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ABSTRACT

Increasing demand for larger high-performance apptins
requires developing more complex systems with henglr of
processing cores on a single chip. To allow dynamltage scaling
in each on-chip cores individually, many on-chigtage regulators
must be used. However, the limitations in impleratah of on-
chip inductors can reduce the efficiency, accurang the number
of voltage modes generated by regulators. Therefioee future
voltage scheduling algorithms must tedficient even in the
presence of few voltage modes; dast, in order to handle complex
applications. Techniques proposed to date, need firaergrained
voltage modes to produce energy efficient results their quality
degrades significantly as the number of modes deeg: This paper
presents a new technique callédlaptive Stochastic Gradient
Voltage and Task Scheduling (ASG-VTS) that quicgbnerates
very energy efficient results irrespective of thener of available
voltage modes. The results of comparing our aligorito the most
efficient approaches (RVS and EE-GLSA) show thah@apresence
of only four valid modes, the ASG-VTS saves up 8@and 33%
more energy. On the other hand, other approachpsreeat least
ten modes to reach the same level of energy sdkistgASG-VTS
achieves with only four modes. Therefore our atponican also be
used to explore and minimize the number of requiathge levels
in the system.

Categories and Subject Descriptors
C.3 [Special-purpose and application-based systems]: Real-time
and embedded systems

General Terms:. Algorithms and Design.

Keywords. Dynamic Voltage Scaling (DVS), scheduling, power
management,  optimization, stochastic  gradient  kearc
heterogeneous systems, and multi-processor systems.

1 INTRODUCTION

Design of future embedded systems becomes morkeiehalg due
to the increasing demand for larger high perforreasmgplications.
Scaling the technology to deep submicron allowscqtzent of
hundreds or even thousands of processing coressimgke chip.
Managing dynamic and leakage power at that scadepa major
challenge for future designs. The fact that dyngmoiwver and static
power have quadratic and exponential relationshighte supply
voltage respectively [22] necessitates voltageirsgah components
and subcomponents of a chip. To allow dynamic geltacaling in
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each of the on-chip cores, it is required to hawmynon-chip
voltage regulators that can provide DVS modes dksaseshutdown
mode. Currently on-chip regulators cannot providetdown mode,
and have low efficiency due to the low accuracy aof-chip
inductors [5]. Such limitations can lead to sigrafit reduction in
the number and accuracy of the available voltageldeespecially
in deep submicron and SoCs with many processingscor

Design of low power embedded systems is usuallyiterative
process that explores differemesource allocationsand task
mappingsto meet performance, power and cost constraints. F
each of the system configuration generated duriegigth space
exploration, the application tasks are scheduledtten mapped
resources (task scheduling) to meet real-time dessll The
available slack intervals in the schedule areagtiliby voltage (and
frequency) scaling algorithm to reduce energy corgion. Figure
1 shows the flow of a typical system design spaxelogation
process [4] that uses two nested genetic algoritli@Aas) to
generate various system configurations with difiereesource
allocations and task mappings. The task schedudimg) voltage
scaling algorithms are in the inner-most loop ofs titerative
process and therefore must have a very low algardgbmplexity in
order to handle large applications with too marsksa
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/ Task and
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Figure 1. The Design Space Exploration Process proposed in [4]

So far, the algorithms proposed for voltage schindidither are not
very energy efficient, or have a high order of ctewrjty, and/or

need many fine-grained supply voltage levels (g&Etanodes) to
generate efficient results. Some of the approaelves formulate
the problem for continuous voltage values. If fevitage modes are
provided in a system, then they map the generatedintious

solution to a valid mode with a relatively high emepenalty.

