Figure
3.(a) shows how the definition of SDP helps achieving this goal.
Here, the slack distribution is performed by iteratively reducing the
voltage modes. After each slowdown the SDP of the corresponding
task slightly drops because of an increase in execution delay and a
small decrease in its energy gradient. As the optimization proceeds,
several tasks, including Task2 (others are not shown), are slowed
down and hence the aveTexec will increase (Figure 3(b)). As a result,

B

Calculate
Priorities

List-Based
Scheduling

Task Scheduler

Select a
Voltage Mode

Calculate
SDP & SUP

Calc. Deviation
Vector

Generate a New
Voltage Mode

Evaluate the
New Mode

Slack Distribution/Recovery
A

383

SDP of Task1 gradually increases. At some point, Task1 will also
be slowed down. However, overall Task2 is slowed down more
often and therefore has consumed a greater portion of available
slack time compared to Task1.

10

15

20

25

30

35

40

1 21 41 61
Ite ration No

S
D

P
 (

%
)

Task1 Task2

0

50

100

150

200

250

300

350

400

1 11 21 31 41 51 61 71

Interation No

av
eT

ex
ec

 (
m

ic
-s

ec
)

Figure 3. (a) SDP of two tasks and (b) aveTexec in different iterations

4.2 Task Selection Heuristic for Slack
Distribution/Recovery

As mentioned earlier, the algorithm determines the tasks that have
violated their deadlines (�>0), and the ones that have some slack
time (�<0). To eliminate the deadline-miss time of a task, ASG-VTS
randomly speeds up some of the tasks that have caused the deadline
violation (relative tasks). We define relatives of a task � as the set of
all tasks whose execution delay will affect the finish time of �. By
definition, whenever a task has missed its deadline, speeding up a
subset of its relatives must be able to fix the problem (assuming the
application is schedulable in the highest voltage mode). The set of
relatives includes predecessors of a task in the task graph as well as
its resource-based relatives. We define resource-based relatives of a
task �, R(�), as those tasks that are mapped to the same resource as �
and are finished between the arrival of � and its start time. Hence,
the finish time of the resource-based relatives of � will affect the
finish time of � itself. Note that the set of resource-based relatives of
tasks may change in different iterations because the slack
distribution and recovery affects execution delay of the tasks and
their schedule. We recursively define the relatives of a task � as:

relatives(�) = { �} � {
)()(Pr ττ Reds �

�
∈

relatives(s)} (14)

where Pred(�) is the set of predecessors of τ in task graph.
Whenever a task misses its deadline, the set of its relative tasks
becomes the candidates for speedup. Also, the slack time after a task
can be distributed among its relatives. Note that each task is
considered a relative of itself and is therefore a candidate for
speedup or slowdown.

Most of the techniques proposed so far extract the set of relatives of
a task for slack distribution. However, extracting the set of relatives
is complex and time consuming, because keeping track of resource-
based relatives requires an additional data structure that captures
and updates the links between consecutive tasks mapped to the
same resource. Note that the links may change as the slack is
iteratively distributed. To avoid the overhead of constructing and
updating the links between the relative tasks, we approximate the
above relationship with one that is easier to compute: time-based
relationship.

We define the set of time-based relatives of a task �, TBR(�), as the
set of all tasks whose finish times lie within the live interval of �.
The live interval of a task � is the interval between the arrival of the
host TG and �’s finish time. This set includes some of the real
relatives, such as predecessors and resource-based relatives, and
some other non-relative tasks. The advantage with this
approximation is that extracting time-based relatives is simple and

fast. More importantly, it does not require any modification to the
task scheduler. Using the time-based relationship reduces the order
of slack distribution algorithm at least by a factor of n.

4.3 ASG-VTS Algorithm
Figure 4 shows the pseudo-code of our voltage selection algorithm.
It starts by selecting the fastest mode vector, which must be
schedulable and has the highest energy consumption. The
CALCULATEEXECDELAY function (lines 3, 7) calculates the new
execution delay of all tasks based on the selected mode vector. The
new execution delays are used by the SCHEDULE algorithm to
generate a new task schedule. Scheduling of dependent tasks on a
multi-processor system is an NP-complete problem [8]. ASG-VTS
uses priority-based list scheduling algorithm, which is a well-known
heuristic. After generating the initial schedule for the fastest mode
(lines 2-4), in each iteration of the loop (lines 5-12), a new mode
vector is generated by evolving the previous one (line 6) and is used
to produce a new schedule (line 8). If the evolved mode is more
energy efficient than the best mode so far (optMode), and the new
schedule is valid, then the evolved mode is selected for the next
iteration. Otherwise (line 13), the selection will be based on a
probability function. This function gives a higher chance of
selection to the better mode.

