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ABSTRACT
Many high-level fault models have been proposed in the past
to perform verification at functional level, however high-level
automatic test pattern generators (ATPGs) are still in a pro-
totyping phase, while very efficient logic-level ATPGs are
available. This paper proposes a strategy to map high-level
faults into logic-level faults. Thus, functional verification,
based on a high-level fault model, can be performed by ex-
ploiting the capability of state of the art logic-level ATPGs.

Categories and Subject Descriptors: B.8.1 [Hardware]:
Testing

General Terms: Verification

Keywords: Fault models, Functional Verification

1. INTRODUCTION
More and more functional verification [5, 7] is adopted

to detect design errors exploiting coverage metrics [3, 11]
or high-level fault models. In particular, some high-level
fault models [4, 2] have been recently proposed to include
the characteristics of traditional coverage metrics [9] (e.g.,
statement, branch, condition coverage) and logic-level fault
models [1]. Such a confluence of coverage metrics and fault
models mainly depends on the consideration that hard to
detect or untestable high-level faults identify corner cases,
which can represent design errors [4]. The analysis of the
nature of high-level faults allows an effective verification of
the expected and unexpected behavior of the design, partic-
ularly when faults are directly injected into HDL code which
is very familiar to the designer. Whereas, designers would
have a very hard work to investigate about the nature of
untestable logic-level faults.

In the literature there are some papers [11, 2, 4] that try
to correlate high-level with logic-level faults. These works
show that test sequences generated to cover high-level faults
are also good test cases for detecting logic-level faults. How-
ever, high-level automatic test pattern generators are still in
a prototyping phase while very efficient logic-level ATPGs
have been developed in the past and ported into commercial
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tools [8, 13]. This paper proposes a strategy to efficiently
perform functional verification, based on high-level faults,
by exploiting the potentialities of state of the art logic-level
ATPGs. To accomplish the goal, four different approaches
for mapping high-level faults into logic-level faults are inves-
tigated and compared.

The proposed solution for mapping high-level faults into
logic-level faults allows, furthermore, to face the interesting
verification problem of providing an efficient and accurate
mapping technique to establish correspondence between be-
havioral/RT level signals and logic-level nets. In some cases
designers are interested in identifying which portion of the
logic-level implementation corresponds to a slice of the high-
level description. Possible motivations can be: reuse of parts
of the implementation, analysis of a design area, etc. For-
mal equivalence checkers are used to this purpose, however
they require a lot of resources in terms of time and memory.
In [10] an interesting fault simulation-based approach is pro-
posed. The authors exploit the fact that circuit diagnosis
provides an effective method for identifying a fault location
in the circuit. However, the work presents some limitations
which are avoided by our mapping strategy.

The paper is organized as follows: Section 2 describes the
adopted high-level fault model. Section 3 proposes and com-
pares four different approaches for mapping high-level faults
into logic-level faults. Section 4 describes how one of the
proposed fault mapping strategies allows to identify the cor-
respondence between RT/behavioral signals and logic-level
nets. Finally, experimental results are reported in Section 5.

2. HIGH-LEVEL FAULT MODEL
The high-level fault model adopted in the paper is the bit

coverage, which simulates under the single fault assumption:
Bit failures. Each occurrence of variables, constants, sig-
nals or ports is considered as a vector of bits. Each bit can
be stuck-at zero or stuck-at one.
Condition failures. Each condition can be stuck-at true
or stuck-at false, thus removing some execution paths in the
faulty representation.

Bit coverage is chosen since it is related to design errors [4,
7] and it unifies into a single metrics the well known metrics
concerning statements, branches and conditions coverage.
In addition, paths needed to activate and propagate faults
from inputs to outputs of the DUV are also covered. Finally,
bit coverage shows a high correlation between stuck-at faults
at different levels of abstraction [4].