This paper presents a new technique callelhptive Stochastic
Gradient Voltage and Task Scheduling (ASG-VTS) that selects
voltage modes for a set of dependent tasks mappeda t
heterogeneous system so that the energy consumptigstimized
and no real-time deadline is violated. Our algaonithas a low
complexity and produces highly energy efficientutesseven in the
presence of few voltage modes. To achieve highggnefficiency,
we have developed a discrete stochastic heurisiic slack
distribution that is combined with iterative adjusint of task
ordering. Whenever a local minimum is found, ASGS/T
stochastically re-claims some of the assigned slatie (slack
recovery), and restarts the slack distribution psscin order to
search a broader space. Our experimental resutte shat our



proposed search algorithm can quickly produce venergy
efficient results. To reduce the number of itematio each slack
distribution cycle, we have carefully defined 8techastic directors
(mode transition probabilities) based on the engrgglient and the
execution delays of the tasks. To further redueecbmplexity of
slack distribution, we introduce the notion tohe-based relatives
of a task (Section 4.2) as a heuristic that helipsliig the
candidates for slowdown and speedup quickly andiefitly. We
compare our algorithm with two of the most enerdficient
approaches: RVS [19] and EE-GLSA [15]. Experimentsults
from running publicly available tight-deadline béntarks show
that with only four modes to choose from, ASG-VT cave up to
26% and 33% more energy compared to RVS and EE-GA&A,
ASG-VTS can reduce the number of required voltagedes
without any significant energy loss. In fact, bdweing the number
of modes from thirty to four, ASG-VTS'’s results alegraded by up
to 5.26% (avg. 1.55%) while RVS and EE-GLSA loseto28%
(avg. 7.3%) and 34.8% (avg. 13.1%), respectiveiyrttiermore,
ASG-VTS runs 2.1 and 150 times faster than RVS BRAGLSA,
and thus it is a better choice for the inner-mosipl of the design
space exploration. We have also developed a wetdbia¢erface
for the optimization engine that runs our XML-bassegstem
description format.

This paper is organized as follows. Section 2 prssthe related
works. Section 3 formulates voltage scheduling rmpatimization
problem. The ASG-VTS algorithm is described in fect4,

followed by the experimental results and analysisSection 5.
Section 6 summarizes the contributions and coneltite paper.

2 RELATED WORKS

There is a large body of work on voltage scheduliigasks on
multi-processor systems. To generate energy afficiesults the
voltage-scaling algorithm must properly distributee available
slack time among the tasks. Also, the task scheduzds to
explore and adjust the ordering of the tasks toe@me energy
saving opportunities [14]. Different algorithms leagddressed one
or both of these issues differently. Luo and Jh2] [fropose a
voltage scaling algorithm that evenly distributéscks among the
tasks located before the slack interval. The algorihas a low
complexity; but it is not very efficient. Gruian ékuchcinski [7]
have proposed a DVS algorithm that selects voltagees and
decides about the execution order of the tasksdbasepriority
values that are computed from the amount of eneoggumption,
delays, and deadlines of the tasks. The priorityesare iteratively
refined until a valid energy-efficient solution generated. The
complexity of their algorithm i©(n®), wheren is number of tasks.
Bambha et al [1] have used Monte Carlo and simdlatenealing
algorithms to find optimized voltage modes for takkks. The time
complexity of each iteration in their algorithml@v; however, in
practice, it takes many iterations to convergeaAesult, it is very
slow: for instance, a runtime of up to 1200 secosd®ported for
the testbenches with 14 to 28 tasks. Schmitz e{14][15]
developed an iterative slack distribution technigaked EE-GLSA
that sorts tasks based on their energy saving patteand then
assigns a slack time oft,, to the most eligible tasks while
avoiding the slack assignments that violate reaétdeadlines. In
order to maximize energy saving, they apply thetagd scaling
algorithm to various schedules generated by a geaégorithm.
They showed that their approach significantly otftpens the
above approaches in energy efficiency. The orddEE{GLSA is
O(pii-mn? - log(n)), wherep is the size of population in GA,is the
number of iterationsn is the number of tasks anmd is a factor