01 ASG-VTS_VS ()
02 optMode = M1 = SELECTTHEFASTESTMODESET()
03 CALCULATEEXECDELAY (M1)
04 currSched = SCHEDULE(M1)
05 while(noOfIter < 10000 and noOfUselessIter < 100)
06 M2 = EVOLVE(M1)
07 CALCULATEEXECDELAY (M2)
08 currSched = SCHEDULE(M2)
09 if (�T(M)

�
0 and M2 is better than optMode) //no deadline is missed

10 optMode = M1 = M2
11 noOfUselessIter = 0
12 else
13 M1 = select between M1 and M2
14 noOfUselessIter ++
15 noOfIter ++
16 return optMode

Figure 4. ASG-VTS algorithm

EVOLVE(M)
 Calculate SUP and SDP for each task using mode vector M.
 �M = (0, 0, …) // initialize the mode deviation vector with 0
 if no deadline is violated
 SLOWDOWN(T, availableSlack, 	M) // stochastically slows down all the tasks
 else
 for all
∈Td

 if (χ(�) > 0) // � has missed its deadline
 if (χ(�) is small)
 SPEEDUP(Pred(�), χ(�), 	M)
 else
 SPEEDUP(TBR(�), χ(�), 	M)
 if (χ(�) < 0) // � has some slack
 if (χ(�) is small)
 SLOWDOWN(Pred(�), −χ(�), 	M)
 else
 SLOWDOWN(TBR(�), −χ(�), 	M)
 return M + 	M

Figure 5. EVOLVE algorithm

Figure 5 shows EVOLVE algorithm that calculates mode deviation
vector �M and returns the evolved mode. It starts by calculating
speedup and slowdown probabilities of all tasks using Equations
(11) and (13). Then, if no real time deadline is violated, it
stochastically slows down the entire task set T. In case of deadline
violation, it performs slack distribution and recovery by using the
tasks in Td as starting points. As defined in Section 3, Td is a set of
tasks whose deadline is explicitly specified and includes all the sink

384

tasks. For each �∈Td, if the amount of deadline-miss (slack) time is
relatively small, the speed-up (slow-down) operation is performed
only on its predecessors, Pred(�). However, if the amount of
deadline-miss (slack) time is large, the mode transitions will be
performed on time-based relatives of �, TBR(�).

Figure 6 shows SLOWDOWN() function that stochastically distributes
the slack among elements of set S. As long as slack is not zero, a
task � is selected stochastically based on its SDP, and its voltage
mode is reduced by one (slowdown). To do so, a random number
between 0 and 1 is generated, and if it is less than SDP(�) then � is
slowed down. SPEEDUP() function is similar to SLOWDOWN()
function.

In the ASG-VTS algorithm, except for EVOLVE(), all of the
functions in the loop have linear complexity. In EVOLVE(),
SPEEDUP() and SLOWDOWN() functions are called for all the
members of Td. The worst case, SPEEDUP() and SLOWDOWN()
functions must process all the predecessors or time-based relatives
of a task. Therefore the complexity of ASG-VTS is O(i �nd�n), where
i is the number of iterations, nd is the total number of tasks whose
deadline is explicitly specified (including all sink tasks), and n is
number of all tasks.