Bit coverage faults are automatically injected into an RTL
DUV by using AMLETO [5]. It allows to inject faults in
VHDL code as well as in SystemC code. For simplicity, in
the sequel of this paper we explicitly refer to VHDL exam-
ples, but the methodology is actually independent from the
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adopted language. Fault injection is performed by inserting
saboteurs into the DUV. Every occurrence of signals, vari-
ables, constants and conditions of the high-level description
is replaced by an opportune bit coverage saboteur. We de-
fine a saboteur for every language type, i.e., bit, integer,
standard logic, boolean, etc. They are functions which
can supply the correct or the faulty value of the target ob-
ject depending on the value of a control signal. Faults are
enumerated starting from 0, and a bit vector-type port,
named fault, is added to the DUV. The number of ele-
ments of the fault port equals the number of faults. The
fault port drives the control signals of saboteurs. To acti-
vate the fault number i, fault[i] is fixed to ‘1’. Figure 1
shows the VHDL saboteur function for the bit data type.
Saboteurs for other data types are defined by converting
the target object to a sequence of bit and referring to the
bit case. In this way, changing the definition of the sabo-
teur for bit, the behavior of saboteurs for the other data
types changes accordingly. The first parameter of the sabo-
teur function, (object), is the target of the fault, while the
second (fault code) is the value of the fault port. Pa-
rameters start s0-1 and end s0-1 show the valid range for
fault code to activate the stuck-at 0-1 on the target object
(end s0-1 are useless for one-sized data types, e.g., bit and
boolean, since their value equals start s0-1, but they are
necessary for multi-sized data types).

The fault injection process generates a unique faulty de-
scription of the DUV that includes all bit coverage faults.
Figure 2 shows an example of fault-free and faulty VHDL de-
scriptions by using bit coverage saboteurs. It illustrates how
the faults are recursively inserted in complex statements as
an if-then-else statement. For example, to activate the
fault stuck-at 0 on the third bit of the integer signal rmax,
the signal fault[56] must be set to ‘1’, since the range for
faults stuck-at 0 on rmax is from 54 to 61. On the other hand,
to activate the fault stuck-at true on the if-then-else con-
dition the signal fault[73] must be set to ‘1’.

After fault injection, the fault list is optimized by remov-
ing equivalent faults and faults that are untestable without
being symptom of design errors (e.g., stuck-at 0 on con-
stants whose value is ‘0’) [6]. Such faults have not a cor-
responding logic-level stuck-at fault, since the synthesis re-
moves the parts of the functional description, where they
are injected in, to optimize the design. Remained faults can
be all mapped.

3. FAULT MAPPING
In past years, some very efficient logic level ATPGs have

been developed. A method to map high-level faults into
logic-level stuck-at faults is necessary to exploit the poten-
tialities of these ATPGs for detecting high-level bit coverage
faults. In the next subsections four different approaches are
proposed and compared.

3.1 Trivial Method
Given the logic-level network of the DUV and the cor-

responding fault list, the easier way to map a bit coverage
fault into a logic-level stuck-at fault consists of the following
naive approach:
for each bit coverage fault i do

for each element of fault port do fault[j] := ‘0’ if j �= i
set up logic-level ATPG
add Stuck-at 1 on fault[i]
run logic-level ATPG

function inject_fault_bit(object: bit; fault_code: bit_vector;
start_s0: integer; end_s0: integer; start_s1: integer;
end_s1: integer) return bit is

variable res: bit; begin
if (object=’0’) then res := fault_code(start_s1);
else res := NOT(fault_code(start_s0));
end if;
return res;

end;

Figure 1: Saboteur VHDL function for bit operands.

if (data in > rmax) then ack <= ’1’;

if (inject fault bool(inject fault integer(data in,fault,38,45,46,53)
> inject fault integer(rmax,fault,54,61,62,69),fault,70,70,71,71))
then ack <= inject fault bit(’1’, fault,72,72,73,73);

Figure 2: Fault-free and faulty VHDL code.