382

related toAt,, Since they solve the problem using continuous
voltage values, the result must be mapped to tbsest discrete
modes with some energy penalty. Zhang et al [1¥Ekdped an
Integer Linear Programming (ILP) formulation to iomlly solve
the voltage selection problem fofiged orderingof tasks under the
assumption of having continuous voltage valuesh@lgh they
optimally solve the slack distribution problem, tlenount of
energy saving is bounded by the fixed orderinghef tasks in the
schedule. Furthermore, the generated continuousicolcan lose
its optimality after it is mapped to discrete modesd may be
degraded significantly. They did not report the time of their
algorithm. In [11], a similar ILP formulation witttontinuous
voltage levels is used. Since the ILP has a vamg luntime, they
have used a partitioning heuristic to compromigedhtimality with
the speed. In [19], a voltage selection technidR¥S) is proposed
that randomly distributes the slack time amonghtigh-power tasks
over several iterations. It adjusts the orderingasks to make the
selected modes schedulable. Although the algorilearches in
discrete space, it needs many fine-grained voltagmles to
generate efficient results. To the best of our Kedge, both EE-
GLSA and RVS generate energy-efficient results aredrelatively
fast. However, as Section 5 shows that for a lichiteimber of
voltage modes, the quality of their results degsagignificantly.

3 PROBLEM FORMULATION
This paper investigates the voltage schedulingcsgfethe system
design process. Therefore we assume that propecessing
elements (PE) are allocated and tasks are alreagped to them.
A system is usually represented byatshitectureandapplication
The architecture is represented as a set of priagesementsPE
and communication channelk. Processing elements include
general-purpose processors, DSPs, FPGAs and ABIGE may
operate at different voltage levels and hence aoesdifferent
amounts of power. These voltage (power) levelsegpeesented by
voltage modesThe set of voltage modes for a processing element
is denoted by non-empty SéM={m 1, ..., Mmai}. We denote the
fastest mode ofy by fastestModg). Each voltage modm has its
own frequencyfreqg(m), and power consumptioRwr(m):

freq(m) = Kk - (Vaa = Vi)* / Vg (1)

Pwr(m) = Cp - Nooy - F+ (Vaa)? @)
where Vgyq is the supply voltageC, is the switching capacitance,
No_1 denotes the switching activityk is a circuit-dependent
constant and, is the circuit threshold voltage.

The application is represented by a set of peritatik graphsTG,,

..., TGy}. All task graphs have the same period and thein ow
arrival time and deadlineA task graph is a directed acyclic graph
G(T, O whereT={ry, 15, ...,7n} represents tasks areF{c; = (1, 1,
w;;)} represents data dependencies between pairs kef faands,
andw;; indicates the communication delay of data to hedferred.

A taskmaybe associated with a deadli#(g) by which its execution
must be finishedTy is the set of tasksfor which d(7) is specified.
Tq must at least contasink taskgtasks with no dependents) and if
a sink does not have a deadline, then the deadbihdts
corresponding TG is assigned to it. Each task mapped to a
processing elememptroc(r), and has an execution delgy(z) in the
fastest mode of that processor. In addition to miede of the
processor, some specific characteristics of indigidtasks may
affect their power consumption. We model this dffbg power

*

By considering thenyper-periodof any set of multi-rate periodic task
graphs and repeating them accordingly, such aasebe constructed.



dissipation factorPwr_Factolr) that can be extracted through 41 Slack Distribution Heuristic

profiling and measurement [2][3]. The total eneogynsumption of
task sefl in a selected mode vectigl=(my,..., m) can be calculated

by:

Ex(M) = z (Pwr(z , m) - texec(z , m)) (3)
i=

wherem is the mode oprod(r;) during the execution af and,
Pwr(zi , m) = Pwr_Factoi(z) - Pwr(m) 4)
texedti » M) = texec(n) - freq(fastestMod@rod(z))) / freqmy)
(%)
The overall deadline violation of task SEtin mode vectoM is
calculated by:

X (M) = maxx(r,,m)) ©)

wherey(z;, m) is the deadline violation of tagkin modem;:

)((Ti ' m) = ts,('l'i) + texez(l'i ' m) - (5(Ti) (7)
Here,t; denotes the task start time assigned by the stdrediote

In this paper, we use a variation of stochastidigra search to
explore different ways of slack distribution. Gealby, in stochastic
gradient search approaches, the probability of gingna variable in
each iteration is calculated based on the gradinthe cost
function with respect to that change [16]. In otheords, the
changes that can decrease the cost function mergiaen a higher
chance of occurrence. In our problem, the grad@nthe cost
function ¥ respective to the change of a madéM is calculated
using:
AE; (M)
AY _| Am
am