SLOWDOWN (S, slack, �M) {
 while ((slack > 0) and (S ≠ ∅))
 select � randomly from S
 r = generate a random number
 if (r < SDP(�))
 �M[�] = − 1
 update slack
 S = S − { � }

Figure 6. SLOWDOWN function

5 EXPERIMENTAL RESULTS
We compare our algorithm to EE-GLSA and RVS in terms of
energy savings, runtime complexity and sensitivity to the number of
voltage modes. To the best of our knowledge, EE-GLSA and RVS
are the best published approaches both in terms of performance and
energy savings. EE-GLSA and ILP approaches [17][11] formulate
the optimization problem for continuous voltage values. In the
mode sensitivity comparisons of this section, we use EE-GLSA as a
representative for other continuous approaches. Schmitz et al [15]
have presented the results of EE-GLSA on a set of tight-deadline
benchmarks using a Pentium III/750 MHz PC. We also used the
same set of benchmarks and a similar PC (PIII/700 MHz) to
produce the results of RVS and ASG-VTS. The second column of
the Table 1 presents the characteristics of the benchmarks in terms
of the number of tasks and edges in the task graphs.

The first part of Table 1 (columns 3 to 5) shows the energy saving
results of EE-GLSA, using continuous voltage values, as well as
that of RVS and ASG-VTS, using 30 fine-grained modes†. We
observed that using more than 30 modes does not improve the
amount of energy savings any further. Note that, when given 30
modes, all three algorithms achieve comparable energy savings.
However as the number of modes is reduced the algorithms start to
behave differently. Note that even for a small number of modes,
exhaustive search is not a viable option. For example, for a system
with 20 tasks and four modes the number of possible mode
permutations is 420 or 1012. Assuming the optimization algorithm
can process 1000 permutations per second, it takes 34 years to find
the optimal solution by exhaustively searching the entire space.

† The modes are generated by dividing the voltage range into 30 or 4 steps

The second part of Table 1 (columns 6 to 8) shows the energy
saving result of the algorithms when only four voltage modes are
given†. In continuous approaches, such as EE-GLSA, the optimized
solution is produced using continuous and potentially unavailable
voltage levels. To map the solution to a valid one while meeting all
real-time deadlines, Schmitz et al suggest replacing unavailable
modes by the next higher available ones. However, this mapping
results in energy penalty. In discrete approaches, such as RVS and
ASG-VTS, the mapping is not needed because the optimization is
based on only the available modes. Furthermore, ASG-VTS applies
complementary cycles of slack distribution and recovery, which
enables searching a broader space and finding more optimized
solutions under the constraint imposed by the limited number of
modes. As shown in Table 1, when number of modes is reduced to
four, the ASG-VTS loses 1.55% energy in average while RVS and
EE-GLSA lose 7.3% and 13.1%, respectively. In the worst case
RVS and EE-GLSA lose as much as 28% (tgff1) and 34.8% (tgff10)
respectively while ASG-VTS loses only 5.26% (tgff20). This shows
that the result of continuous approaches, even if calculated
optimally, can not only lose its optimality after the mapping, but
also degrade significantly.

 30 modes (savings %) 4 modes (savings %)
Test

benches
No of

tasks/edges
EE-GLSA

[15]
RVS
[19]

ASG-VTS EE-GLSA RVS ASG-VTS

tgff 1 8/9 71.05 69.63 69.89 43.25 41.6 66.67
tgff 2 26/43 26.79 27.1 27.69 0.23 1.03 26.7
tgff 3 40/77 69.18 68.86 71.81 64.72 57.33 66.72
tgff 4 20/33 12.99 12.6 12.71 10.18 11.18 11.83
tgff 5 40/77 17.14 19.15 18.92 0.35 15.44 18
tgff 6 20/26 1.61 1.59 1.54 1.17 1.41 1.53
tgff 7 20/27 29.90 30.41 30.25 0.65 20.15 28.29
tgff 8 18/26 13.83 13.77 14.16 12.84 13.56 13.56
tgff 9 16/15 24.85 19.31 16.1 0.23 9.64 19.19
tgff 10 16/21 35.77 35.08 35.38 0.98 12.28 33.9
tgff 11 30/29 16.96 16.83 15.49 5.67 15.22 16.04
tgff 12 36/50 5.11 4.99 4.99 4.05 3.84 4.31
tgff 13 37/36 20.71 20.48 20.94 10.5 17.66 19.37
tgff 14 24/33 28.12 28.3 28.07 19.42 24.29 26.92
tgff 15 40/63 4.15 4.3 4.47 3.93 4.02 4.3
tgff 16 31/56 29.88 29.22 29.8 17.43 27.95 28.12
tgff 17 29/56 22.20 21.4 21.97 19.27 20.29 20.76
tgff 18 12/15 23.44 22.74 22.45 0.76 19.26 20.48
tgff 19 14/19 27.84 26.92 27.17 23.64 23.53 26.16
tgff 20 19/25 52.30 47.9 50.69 34.61 41.48 45.43
tgff 21 70/99 19.45 20.25 21.37 0.36 2.04 19.89
tgff 22 100/135 29.10 33.66 34.45 24.39 32.49 33.14
tgff 23 84/151 23.20 26.18 25.08 1.34 18.31 21.75
tgff 24 80/112 8.53 10.02 10.22 0.22 3.01 7.81
tgff 25 49/92 20.16 23.85 24.41 0.65 15.14 20.28