The saboteur functions activate or deactivate the related
faults accordingly to the value of the fault port. During
each ATPG session, all the elements but one (element i) of
the fault port are fixed to ‘0’, i.e., they are deactivated.
Then, the ATPG is forced to detect the stuck-at 1 on the
line fault[i]. Thus, for its nature, the ATPG compares
two instances of the design: one with a ‘0’ on fault[i] and
the other with a ‘1’ on the same position. In the first case all
bit coverage faults are deactivated, thus the design is fault-
free. Instead, in the second case, the bit coverage fault i is
activated. In this way, if the ATPG detects the logic-level
stuck-at 1 on fault[i], actually it detects the high-level bit
coverage fault i.

Unfortunately, this method is almost infeasible, since the
ATPG setup session is very time consuming. For each setup
session the ATPG needs to propagate the value of the fault
port elements fixed to ‘0’ to minimize the circuit logic before
starting test pattern generation. To avoid waste of time, a
unique setup phase is needed for all bit coverage faults. In
the next three methods the goal is obtained by removing the
fault port and the related saboteurs logic from the synthe-
sized faulty DUV.

3.2 Topological Method
Given a selected technology library, the synthesis process

maps each saboteur function call of the DUV into a network
of logic gates. By analyzing the synthesized design it is pos-
sible to identify the topology of the saboteur corresponding
to a bit coverage fault. Thus, the following algorithm allows
to use a logic-level ATPG to detect bit coverage faults:

for each bit coverage fault i do
identify the corresponding logic topology according

to the selected technology library
remove the topology and directly connect its input

line (object) and its output line (result)
if i is Stuck-at 0 or Stuck-at false

add Stuck-at 0 on the corresponding result line
else if i is Stuck-at 1 or Stuck-at true

add Stuck-at 1 on the corresponding result line
set up and run logic-level ATPG

In this way only one ATPG set up phase is necessary.
Moreover, the time it requires is exactly the same needed
for the fault-free design since the saboteur logic and the
fault port have been removed. The main problem of this
approach is represented by the identification of the sabo-
teur topology. For example, by using a simple technology
library composed of a NOT, a 2-inputs AND, a 2-inputs OR,
a LATCH and a FLIP FLOP, in the majority of cases the
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Figure 3: Topology of the bit saboteur.

if(inject fault bool(inject fault bit(line1,fault,890,890,891,891)
= inject fault bit(‘1’,fault,892,892,893,893),...))

Figure 4: VHDL faulty code with unrecognizable
saboteur topology.
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Figure 5: Logic-level representation of the code of
Figure 4.

saboteur topology appears as in Figure 3. A program has
been written to identify and remove each occurrence of the
saboteur topology from the synthesized faulty description of
the DUV. Unfortunately, the algorithm fails every time the
saboteur logic is minimized and mixed with the functional
logic of the DUV. In all such cases the topological mapping
between stuck-at faults and bit coverage faults is almost in-
feasible. Consider for example the VHDL code of Figure 4
and the corresponding logic-level circuit of Figure 5. It is ev-
ident that the topology of saboteurs for faults 890, 891 and
892 is not recognizable. Another problem can be observed
in Figure 5: the synthesis process can introduce fanouts on
the lines of the fault port. This can lead the mapping algo-
rithm to map one bit coverage fault into logic-level multiple
faults. However, multiple faults are not managed by tra-
ditional ATPG tools, thus removing the advantage of the
proposed approach.

