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Abstract 
Memory accesses can account for about half of a microprocessor 
system’s power consumption. Customizing a microprocessor 
cache’s total size, line size and associativity to a particular 
program is well known to have tremendous benefits for 
performance and power. Customizing caches has until recently 
been restricted to core-based flows, in which a new chip will be 
fabricated. However, several configurable cache architectures 
have been proposed recently for use in pre-fabricated 
microprocessor platforms. Tuning those caches to a program is 
still however a cumbersome task left for designers, assisted in part 
by recent computer-aided design (CAD) tuning aids. We propose 
to move that CAD on-chip, which can greatly increase the 
acceptance of configurable caches. We introduce on-chip 
hardware implementing an efficient cache tuning heuristic that can 
automatically, transparently, and dynamically tune the cache to an 
executing program. We carefully designed the heuristic to avoid 
any cache flushing, since flushing is power and performance 
costly. By simulating numerous Powerstone and MediaBench 
benchmarks, we show that such a dynamic self-tuning cache can 
reduce memory-access energy by 45% to 55% on average, and as 
much as 97%, compared with a four-way set-associative base 
cache, completely transparently to the programmer.  

Keywords 
Cache, configurable, architecture tuning, low power, low energy, 
embedded systems, on-chip CAD, dynamic optimization. 

1. Introduction 
Using a prefabricated microprocessor platform in an embedded 
system product provides strong time-to-market advantages over 
fabricating an application-specific integrated circuit (ASIC). With 
on-chip configurable logic available on many platforms today, the 
attractiveness of prefabricated platforms over ASICs expands to 
even more situations. A drawback of a prefabricated platform is 
that key architectural features, such as cache size, cannot be 
synthesized such that they are tuned to the application. While 
microprocessor manufacturers could previously provide a variety 
of prefabricated ICs spanning the continuum of desired 
architectures, providing such variety becomes increasingly difficult 
as microprocessors coexist with numerous other coprocessors, 
configurable logic, peripherals, etc., in today’s era of system-on-a-
chip platforms. 

A solution is for key architectural features to be designed with 
built-in configurability, enabling designers to configure those 
features to a particular application. Motorola’s M*CORE designers 
[6] incorporated a configurable unified set-associative cache whose 
four ways could be individually shutdown to reduce dynamic 
power during cache accesses. We have designed a highly 
configurable cache [13][14] with three parameters that designers 
can configure: total size (8, 4 or 2 Kbytes), associativity (4, 2, or 1-
way for 8 Kbytes, 2 or 1-way for 4 Kbytes, and 1-way only for 2 

Kbytes), and line size (64, 32 or 16 bytes). The benefits of 
optimally tuning a cache is quite significant, resulting in an 
average of over 40% savings for Powerstone [6] and MediaBench 
[5] benchmarks, and up to 70% on certain benchmarks.   

Tuning is presently a cumbersome task imposed on the 
designer, who in most cases must manually determine the best 
configuration. A designer can use simulation to determine the best 
cache parameters, but such simulation is often cumbersome to 
setup. Simulations can also be extremely slow, requiring tens of 
hours or days to simulate just seconds of an application, and 
represents an extra step in the designer’s tool flow. Furthermore, 
simulating an application typically uses a fixed set of input data 
during execution. Such a simulation approach cannot capture 
actual runtime behavior where the data changes dynamically. 
Recently, some design automation aids have evolved to assist the 
designer in the tuning task [4]. While tuning fits into existing 
hardware design flows reasonably well, such simulation-based 
tuning does not fit in well with standard, well-established 
embedded software design flows, which instead primarily consist 
of compile, download and execute.  

Several researchers have proposed dynamically tuning cache 
parameters. Veidenbaum [10] used an adaptive strategy to adjust 
cache line size dynamically to an application. Albonesi [1] 
proposed dynamically turning off the cache ways to reduce 
dynamic energy dissipation. Balasubramonian [2] dynamically 
detects the phase change of an application and configures the 
hierarchy of the caches to improve the memory hierarchy 
performance and therefore reduce dynamic energy dissipation. 
However, these dynamic strategies each manipulate only one cache 
parameter, like cache line size, cache size, and cache hierarchy. 
Based on monitoring some predetermined criteria, such as cache 
miss rate and memory-to-L1 cache data traffic volume in [10], the 
instruction per cycle (IPC) in [1], and miss rate, IPC, and branch 
frequency in [2], these dynamic strategies increase/decrease or turn 
on/off the single aspect of the cache that is tunable. 