Average 25.37 25.38 25.60 12.2 18.08 24.05
Table 1. Energy Savings of all algorithms for testbenches of [15]

Figure 7 shows the average energy saving computed by applying the
three algorithms to all of the benchmarks over different number of
modes. As shown, the energy saving achieved by ASG-VTS using
four modes is achievable by RVS and EE-GLSA using at least ten
modes. This also shows that ASG-VTS can reduce the number of
required modes without any significant energy loss (1.55% on
average).

As mentioned earlier ASG-VTS searches a broader space for better
optimization. However, it runs faster than the other algorithms. Our
heuristic in calculation of Slowdown Probability (Section 4.1)
significantly helps reducing the number of iterations in slack
distribution cycles. Furthermore, each iteration in ASG-VTS has a

385

very low algorithm complexity partly because of our low cost
heuristic for task selection (Section 4.2). The reported worst case
execution time of EE-GLSA is 17.99 seconds while that of RVS
and ASG-VTS are 0.255s and 0.12s respectively (in presence of 30
voltage modes and on a similar machine). Therefore, ASG-VTS
runs 2.1 times faster than RVS, and 150 times faster than EE-
GLSA. Since ASG-VTS has a very short run time, it is ideal for the
inner-most loop of design explorations.

0

5

10

15

20

25

30

1 4 7 10 13 16 19 22 25 28 31

Number of Modes

A
ve

ra
g
e

E
n
er

g
y

S
av

in
g
 (
%

)

ASG RVS EE-GLSA or other continuous methods

Figure 7. Sensitivity of different algorithms to the number of modes

Table 2. Energy Savings of AS-VTS alg. on E3S benchmarks [6]
Test benches No of tasks/edges Saving (%) 30 mode Saving (%) 4 mode

Consumer (Multimedia) 27/24 63.9 62.6
Networking 31/21 33.24 32.7
Automotive 28/24 27.02 26.2

In addition to the above benchmarks, we ran our optimization
algorithm on another set of publicly available benchmarks [6]
developed based on data from the Embedded Microprocessor
Benchmark Consortium (EEMBC). The benchmarks describe the
application task graphs as well as a resource library. For each
application, we allocated a set of resources from the resource library
and mapped the tasks to them. Table 2 shows the characteristics of
benchmarks and the result of optimization. After reducing the
number of modes to four, the energy degradation of the algorithm is
similar to the previous results.

We have developed a publicly available web interface for the ASG-
VTS optimization engine [18]. The users can upload the system
description file and run the optimizer to get the optimized modes.

6 CONCLUSIONS
This paper presents a new technique called Adaptive Stochastic
Gradient Voltage and Task Scheduling (ASG-VTS) that selects
voltage modes for a set of dependent tasks mapped to a
heterogeneous system so that the energy consumption is optimized
and no real-time deadline is violated. Our algorithm has a low
complexity and produces highly energy efficient results even when
limited to few voltage modes. To achieve high energy efficiency, we
have developed a discrete stochastic heuristic for slack distribution,
which is combined with iterative adjustment of tasks ordering.
Whenever a local minimum is found, ASG-VTS performs slack
recovery by stochastically reclaiming some of the assigned slack
time, and restarts the slack distribution process to search a broader
space. To further reduce the complexity of slack distribution, we
introduced the notion of time-based relatives of a task as a heuristic
to quickly and efficiently find the candidates for slowdown and
speedup. The results of comparing our algorithm to the most
efficient approaches (RVS and EE-GLSA) show with only four
valid modes, the ASG-VTS saves up to 26% and 33% more energy
compared to RVS and EE-GLSA, while being up to 2 and 150 times

faster, respectively. Our algorithm is an ideal choice for design
space exploration as well as mode exploration.