3.3 Implication Method
The behavior of the saboteur logic, rather than its topol-

ogy, can be analyzed to map bit-coverage faults into logic-
level faults. The activation of a bit coverage fault allows
to identify which nets are directly influenced by the fault.
Consider the following algorithm:

for each bit coverage fault i do
do not drive input lines of the DUV and propagate,
through circuit, ‘0’ on fault[j] if j �= i and ‘1’ on fault[i]
until a gate G is reached whose output logic value,

depending on fault[i], cannot be fully determined
for every such a gate G do

for every input L of G depending on fault[i] do
if the value of L is ‘0’ add stuck-at 0 on L
else if the value of L is ‘1’ add stuck-at 1 on L

for each element k of fault port do fault[k] := ‘0’
set up and run logic-level ATPG

Faults mapping is performed by computing implications
of the fault port elements. This approach avoids the neces-
sity of identifying the saboteur topology, however, it does
not resolve the problem of fanouts described in Section 3.2.
For example, consider the circuit of Figure 5 and the bit
coverage fault 890. According to the previous algorithm,
‘0’ is propagated on fault[891] and fault[892] and ‘1’ is
propagated on fault[890], while line1 and n847 are not

function inject_fault_dummy
(object: bit; fault_index_s0: bit; fault_index_s1: bit)
-- pragma map to entity inject_fault_dummy_entity
-- pragma return_port_name result
return bit is
return object;

end;

Figure 6: Saboteur VHDL dummy function.

function inject_fault_bit(object: bit; fault_code: bit_vector;
start_s0: integer; end_s0: integer; start_s1: integer;
end_s1: integer) return bit is begin
return inject_fault_dummy(object,

fault_code(start_s0), fault_code(start_s1));
end;

Figure 7: Saboteur VHDL function for black box
mapping.

xlogic1

fault[892]

fault[891]

fault[890]

line1

fault[893] inject fault
dummy entity

inject fault
dummy entity

Figure 8: Logic-level representation of the code of
Figure 4 by using the inject fault dummy entity.

driven. Computing the value for all nets of the circuit, we
obtain that: A=‘1’, B=‘1’, C=‘0’, D=‘0’, E=‘0’, F=‘1’, G=‘1’,
H=‘0’, I=‘1’, L=‘0’, M=‘X’, N=‘X’. The values of M and N
cannot be determined, since they depend respectively on
the value of (‘1’ AND line1) and (‘0’ OR M). Thus, the bit
coverage fault 890 corresponds to the multiple logic-level
fault (stuck-at 0 on L, stuck-at 1 on I). The implica-
tions for faults 891 and 892 can be computed in a similar
way. The fault 891 is mapped to the pair (stuck-at 1 on

H, stuck-at 1 on I) and the fault 892 is mapped to the
pair (stuck-at 1 on H, stuck-at 0 on M).

3.4 Black Box Method
To avoid the disadvantages of the last two methods, the

synthesis of the faulty DUV should not minimize the logic of
saboteur functions into the functional logic of the DUV. Ac-
tually, the saboteur logic is useless for the logic-level ATPG,
since we force it to detect logic-level stuck-at faults which
are internally modeled by the ATPG. The correspondence
between logic-level and bit coverage faults is based only on
the position of the logic-level net affected by the saboteur.
Thus, saboteur functions can be considered as black boxes
with an activation signal for stuck-at 0, an activation signal
for stuck-at 1, a fault-free input and a faulty output.

A state of the art synthesis tool [12] allows to map a
function into a corresponding design entity, which is con-
sidered as a basic component of the selected technology li-
brary. Thus, a “dummy” saboteur function is defined (Fig-
ure 6); during synthesis it is mapped into a “dummy” en-
tity which acts as a black box. The bit saboteur is modi-
fied (Figure 7) in order to use the dummy saboteur. This
is a placeholder which simply assigns input to output; the
same operation is performed by the corresponding entity.
By using the dummy saboteur, the synthesized faulty de-
sign behaves exactly how the fault-free design does. How-
ever, after synthesis, a stuck-at 0 (1) on the output of an
instance of the dummy entity corresponds to the bit cover-
age fault indicated by the name of the signal assigned to the
fault index s0 (fault index s1) port. Thus, the sabo-
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Design Gates# FF# BC# Tr. Top. Impl. BB Synthesis Time F.C.% ATPG Time

b01 54 5 201 201 122 175 201 42 s. 100.0 8 s.
b02 26 4 56 56 30 49 56 19 s. 98.2 4 s.
b04 584 66 408 408 214 394 408 38 s. 87.7 42 s.
b06 53 9 133 133 80 118 133 34 s. 100.0 4 s.

am2910 1400 124 3608 3608 1468 3519 3608 655 s. 93.6 3158 s.