In our work, we tune four cache parameters: cache line size 
(64, 32 or 16 bytes), cache size (8, 4 or 2 Kbytes), associativity (4, 
2, or 1-way for 8 Kbytes, 2 or 1-way for 4 Kbytes, and 1-way only 
for 2 Kbytes), and cache way prediction (on or off). The space of 
configurations is much larger, and hence we propose a method of 
dynamically tuning the cache in a very efficient manner. Our 
method uses some additional on-chip hardware that dynamically 
tunes our configurable cache to an executing program. The tuning 
could be applied using different approaches, perhaps being applied 
only during a special software-selected tuning mode, during the 
startup of a task, whenever a program phase change is detected, or 
at fixed time periods. The choice of approach is orthogonal to the 
design of the self-tuning architecture itself.  

The paper is organized as follows. We briefly describe energy 
evaluation in Section 2. In Section 3, we describe our self-tuning 
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strategy involving a search heuristic. We provide the results of our 
search heuristic in Section 4. We conclude in Section 5. 

2. Energy evaluation 
Power dissipation in CMOS circuits is comprised of two main 
components, static power dissipation due to leakage current, and 
dynamic power dissipation due to logic switching current and the 
charging and discharging of the load capacitance. Energy equals 
power times time. Dynamic energy consumption causes most of 
the total energy dissipation in micrometer-scale technologies, but 
static energy dissipation will contribute an increasingly larger 
portion of total energy dissipation in nanometer-scale technologies. 
Therefore, we consider both types of energies. 

We should not disregard energy consumption due to accessing 
off-chip memory, since fetching instructions and data from off-
chip memory is energy costly because of the high off-chip 
capacitance and large off-chip memory storage. Additionally, 
when accessing the off-chip memory, the microprocessor may stall 
while waiting for the instruction and/or data, and such waiting still 
consumes some energy. Thus, we calculate the total energy due to 
memory accesses using Equation 1. Furthermore, we compute 
energy dissipation of the cache tuner using Equation 2. 

We simulated numerous Powerstone [6] and MediaBench [5] 
benchmarks using SimpleScalar [3], a cycle-accurate simulator that 
includes a MIPS-like microprocessor model, to obtain total cache 
accesses, CacheTotal, and cache misses, CacheMisses, for each 
benchmark. We obtain the energy of a cache hit, Ehit, from our own 
CMOS 0.18 µm layout of our configurable cache (we found our 
energy values correspond closely with CACTI [9] values). We 
obtain the off-chip memory access energy, Eoff_chip_access, from a 
standard Samsung memory, and the stall energy, EuP_stall, from a 
0.18 µm MIPS microprocessor. Our total energy, Etotal, captures all 
energy related to memory accesses, which is the value of interest 
when configuring the cache. Furthermore, we obtained the power 
consumed by our cache tuner, which we will describe later, 
through simulation of a synthesized version of our cache tuner 
written in VHDL. From the simulation, we also obtained the time 
required by the tuner to search the cache configurations. 

3. Self-tuning strategy 
3.1 Problem overview 
Given the many different possible configurations of our cache, our 
goal is to automatically tune a configurable cache dynamically as 
an application executes, thus eliminating the need for tuning via 
simulation or manual platform configuration and measurement. We 
accomplish this using a small amount of additional hardware, as 
shown in Figure 1, that can be enabled and disabled by software. 
Our goal is for the tuning process and the required additional 

hardware to be as efficient as possible in terms of the size, power, 
and performance. 