M) _g 9)
Am

B (M) o
Am

ity (M) +
o i (M)

where AEr(M)/Am is the gradient of energy consumption and
Axr(M)/Am is the gradient of deadline violation with respéat
changing modem. The slowdown and speedup probabilities are
defined such that they favor the decreas&@fl). The slowdown

that a positive value gfindicates the amount of deadline violation, Probability of task; can be defined as follows:

while a negative value of represents the amount of slack time

available after task execution.

The goal of the optimization algorithm is to findrede vectoM
such that the cost functiob is minimized:

E, (M) if x;(M)<0
® it x;(M)>0

4 THE ASG-VTSAPPROACH

In voltage scheduling the strategy used for slaskridution can

significantly effect the amount of energy saving. deneral, the
same amount of slack time can be applied towarférdifit amount
of energy savings, depending on the tasks to wthiehslack is

assigned. Figure 2 shows the flow of ASG-VTS aliponi ASG-

VTS iteratively distributes the slack time. It iaity selects the
fastest voltage mode and then derives a new modesldogk

distribution. Next, it calculates the executionage&nd the priority
of the tasks for the generated mode, followed Ist-Hased

scheduling. If no real-time deadline is violatdtker the old mode is
replaced by the new one for the next iterationla€lsdistribution.

Otherwise, the new mode is either discarded onggged in a slack
recovery process. The slack distribution and regoaee performed

w(M) :{ ®

by adding adeviation vectotto the current mode. The elements of

the deviation vector are assigned -1, 0 or 1 ticatd slowdown,
no change, or speedup of a task respectively. Thakees are

0 i &¥50 (10)
SDR7,) = am
‘ r{ AW] L AW
norm - —— if — <0
Am Am

wherenorm() is a normalizing function. This equation meahatt
the tasks that save the most energy and do noe causdeadline
violation will be assigned a higher slowdown probgb Although
calculation of energy gradient has a low cost (BaseEquation 3),
calculating the gradient of deadline violation ftioo is very costly
because it requires re-running the scheduling élgor Therefore,
we define the slowdown probability based on engnmgyglient and a
delay factor that is representative of potentisddl@e violations.
Thus:

- AE (1)
SDR(7;) = energyCnsiihorm — m + delayCnstdelayFct(r;)

wheredelayFctris:
delayFe(r,) =1- nom{wl

aveT,..
The aveT,e. is the average execution delay of all tasks. Tist f
term of Equation (11) means that the tasks whasedglwn saves
the most energy are assigned a higher probabfligfosvdown. The
second term means the tasks with relatively higicetion delays
are assigned a lower probability of slowdown. Nittat this term

(12)

stochas_t_igally selected based on tbtovx_/down a_nd S_peedUp avoids slowdown of the tasks that already have haghcution
probabilities (SDP and SUP). In this section, we first discuss th delays. The constanenergyCnstanddelayCnstare used to adjust

details of slack distribution as well as calculatmf SDP and SUP.
Then we present our task selection heuristic usedslack
distribution and recovery. Finally we present tiseyrlo-code of the
algorithm.

Slack Distribution/Recove

D¢

Calculate
SDP & SUH

Select a
\Voltage Modj

Calc. Deviatio] .~ .| Generate a Ne
Vectol I Voltage Mode

A
—O»

TaskSchedulr

Evaluate the | | List-Based| | Calculate |
New Mode Schedulin || Priorities |
¢B

Figure 2. ASG-VTS approach (A and B arethesameasin Figure 1)
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the effect of each term. We further define speeprgbability as
follows:

SUR#%) = 1 - SDRT) (13)
To understand the effectiveness of our SDP forrnuratconsider
the following example: assume that we have twosdgsk and
Task, whereTaskR consumes more power th@iask while both
have the same execution delay. To maximize enesgyng a
greater portion of the slack time must be assignethsk. Figure
3.(a) shows how the definition of SDP helps aclmgvihis goal.
Here, the slack distribution is performed by itergly reducing the
voltage modes. After each slowdown the SDP of tireesponding
task slightly drops because of an increase in di@ctuelay and a
small decrease in its energy gradient. As the apéition proceeds,
several tasks, includinfask (others are not shown), are slowed
down and hence theve T, Will increase (Figure 3(b)). As a result,



SDP ofTasK gradually increases. At some poifgskl will also
be slowed down. However, overdllask is slowed down more
often and therefore has consumed a greater podioavailable

slack time compared fbask..
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Figure 3. (a) SDP of two tasksand (b) aveTeec in different iterations

4.2 Task Sdlection Heuristic for Slack

Distribution/Recovery
As mentioned earlier, the algorithm determinesttsks that have

fast. More importantly, it does not require any fifiodtion to the
task scheduler. Using the time-based relationstijnees the order
of slack distribution algorithm at least by a facvén.

4.3 ASG-VTSAlIgorithm

Figure 4 shows the pseudo-code of our voltage ts@fealgorithm.
It starts by selecting the fastest mode vector,ciwhimust be
schedulable and has the highest energy consumpfidre
CALCULATEEXECDELAY function (lines 3, 7) calculates the new
execution delay of all tasks based on the seletiedie vector. The
new execution delays are used by theHEbuLE algorithm to
generate a new task schedule. Scheduling of depetatks on a
multi-processor system is an NP-complete problemASG-VTS
uses priority-based list scheduling algorithm, viahiie a well-known
heuristic. After generating the initial schedule fbe fastest mode
(lines 2-4), in each iteration of the loop (lined®), a new mode
vector is generated by evolving the previous oime ¢) and is used
to produce a new schedule (line 8). If the evolweatle is more
energy efficient than the best mode so fatilodg, and the new

violated their deadlines¥0), and the ones that have some slackschedule is valid, then the evolved mode is selefite the next

time ((<0). To eliminate the deadline-miss time of a ta#s¥G-VTS
randomly speeds up some of the tasks that havedahns deadline
violation (relative tasks). We defimelativesof a taskr as the set of
all tasks whose execution delay will affect thesfintime ofz. By
definition, whenever a task has missed its deadipeeding up a
subset of its relatives must be able to fix thebpgm (assuming the
application is schedulable in the highest voltagel@). The set of
relatives includes predecessors of a task in tledeaph as well as
its resource-based relatives. We defiesource-based relatives a
taskz, R(z), as those tasks that are mapped to the samercesast
and are finished between the arrivalradnd its start time. Hence,
the finish time of the resource-based relatives wfill affect the
finish time ofr itself. Note that the set of resource-based redatof
tasks may change in different iterations because $fack
distribution and recovery affects execution del&ythe tasks and
their schedule. We recursively define teativesof a task as:
relativegr) = {1} U{ U (14)
sPedr) U R7)
where Predr) is the set of predecessors ofin task graph.
Whenever a task misses its deadline, the set ofeltgive tasks
becomes the candidates for speedup. Also, the sStaelafter a task
can be distributed among its relatives. Note thathetask is
considered a relative of itself and is thereforecaadidate for
speedup or slowdown.

Most of the techniques proposed so far extracsét®f relatives of
a task for slack distribution. However, extractthg set of relatives
is complex and time consuming, because keepin§ tthoesource-
based relatives requires an additional data streidvat captures
and updates the links between consecutive taskpedafo the
same resource. Note that the links may change assldck is
iteratively distributed. To avoid the overhead ohstructing and
updating the links between the relative tasks, per@imate the
above relationship with one that is easier to caerpiime-based
relationship

We define the set dfme-based relativesf a taskr, TBRz), as the
set of all tasks whose finish times lie within thes interval ofr.

relativegs)}

iteration. Otherwise (line 13), the selection wileé based on a
probability function. This function gives a highahance of
selection to the better mode.