ACKNOWLEDGEMENTS
This research was sponsored in part by DARPA under contract
4500942474 and in part by NSF under grant CCR-0205712.

7 REFERENCES
[1] N. Bambha, S. Bhattacharyya, J. Teich, and E. Zitzler, Hybrid
Global/Local Search Strategies for Dynamic Voltage Scaling in
Embedded Multiprocessors. In Proc. CODES, pages 243-248, April
2001.

[2] C. Brandolese, W. Fornaciari, F. Salice, and D. Sciuto, Energy
Estimation for 32 bit Microprocessors. In Proc. CODES, pages 24-
28, May 2000.

[3] S. Devadas and S. Malik, A Survey of Optimization Techniques
Targeting Low Power VLSI Circuits. In Proc. Design Automation
Conference, 1995.

[4] R.P. Dick and N.K. Jha, MOCSYN: Multiobjective Core-Based
Single-Chip System Synthesis. In Proc. Design, Automation and Test
in Europe, 1999.

[5] D. Duarte, Y. Tsai, N. Vijaykrishnan and M. J. Irwin, Evaluating
Run-Time Techniques for Leakage Power Reduction, In Proc. VLSID,
2002.

[6] Embedded System Synthesis Benchmarks Suite (E3S):
http://helsinki.ee.princeton.edu/~dickrp/e3s/

[7] F. Gruian and K. Kuchcinski, LEneS: Task Scheduling for Low-
Energy Systems Using Variable Supply Voltage Processors. ASP-
DAC, pages 449-455, Jan 2001.

[8] M.R. Garey and D. S. Johnson, Computers and Intractability: A
Guide to the Theory of NP-Completeness. W. H. Freeman and
Company, NY, 1979.

[9] M. Grajcar, Genetic List Scheduling Algorithm for Scheduling and
Allocation on a Loosely Coupled Heterogeneous Multiprocessor
System. In Proc. DAC, 1999.

[10] T. Ishihara and H. Yasuura, Voltage Scheduling Problem for
Dynamically Variable Voltage Processors. In Proc. ISLPED, pages
197-202, 1998.

[11] L. Leung, C. Tsui, W. Ki, Minimizing Energy Consumption of
Multiple-Processor-Core Systems with Simultaneous Task Allocation,
Scheduling and Voltage Assignment, In Proc. ASPDAC2004

[12] J. Luo and N. K. Jha, Power-conscious Joint Scheduling of
Periodic Task Graphs and Aperiodic Tasks in Distributed Real-time
Embedded Systems. In Proc. ICCAD, pages 357-364, Nov 2000.

[13] A. Manzak and C. Chakrabarti, Variable Voltage Task Scheduling
for Minimizing Energy or Minimizing Power. In Proc. ICASSP, pages
3239-3242, 2000.

[14] M.T. Schmitz and B. M. Al-Hashimi, Considering Power
Variations of DVS Processing Elements for Energy Minimisation in
Distributed Systems. In Proc. ISSS, pages 250-255, Oct 2001.

[15] M.T. Schmitz and Bashir M. Al-Hashimi, Petru Eles, Energy-
Efficient Mapping and Scheduling for DVS Enabled Distributed
Embedded Systems, In Proc. DATE, 2002.

[16] J. Spall, Introduction to Stochastic Search and Optimization, John
Wiley & sons, Inc., 2003.

[17] Y. Zhang, X. Hu, D. Chen, Task Scheduling and Voltage Selection
for Energy Minimization, In Proc. DAC, June 2002.

[18] http://www.ece.uci.edu/~bgorjiar
[19] Bita Gorjiara, Pai Chou, Nader Bagherzadeh, Dave Jensen,

Mehrdad Reshadi, Fast and Efficient Voltage Scheduling by
Evolutionary Slack Distribution, In Proc. ASP-DAC, 2004

[20] S. Wolf. Silicon processing for the VLSI era Volume 3 - The
submicron MOSFET. Lattice Press, 1995, pp. 213-222.

386

	Main Page
	ISLPED'04
	Front Matter
	Table of Contents
	Author Index