A naive tuning approach exhaustively tries all possible cache 
configurations, in some arbitrary order. For each configuration, the 
approach measures the cache miss rate and estimates a 
configuration’s energy from this miss rate. After trying all 
configurations, the approach selects the lowest energy 
configuration seen. Such an exhaustive approach has two main 
drawbacks. First, an exhaustive search method may involve too 
many configurations. While our configurable cache has 27 
configurations, increasing the number of values of each parameter 
could easily result in over 100 configurations. Consider also that 
many other components within the system may have configurable 
settings as well – such as a second level of cache, a bus, and even 
the microprocessor itself. If we tune our system by considering all 
possible configurations, the number of configurations of our cache 
multiplies the configuration numbers for other components, 
quickly reaching millions of possible configurations (e.g., 
100x100x100= 1,000,000). Thus, we need an approach that 
minimizes the number of configurations examined. The second 
drawback is that the naive approach may require too many cache 
flushes. Searching the cache configurations in an arbitrary order 
may require flushing the cache after each configuration to ensure 
correct cache behavior, which is very time and power costly. 
Without flushing, the new configuration could have items in the 
wrong places, yielding incorrect results. 

Therefore, we want to develop a tuning heuristic that 
minimizes the number of cache configurations examined and 
minimizes or eliminates cache flushing, while still finding a near-
optimal cache configuration. 

3.2 Heuristic Development through Analysis 
From Equation 1, the total energy consumption of memory 
accesses is comprised of two main elements, specifically the 
energy dissipated by on-chip cache, which includes dynamic cache 
access energy and static energy, and the energy consumed by off-
chip memory accesses. Figure 2 provides the energy dissipation of 
on-chip cache, off-chip memory, and total memory energy 
dissipation for the benchmark parser from Spec 2000 [12]. When 
the cache size is increased from 1 Kbyte to 1 Mbyte, the miss rate 
(not shown due to space limits) dramatically decreases, which 
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Equation 1: Equations for calculating total energy due 
to memory accesses. 

 
 
 
 
 

Figure 1: Self-tuning cache architecture. 
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consumption of the heuristic cache tuner. 

0

1

2

3

4

5

1K
B

2K
B

4K
B

8K
B

16
K

B

32
K

B

64
K

B

12
8K

B

25
6K

B

51
2K

B

1M
B

Cache Size

En
er

gy
(J

)

Cache Memory Total

 
Figure 2: Energy dissipation of on-chip cache, off-chip memory and 

the total for benchmark parser at cache size from 1 Kbyte to 1 Mbyte. 
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results in a decrease in off-chip memory accesses and a decrease in 
off-chip memory energy consumption. As shown in Figure 2, 
while the energy dissipation of off-chip memory decreases rapidly 
as we increase the cache size from 1 Kbyte to 16 Kbytes, as we 
further increase the cache size, the energy consumption of off-chip 
memory decreases very little. However, the energy dissipated by 
the on-chip cache continues to increase as the cache size increases. 
Therefore, the increase in on-chip cache energy dissipation will 
eventually outweigh the decrease in energy of the off-chip 
memory. For the benchmark parser, this turning point is at a cache 
size of 16 Kbytes, at which increasing the cache size will not 
improve performance greatly but will increase energy dissipation 
significantly. Unfortunately, this tradeoff point is different for 
every application, and such tradeoffs exist not only for cache size, 
but also for cache associativity and line size. For example, for 
many applications, when associativity is increased from 4-way to 
8-way, the performance improvement is very limited, but the 
energy dissipation is greatly increased because more data and tag 
ways are accessed concurrently. Therefore, in developing our 
searching heuristic to find the best cache configuration, for each 
possible cache parameter we attempt to iteratively adjust each 
parameter, with the goal of increasing cache performance, as long 
as a decrease in total energy dissipation is observed. 

To help us develop the heuristic for efficiently searching the 
configuration space, we first analyzed each parameter – cache size, 
associativity, line size, and way prediction – to determine their 
impacts on miss rate and energy. The parameter with the greatest 
impact would likely be the best to configure first. We executed 13 
of Motorola’s Powerstone benchmarks [6] and 6 MediaBench 
benchmarks [5] for all 27 possible cache configurations. Although 
there are 3 cache parameters each with 3 possible values, and way 
prediction as on or off, there are less than 3*3*3*2=54 
configurations, because not all configurations are possible – size is 
decreased by shutting down ways, so a 4-way 2 Kbyte cache is not 
possible, for example. A common way to evaluate the impact of 
several variables is to fix some variables and vary the others. We 
therefore fix three parameters and vary the fourth.  