01 ASG-VTS_VY)

02 optMode= M1 = FLECTTHEFASTESTMODESET( )
03 CrLcULATEEXECDELAY (M1)

04 currSched= ScHepULE( M1)

05 while( noOfiter< 10000and noOfUselessltex 100)
06 M2 = BEvoLve( M1)

07 QLcULATE EXECDELAY ( M2)

08 currSched= ScHebuLE( M2)

09 if (¢r(M)<0 andM2 is better thaoptModg

/Ino deadline is missed

10 optMode= M1 = M2

11 noOfUselesslter 0

12 else

13 M1 = select betweeM1 and M2
14 noOfUselessltet+

15 noOflter ++
16 return optMode
Figure4. ASG-VTSalgorithm

EvoLve( M)
Calculate SUP and SDP for each task using mode Meictor
AM=(0,0, ..) // initialize the mode deviation vector with 0
if no deadline is violated
S.owpown( T, availableSlackyM)
else
for all 0Ty
if (x(r)>0)
if (x(7) is small)
Seepur Pred(t), X(t), AM)
else
Seepuk TBR7), X(1), AM)
if (xt)<0)
if (x(z) is small)
S owpbown( Pred(t), —x(1), AM)
else
Sowpown( TBR), =X(1), AM)
return M + AM

/I stochastically slows down all the tasks

v/has missed its deadline

v/has some slack

Figure5. EvoLvE algorithm
Figure 5 shows ¥oLvE algorithm that calculates mode deviation

vector AM and returns the evolved mode. It starts by calitiga
speedup and slowdown probabilities of all taskswgidEquations

Thelive intervalof a task: is the interval between the arrival of the (11) and (13). Then, if no real time deadline i®laied, it
host TG andc's finish time. This set includes some of the realstochastically slows down the entire task Beln case of deadline

relatives, such as predecessors and resource-belsgides, and
some other non-relative tasks. The advantage wikiis t
approximation is that extracting time-based retsivs simple and
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violation, it performs slack distribution and reeoy by using the
tasks inTy as starting points. As defined in SectiorTgjs a set of
tasks whose deadline is explicitly specified andudes all the sink



tasks. For eacHITy, if the amount of deadline-miss (slack) time is The second part of Table 1 (columns 6 to 8) shdves énergy

relatively small, the speed-up (slow-down) operati® performed
only on its predecessorfredr). However, if the amount of
deadline-miss (slack) time is large, the mode ftmms will be

performed on time-based relativescof BR(z).

Figure 6 shows 1®wbownN() function that stochastically distributes
the slack among elements of s& As long asslackis not zero, a

taskt is selectedstochasticallybased on its SDP, and its voltage

mode is reduced by one (slowdown). To do so, aaandumber
between 0 and 1 is generated, and if it is less 8@P¢) thent is

slowed down. BeeDpuK) function is similar to SowbDowN()

function.

In the ASG-VTS algorithm, except for vBLvE(), all of the
functions in the loop have linear complexity. Invdeve(),
SpeepuK) and SowbowN() functions are called for all the
members ofTq. The worst case, FREDUK) and SowbDownN()
functions must process all the predecessors orhimsed relatives
of a task. Therefore the complexity of ASG-VTS i§-@n), where

i is the number of iterationgy is the total number of tasks whose

deadline is explicitly specified (including all &intasks), anch is
number of all tasks.

saving result of the algorithms when only four agk modes are
given'. In continuous approaches, such as EE-GLSA, thienzed
solution is produced using continuous and potdgtiahavailable
voltage levels. To map the solution to a valid aiéle meeting all
real-time deadlines, Schmitz et al suggest reptacinavailable
modes by the next higher available ones. Howeves, mapping
results in energy penalty. In discrete approactesh as RVS and
ASG-VTS, the mapping is not needed because thenigatiion is
based on only the available modes. Furthermore,-X$6 applies
complementary cycles of slack distribution and wery, which
enables searching a broader space and finding mjptienized
solutions under the constraint imposed by the échinumber of
modes. As shown in Table 1, when number of modesdsced to
four, the ASG-VTS loses 1.55% energy in averagdenRVS and
EE-GLSA lose 7.3% and 13.1%, respectively. In tharsivcase
RVS and EE-GLSA lose as much as 28% (tgffl) an8%4tgff10)
respectively while ASG-VTS loses only 5.26% (tgff20his shows
that the result of continuous approaches, even aitutated
optimally, can not only lose its optimality aftdret mapping, but
also degrade significantly.