Table 1: Experimental results.

teur logic is removed and each bit coverage fault is mapped
to a single logic-level stuck-at fault. Consider the example of
Figure 4 and the corresponding logic-level circuit obtained
by using the black box method (Figure 8). The two instances
of inject fault dummy entity are not minimized with the
functional logic of the DUV and the fanouts on fault port
lines disappeared. To use a logic-level ATPG for testing bit
coverage fault the following algorithm can be applied:

for each bit coverage fault i do
search inject fault dummy entity connected to fault[i]
if i is Stuck-at 0 or false add Stuck-at 0 on the output of

inject fault dummy entity
elsif i is Stuck-at 1 or true add Stuck-at 1 on the output of

inject fault dummy entity
set up and run logic-level ATPG

4. DESIGN MAPPING
The black box method described in the previous section

allows to map signals of a high-level description to the cor-
responding nets of the logic-level implementation. In partic-
ular it supplies a unique net for every signal. In fact, given a
signal occurrence of the RT/behavioral level description, the
output line of the instance of the inject fault dummy entity

related to the fault affecting the signal is the desired net.
The strategy proposed in [10] works in a similar way. The

authors introduce a stuck-at fault at the signal of interest in
the RTL description. Then, they simulate the faulty RTL
description to generate the responses for a selected test-
bench. Lastly, they propose to use a fault diagnosis en-
gine for looking at these faulty responses and the original
fault-free logic-level implementation to identify the desired
logic-level net. However, this approach presents two main
limitations: (1) The mapping succeeds only for signals re-
lated to detectable faults. Thus, low testable circuits rep-
resent a problem. (2) If a fault on signal S1 is equivalent
to a fault on signal S2 the mapping could be not able to
distinguish between the net corresponding to S1 from the
net corresponding to S2. This problem is particularly acute
when both stuck-at 0 and stuck-at 1 on S1 are equivalent to
stuck-at 0 and stuck-at 1 on S2. In such cases the technique
supplies more than one nets for the selected RTL signal.

The black box method overcomes the previous limitations
since: (1) inject fault dummy entity can be inserted both
for detectable and undetectable faults. No information re-
lated to the testability of circuit are required for signal to
net mapping. (2) Equivalent faults correspond to well dis-
tinguished inject fault dummy entity instances. Then, no
ambiguities can arise to discriminate different signals af-
fected by equivalent faults.

The time required by the black box method to provide the
pair (RT/behavioral signal, logic-level net) is the synthesis
time. Given a signal occurrence and the related bit-coverage
fault it is extremely easy finding the corresponding instance
of inject fault dummy entity in the synthesized design: it
is the only instance connected to the line fault[i].

5. EXPERIMENTAL RESULTS
Experimental results, performed on a workstation Sun-

Fire-280R equipped with 4GB of RAM, are reported in Ta-
ble 1. Columns 2-4 show respectively the number of gates,
memory elements and injected bit coverage faults. Columns
5-8 show how many bit coverage faults are mapped into
logic-level faults by using the four methods investigated in
Section 3. It is evident that both trivial and black box meth-
ods are able to map every bit coverage fault into a logic-level
fault. However, as explained in Section 3, the first method
is inapplicable in order to use a logic-level ATPG to detect
such mapped faults, since the required ATPG setup time
is unacceptable. On the contrary, the black box approach
allows to efficiently exploit the potentialities of a logic-level
ATPG as reported in the last three columns, which report
respectively the black box mapping time (indeed, it is the
time required by the synthesis process), the achieved fault
coverage and the ATPG time by using the algorithm pro-
posed in Section 3.4.
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