Figure 3 shows the average instruction miss rate of all the 
benchmarks simulated and the average energy consumption of the 
instruction cache for the examined configurations. Figure 4 shows 
the average data miss rate of all the benchmarks simulated and the 
average energy consumption of the data cache. Total cache sizes 
are shown as 8 Kbytes, 4 Kbytes, and 2 Kbytes, line sizes as 16 
bytes, 32 bytes, and 64 bytes, and associativity as 1-way, 2-way, 
and 4-way. The energy dissipation for way prediction isn’t shown, 
as way prediction doesn’t impact miss rate.  

By looking at the varying bar heights in each group of bars, we 
see in general that total cache size has the biggest average impact 
on energy and miss rate – changing cache size can impact energy 
by a factor of two or more. By looking at the difference in the 
same shaded bars for different line sizes, we notice very little 
energy variation for different instruction cache line size. However, 
we do see more variation in data cache energy due to line size, 
especially for a 2 Kbyte cache. This result is not surprising, since 
data addresses tend not to have as strong of a spatial locality 
compared with instruction addresses. Finally, by examining the 
same shaded bars for different associativity, we notice very little 
change in energy consumption, indicating that associativity has a 
smaller impact on energy consumption than either cache size or 
line size. From our analysis, we developed a search heuristic that 
finds the best cache size first, determines the best line size, 
determines the best associativity, and finally if the best 
associativity is more than one, our heuristic determines whether to 
use way prediction.  

3.3 Minimizing Cache Flushing 
In the previous section, we determined a heuristic order in which to 
vary the parameters. However, the order in which we vary the 
values of each parameter also matters – one order may require 
cache flushing and/or incur extra misses, while a different order 
may not. 

For cache size, starting with the smallest cache and increasing 
the size is preferable over decreasing the size. We’ll illustrate the 
concept using a trivially small 8 byte memory for simplicity. 
Figure 5 illustrates an 8 byte memory, a 4 byte cache configured as 
1-way and 2-way, and a 2 byte 1-way cache. When decreasing the 
cache size from 4 bytes to 2 bytes as shown in Figure 5(b) and (c), 
an original hit may turn into a miss after the cache entries are 
shutdown. For example, addresses 000 (index=00, tag=00) and 110 
(index=10, tag=11) are both hits before shutdown, but will be 
mapped to the same block indexed by 0, resulting in a miss. While 
the width of the tag is fixed (in this example the tag is two bits 
wide), the width of the index changes as the cache’s configuration 
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Figure 3:Average instruction cache miss rate (top) and 

normalized instruction fetch energy (bottom) of the benchmarks. 
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Figure 4: Average data cache miss rate (top) and normalized 

data fetch energy (bottom) of the benchmarks. 
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does. For data cache, we have to write back such items when the 
data in the shutdown ways is dirty. Such flushing is expensive in 
terms of power and time.  

Alternatively, increasing the cache size does not require 
flushing. For example, before the cache size is increased, addresses 
100 and 010 are mapped to the cache block indexed at 0. After the 
cache size is increased, the address 100 will be mapped to index 
00, and the address 010 will be mapped to index 10, so there may 
be an extra miss. However, no write back is necessary in this case, 
and we thus avoid flushing.  

For associativity, increasing associativity is preferable over 
decreasing, as shown in Figure 5(a) and (b). When associativity is 
increased, there will be no extra misses or errors incurred, because 
more ways are activated to read the data. For example, if addresses 
000 and 010 are both hits before the increase of the associativity, 
then both addresses will still be hits after the associativity is 
increased. However, decreasing the associativity may turn a hit 
into a miss, increasing the miss rate. In either case, the cache does 
not need to flush the data and no errors will occur if we design the 
configurable cache to always check the full tag, instead of reducing 
the tag to one bit in the direct mapped case. Furthermore, reducing 
the cache’s tag to two bits when configured as a direct mapped 
cache yields no significant power advantage, and therefore, 
checking the full tag is reasonable. 