Sownown (S Sk AW | e o Esg[nsad&s(:sgin S %) 4 modes (savings %)
while ((slack> 0)and (S 0) ) benches|tosdedges| (15 | (19 [ASSVIS|EEGLSA| RVS |ASGVTS
selectr randomly fronS tgff 1| 8/9 71.05 | 69.63 | 69.89| 43.25| 41.6 | 66.67
i'fz(?ingga;%a)ra”“m number tgff 2| 26/43 | 26.79 | 27.1 | 27.69] 023 | 1.03 | 26.7
AM[ = - 1 tgff 3| 40/77 69.18 | 68.86 | 71.81| 64.72| 57.33 | 66.72
updateslack tgff4| 20/33 [ 12.99 | 12.6 | 12.74| 10.18| 11.18 | 11.83
S=S-{1} tgff 5| 40/77 17.14 | 19.15| 18.92 0.35 | 15.44 18
Figure 6. SLowpown function tgff 6| 20/26 1.61 | 159 | 154 | 1.17 | 1.41 | 153
tgff 7| 20/27 29.90 | 30.41 | 30.25 0.65 | 20.15 | 28.29
5 EXPERIMENTAL RESULTS tgffs 18/26 | 13.83 | 13.77 | 14.16| 12.84| 13.56 | 13.56
We compare our algorithm to EE-GLSA and RVS in terof igff 9| 16/15 24.85 | 19.31| 16.1 023 | 964 | 19.19
energy savings, runtime complexity and sensititétghe number of  |gff 100 16/21 | 35.77 | 35.08 | 35.38| 0.98 | 12.28 | 33.9
voltage modes. To the best of our knowledge, EE&B8d RVS  |tgff 11 30/29 | 16.96 | 16.83 | 15.49| 5.67 | 15.22 | 16.04
are the best published approaches both in termerédrmance and  |tgff 12 36/50 511 | 499 | 499 | 405 | 384 | 431
energy savings. EE-GLSA and ILP approaches [17]fdidhulate  |tgff 13 37/36 | 20.71 | 20.48 | 20.94| 10.5 | 17.66 | 19.37
the optimization problem for continuous voltage wes. In the  [toff 14 24/33 | 28.12 | 28.3 | 28.07| 19.42| 24.29 | 26.92
mode sensitivity comparisons of this section, we BE-GLSA as a  [tgff 15 40/63 | 4.15 | 43 | 447 | 393 | 4.02 4.3
representative for other continuous approachesmirtet al [15]  [toff 16 31/56 | 29.88 | 29.22| 29.8 | 17.43| 27.95 | 28.12
have presented the results of EE-GLSA on a seigbf-tieadline  [[9ff 17 29/56 | 22.20 | 21.4 | 21.97| 19.27| 20.29 | 20.76
benchmarks using a Pentium 111/750 MHz PC. We alsed the toff 18 12/15 | 23.44 | 22.74 | 22.45] 076 | 19.26 | 20.48
same set of benchmarks and a similar PC (PIIl/70dzMto lgif 19 14719 | 27.84 | 26.92 REHER 23.64| 23.53 R
tgff 200 19/25 | 52.30 | 47.9 | 50.69| 34.61| 41.48 | 45.43
produce the results of RVS and ASG-VTS. The seamidmn of
the Table 1 presents the characteristics of thehrearks in terms toff 21 _70/99 19.45 | 20.25 1 21.371 0.36 | 2.04 | 19.89
. tgff 22/100/135 29.10 | 33.66 | 34.45| 24.39| 32.49 | 33.14
of the number of tasks and edges in the task graphs tff 23 84/151| 23.20 | 26.18 | 25.08| 1.34 | 18.31 | 21.75
The first part of Table 1 (columns 3 to 5) shows #mergy saving |tgff 24 80/112| 853 | 10.02| 10.22| 0.22 | 3.01 | 7.81
results of EE-GLSA, using continuous voltage values well as  |tgff 25 49/92 20.16 | 23.85| 24.41| 0.65 | 15.14 | 20.28
that of RVS and ASG-VTS, using 30 fine-grained nshd&Ve Average 2537 | 2538 | 25.60 | 12.2 18.08 | 24.05