In determining the best line size, increasing or decreasing the 
line size will result in the same behavior, since we use a physical 
line size of 16 bytes. Therefore, no extra misses will occur and no 
flushing is needed.  

We only use way prediction in a set associative cache. The 
accuracy of way prediction depends on each application. 
Generally, prediction accuracy for a set associative instruction 
cache is around 90% and around 70% for a data cache [8]. An 
incorrect prediction will incur extra energy dissipation and an extra 
cycle to read the data.  

3.4 Search Heuristic 
Based on the above analyses, we use a heuristic to search for the 
best cache parameters. The inputs to the heuristic are: 

• Cache size: C[i], 1≤ i ≤ n, n is the number of possible 
cache size; n=3 in our configurable cache, where C[1] = 
2 Kbyte, C[2] = 4 Kbyte, and C[3] = 8 Kbyte;  

• Cache associativity: A[j], 1 ≤ j ≤ m, m is the number of 
possible cache associativities; m=3 in our configurable 
cache, where A[1] = 1 way, A[2] = 2 ways, and A[3] = 
4 ways;  

• Cache line size: L[k], 1 ≤ k ≤ p, p is the number of 
possible cache line sizes; p=3 in our configurable cache, 
where L[1] = 16 bytes, L[2] = 32 bytes, and L[3] = 64 
bytes; and 

• Way prediction: W[1] = off, W[2]= on.  
Figure 6 provides psuedocode for our search heuristic, which 

we use to determine the best cache configuration. Our heuristic 
starts with a 2 Kbyte direct-mapped cache where the line size is 16 
bytes. We then gradually increase the total cache size to our largest 
possible size of 8 Kbytes as long as increasing the size of the cache 
results in a decrease in total energy. After determining the best 
cache size, we begin increasing the line size from 16 bytes to 32 
bytes and finally 64 bytes. Once again, as we increase the line size 
of the cache, if we do not notice a decrease in energy consumption, 
we choose the best line size configuration we have seen so far. 
Similarly, we then determine the best associativity by gradually 
increasing the associativity until we see no further improvement in 
energy consumption. Finally, we determine if enabling way 
prediction results in any energy savings.  

While our search heuristic is scalable to larger caches, which 
have more possible settings for cache size, line size, and 
associativity, we have not analyzed the accuracy of our heuristic 
with larger caches but plan to do so as future work.  

We can describe the efficiency of our search heuristic as 
follows. Suppose there are n configurable parameters, and each 
parameter has m values, then there are a total of mn different 
combinations, assuming the m values of the n parameters are 
independent. However, our heuristic only searches m*n 
combinations at most. Suppose we have 10 parameters of which 
each has 10 values. Brute force searching searches 10,000,000,000 
combinations, while the heuristic searches 100 instead.  

We can also use the heuristic to search through a multilevel 
cache memory system. Suppose we have 16 Kbyte 8-way 
instruction and data caches with line sizes of 8, 16, 32, and 64 
bytes. Suppose there is also a second level unified L2 cache, which 
is a 256 Kbyte 8-way cache with a line size of 64, 128, 256, and 

 
 
 
 
 
 
 
 
 

Figure 5: Cache flush analysis when changing cache 
associativity and cache size. Tag is always two-bits wide. 

Address space in memory will be mapped to the cache with 
the same pattern. 