observed that using more than 30 modes does natumpthe
amount of energy savings any further. Note thaterwhiven 30
modes, all three algorithms achieve comparable ggneavings.
However as the number of modes is reduced theitilge start to
behave differently. Note that even for a small nembf modes,
exhaustive search is not a viable option. For eXanipr a system
with 20 tasks and four modes the number of possibtede
permutations is & or 10 Assuming the optimization algorithm
can process 1000 permutations per second, it &ke®ars to find
the optimal solution by exhaustively searchingehére space.

T The modes are generated by dividing the voltaggeanto 30 or 4 steps
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Table 1. Energy Savings of all algorithmsfor testbenches of [15]

Figure 7 shows the average energy saving compytegilying the
three algorithms to all of the benchmarks overedéht number of
modes. As shown, the energy saving achieved by X$6-using
four modes is achievable by RVS and EE-GLSA usinkgast ten
modes. This also shows that ASG-VTS can reducentimeber of
required modes without any significant energy |§$s55% on
average).

As mentioned earlier ASG-VTS searches a broaderesfma better
optimization. However, it runs faster than the othlgorithms. Our
heuristic in calculation of Slowdown Probability e@ion 4.1)
significantly helps reducing the number of iteradoin slack
distribution cycles. Furthermore, each iterationPABG-VTS has a



very low algorithm complexity partly because of olow cost

heuristic for task selection (Section 4.2). Theorégd worst case
execution time of EE-GLSA is 17.99 seconds whilat thf RVS

and ASG-VTS are 0.255s and 0.12s respectivelyrgsgnce of 30
voltage modes and on a similar machine). Therefé@G-VTS

runs 2.1 times faster than RVS, and 150 times rfasien EE-
GLSA. Since ASG-VTS has a very short run timesiidieal for the
inner-most loop of design explorations.

‘—0— ASG —8— RVS —&— EE-GLSA or other continuous methods

30
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Figure 7. Sensitivity of different algorithmsto the number of modes

Table 2. Energy Savings of AS-VTSalg. on E3S benchmarks[6]

Test benches No of tasks/edges| Saving (%) 30 mode|Saving (%) 4 mode
Consumer (Multimedid  27/24 63.9 62.6
Networking 31/21 33.24 32.7
Automotive 28/24 27.02 26.2

In addition to the above benchmarks, we ran ouinopation
algorithm on another set of publicly available Hemarks [6]
developed based on data from the Embedded Micrepsoc
Benchmark Consortium (EEMBC). The benchmarks descthe
application task graphs as well as a resource riibrBor each

application, we allocated a set of resources floerésource library

and mapped the tasks to them. Table 2 shows thaatkéstics of
benchmarks and the result of optimization. Aftedugng the
number of modes to four, the energy degradaticheflgorithm is
similar to the previous results.

We have developed a publicly available web interfir the ASG-
VTS optimization engine [18]. The users can upldle system
description file and run the optimizer to get thimized modes.

6 CONCLUSIONS

This paper presents a new technique callelhptive Stochastic
Gradient Voltage and Task Scheduling (ASG-VTS) that select
voltage modes for a set of dependent tasks mappeda t

heterogeneous system so that the energy consumptigstimized
and no real-time deadline is violated. Our algaonithas a low
complexity and produces highly energy efficientufesseven when
limited to few voltage modes. To achieve high epeafficiency, we
have developed a discrete stochastic heuristislémk distribution,
which is combined with iterative adjustment of tastrdering.
Whenever a local minimum is found, ASG-VTS perforsiack
recovery by stochastically reclaiming some of tlssigned slack

faster, respectively. Our algorithm is an ideal ichofor design
space exploration as well as mode exploration.
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