Cache Tuning Heuristic Algorithm 
Input: cache size: C[i], cache associativity: A[i], cache 
line size: L[j], way prediction: W[1] = off ,W[2]= on 
Output: the best Cache size C, associativity A, line size L 
and way prediction status 

begin: A = A[1], L = L[1], W = W[1], E[0] = 0    
        for i =1 to n do  
               energy calculation using Equation 1: 
                     E[i] = f(C[i],A,L,W) 
               if E[i]<E[i-1] break 
         end 
         Cbest= C[i],E[1] = E[i] 
         for j =2 to p do  
               energy calculation using Equation 1: 
                     E [j] = f (Cbest , A, L[j], W) 
               if E [j]<E [j-1] break 
         end 
         Lbest= L[j],E[i] = E[j]  
         for k = 2 to m do  
               energy calculation using Equation 1: 
                     E[k] = f(Cbest, A[k] , Lbest , W) 
              if E[k]<E[k-1]  break 
         end 
         Abest= A[k], E[0]=E[k] 
         if Abest = 1 then 
             Wbest  = W[1] 
         else 
             W = W[2] 
             if E[1] = f(Cbest, Abest , Lbest , W) <E[0] then  

Wbest = W[2] 
output: Cbest, Abest , Lbest, Wbest. 

 
Figure 6: Search heuristic for determining the best cache 

configuration. 
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512 bytes. The total solution space is 40*40*40 = 64000. 
However, by using our heuristic, we search 10+10+10 = 30 
combinations at most.   

3.5 Implementing the Heuristic in Hardware 
We could implement our cache tuning heuristic in either software 
or hardware. In a software-based approach, the system processor 
would execute the search heuristic. Executing the heuristic on the 
system processor would not only change the runtime behavior of 
the application but also affect the cache behavior, possibly 
resulting in the search heuristic choosing a non-optimal cache 
configuration. Therefore, we prefer a hardware-based approach 
that does not significantly impact overall area or power. 

Implementing the search heuristic in hardware is achieved 
using a simple state machine controlling a simple datapath, shown 
in Figure 7. In the datapath, there are eighteen registers. We use 
three of the registers to collect runtime information, the total 
number of cache hits and misses, and the total cycles. Six 
additional registers store the cache hit energy per cache access, 
which correspond to 8 Kbytes 4-way, 2-way, and 1-way; 4 Kbytes 
2-way and 1-way; and 2 Kbytes 1-way configurations. The 
physical line size is 16 bytes, so the cache hit energy for different 
cache line sizes is the same. We use three registers to store the 
miss energy, which corresponds to line sizes of 16 bytes, 32 bytes, 
and 64 bytes respectively. Because static power dissipation 
depends on the cache size only, we use three more registers to 
store the static power dissipation corresponding to 8 Kbyte, 4 
Kbyte, and 2 Kbyte caches, respectively. All fifteen registers are 
16 bits wide. We also need one register to hold the result of energy 
calculations and another register to hold the lowest energy of the 
cache configuration tested. Both of these registers are 32 bits wide. 
The last register is the configure register that is used to configure 
the cache. We have four cache parameters to configure, where 
cache size, line size and associativity have three possible values, 
and prediction can either be on or off. Therefore, the configure 
register is seven bits wide. The FSM controls the datapath using 
the signal “control” and the output of the comparator within the 
datapath is an input to the FSM.  

Figure 8 shows the FSM of the cache tuner composed of three 
smaller state machines. The first state machine is for cache 
parameters, which we will refer to as the parameter state machine 
(PSM). The first state of the PSM is the start state, which has to 
wait for the start signal to start the cache tuning. The second state, 
state P1, is for tuning the cache size, where the best cache size is 
determined in this state. The other states P2, P3, and P4 are for 

cache line size, cache associativity, and way prediction, 
respectively. The second state machine determines the energy 
dissipation for the many possible values of each cache parameter. 
We will refer to this state machine as the value state machine 
(VSM). The highest possible value of these cache parameters is 
three, so we use four states in the VSM. If the current state of PSM 
is P1, corresponding to determining the best cache size, the second 
state of the VSM will determine the energy of a 2 Kbyte cache; the 
third state, V2, is for a 4 Kbyte cache, and V3 is for an 8 Kbyte 
cache. The first state, V0, is an interface state between PSM and 
VSM. If the PSM is P2, which is for line size tuning, then the 
second state of the VSM, V1, is for a line size of 16 bytes, the third 
state of VSM, V2, is for a line size of 32 bytes, and the last state, 
V3, is for a line size of 64 bytes. We also need the third state 
machine to control the calculation of the energy. Because we have 
three multiplications, and only one multiplier, we use a state 
machine that has four states to compute the energy. We call this 
state machine the calculate state machine (CSM). The first state is 
also an interface state between VSM and CSM. 

In Figure 8, the solid lines show state transitions in the three 
state machines, respectively. The PSM states, P1, P2, P3, and P4 
depend on VSM, although only P2 to V0 is drawn. In the same 
way, VSM states, V1, V2, and V3 depend on CSM, but only 
dependence of V2 on C0 is drawn. 

4.  Experiments 
Table 1 show the results of our search heuristic, for instruction and 
data cache configurations. Our search heuristic only searches on 
average 5.8 configurations compared to 27 configurations that an 
exhaustive approach would analyze, and involves no cache 
flushing. Furthermore, the heuristic finds the optimal configuration 
in nearly all cases. For the two data cache configurations where the 
heuristic doesn’t find the optimal, pjpeg and mpeg2, the 
configuration found is only 5% and 12% worse than the optimal, 
respectively. Additionally, our results demonstrate that way 
prediction is only beneficial for instruction caches and that only a 
4-way set associative instruction cache has lower energy 
consumption when way prediction is used. In general, way 
prediction is beneficial when considering a set associative cache. 
However, for the benchmarks we examined, the cache 
configurations with the lowest energy dissipation were mostly 
direct mapped caches where way prediction is not applicable.  

For the benchmarks mpeg2 and pjpeg, our heuristic search 
does not choose the optimal cache configuration. The optimal data 
cache configuration of mpeg2 is an 8 Kbyte 2-way set associative 
cache with a line size of 16 bytes. However, the heuristic selects a 
4 Kbyte 2-way set associative cache with a line size of 16 bytes. 
For a direct mapped cache with a line size of 16 bytes, the miss 
rate of the data cache for mpeg2 is 3.29% using a 2 Kbyte cache, 
0.82% using a 4 Kbyte cache, and 0.58% using a 8 Kbyte cache. 
By increasing the cache size from 2 Kbytes to 4 Kbytes, we 
achieve a 4X miss rate reduction. By increasing the cache size 
further to 8 Kbytes, we only achieve a further reduction in miss 
rate of 1.4X. Larger caches consume more dynamic and static 
energy. Hence, a larger cache is only preferable if the improved 
miss rate results in large enough reduction in energy consumption 
in the off-chip memory to overcome the increased energy 
consumption of the larger cache. For mpeg2, the reduced miss rate 
achieved using an 8 Kbyte cache is not large enough to overcome 
the added energy consumed by the cache itself and we therefore 
select a cache size of 4 Kbytes. When cache associativity is 
considered, the miss rate of the 8 Kbyte cache is significantly 
reduced when the associativity is increased from direct mapped to 
2 way set associative, which results in a 5X reduction in miss rate. 

 
 
 
 
 
 

Figure 7: FSMD of the cache tuner 

 
 
 
 
 

Figure 8: FSM of the cache tuner. 
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When our heuristic is determining the best cache size, the heuristic 
does not predict what will happen when associativity is increased. 
Therefore, the heuristic did not choose the optimal cache 
configurations in the cases of mpeg2 and pjpeg. 

We also developed and compared several other search 
heuristics. One particular search heuristic searched in the order of 
line size, associativity, way prediction and cache size. This 
heuristic did not find the optimal configuration in 11 out of 18 
examples for the instruction cache and in 7 out of 18 examples for 
the data cache. For both caches, the sub-optimal configurations 
consumed up to 7% more energy. 

We sought to develop tuning hardware that imposes little area 
and power overhead. The cache tuner consists of a few registers, a 
small custom circuit implementing the state machine (synthesized 
to hardware), an arithmetic unit capable of performing addition, a 
slow multiplier (fast multipliers are not necessary since the 
equations are only occasionally computed), a small control circuit 
that uses the arithmetic unit to compute energy, and a comparator. 
We designed the cache tuner hardware using VHDL and 
synthesized the tuner using Synopsys Design Compiler. The total 
tuner size was about 4,000 gates, or 0.039 mm2 in 0.18 µm CMOS 
technology. Compared to the reported size of the MIPS 4Kp with 
caches [7], this represents an increase in area of just over 3%. The 
power consumption of the cache tuner is 2.69 mW at 200 MHz, 
which is only 0.5% of the power consumed by a MIPS processor. 
Furthermore, we only use the tuning hardware during the tuning 
stage; the hardware can be shutdown after the best configuration is 
determined.  

From gate level simulations of the cache tuner, we determined 
the total number of cycles used to finish one cache configuration is 
164 cycles. Executing at 200 MHz, where the average number of 
cache configurations searched is 5.4, the average energy 
consumption of the cache tuner is only 11.9 nJ. Compared with the 
total energy dissipation of the benchmarks, which ranged from 
0.16 mJ to 3.03 J with an average of 2.34 J, the energy dissipation 
of the cache tuner is negligible. 

In order to show the impact that data cache flushing would 
have had (recall we avoided flushing by careful ordering of the 
search), we computed the energy consumption of the benchmarks 
when cache size is configured in the order of 8 Kbytes down to 2 
Kbytes. The average energy consumption due to writing back dirty 

data ranges from 9.48 µJ to 21 mJ with an average 5.38 mJ. Thus, 
if we search the possible cache size configurations from largest to 
smallest, the additional energy dissipation due to cache flushes 
would be 480,000 times larger than that of our cache tuner.  

5. Conclusions 
A configurable cache enables tuning of the cache to a particular 
program, which can significantly reduce memory access power 
that often accounts for half a microprocessor system’s power. Our 
self-tuning on-chip CAD method findings the best configuration 
automatically, thus relieving designers from the burden of having 
to perform simulations or manual physical measurements to 
determine the best configuration. Our heuristic minimizes the 
number of configurations examined during tuning, and minimizes 
the need for cache flushing. Energy savings of such a cache 
average 40% compared to a standard cache. The self-tuning cache 
can be used in a variety of approaches tuning approches. Moving 
traditional desktop CAD algorithms to on-chip hardware will likely 
become increasingly common as chip transistor capacities continue 
to increase. 
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Table 1: Results of search heuristic. Ben. is the benchmark 
considered, cfg. is the cache configuration selected, No. is 
the number of configurations examined by our heuristic, 

and E% is the energy savings of both I-cache and D-cache 
Ben. I-cache cfg. No. D-cache cfg. No. I-E% D-E%

padpcm 8K_1W_64B 7 8K_1W_32B 7 23% 77%
crc 2K_1W_32B 4 4K_1W_64B 6 70% 30%

auto 8K_2W_16B 7 4K_1W_32B 6 3% 97%
bcnt 2K_1W_32B 4 2K_1W_64B 4 70% 30%
bilv 4K_1W_64B 6 2K_1W_64B 4 64% 36%

binary 2K_1W_32B 4 2K_1W_64B 4 54% 46%
blit 2K_1W_32B 4 8K_2W_32B 8 60% 40%

brev 4K_1W_32B 6 2K_1W_64B 4 63% 37%
g3fax 4K_1W_32B 6 4K_1W_16B 5 60% 40%

fir 4K_1W_32B 6 2K_1W_64B 4 29% 71%
jpeg 8K_4W_32B 8 4K_2W_32B 7 6% 94%

pjepg 4K_1W_32B 6 4K_1W_16B 5 51% 49%
4K_2W_64B

ucbqsort 4K_1W_16B 6 4K_1W_64B 6 63% 37%
tv 8K_1W_16B 7 8K_2W_16B 7 37% 63%

adpcm 2K_1W_16B 5 4K_1W_16B 5 64% 36%
epic 2K_1W_64B 5 8K_1W_16B 6 39% 61%
g721 8K_4W_16B_P 8 2K_1W_16B 3 15% 85%

pegwit 4K_1W_16B 5 4K_1W_16B 5 37% 63%
mpeg2 4K_1W_32B 6 4k_2w_16B 6 40% 60%

8K_2W_16B
Average: 5.8 Average: 5.4 45% 55%

optimal

optimal
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