
Design and Implementation of a Secret Key
Steganographic Micro-Architecture Employing FPGA

Hala Farouk, Magdy Saeb
Arab Academy for Science, Technology & Maritime Transport

School of Engineering, Computer Department
Alexandria, Egypt

e-mail: mail@magdysaeb.net

Abstract

In the well-known “prisoners' problem”, a representative
example of steganography, two persons attempt to
communicate covertly without alerting the warden. One
approach to achieve this task is to embed the message in
an innocent-looking cover-media. In our model, the
message contents are scattered in the cover in a certain
way that is based on a secret key known only to the sender
and receiver. Therefore, even if the warden discovers the
existence of the message, he will not be able to recover it.
In other words a covert or subliminal communication
channel is opened between two persons who possess a
secret key to reassemble its contents. In this article, we
propose a video or audio steganographic model in which
the hidden message can be composed and inserted in the
cover in real-time. This is realized by designing and
implementing a secret key steganographic micro-
architecture employing Field Programmable Gate Arrays
FPGA.

Keywords: Steganography, data hiding, FPGA,
architecture, covert communications, subliminal channel.

1. Introduction

Quite recently, information hiding techniques have gained
extended attention in a number of application areas,
namely watermarking, fingerprinting, captioning,
steganography and covert channels [1]. Moreover, a rather
new and interesting application of data embedding is
granting users with different access levels to the data [2].
In this work, we present a hardware implementation of a
secret-key steganographic algorithm. The basic idea of our
algorithm is selecting the hiding bits in a pseudorandom
manner as a function of a secret key to increase obscurity.
We compare the performance of this algorithm to former
algorithms found in the literature [3, 4]. By means of this
performance comparison, as shown in section 5, we

demonstrate that our approach has some clear advantages
in applications utilizing real-time systems.
The paper is organized as follows: in section 2 we provide
a summary of the algorithm. Section 3 provides a brief
description of our proposed micro-architecture. In section
4, we discuss the simulation and implementation results.
A performance analysis and comparison with other
implementations are shown in section 5. Finally a
summary and our conclusions come into view in section 6.

2. The Algorithm

In the following few lines, we provide a summary of our
algorithm that can be applied to video frames, audio files
or any type of covers to hide a given message. This
message hiding uses a secret key known only to sender
and receiver.
ALGORITHM STEGO
[Given a message, the aim of the algorithm is to hide this
message into a cover such that even if an attacker detects the
existence of the message he or she will not be able to recover it
without the secret key that is known only to sender and receiver.]

Input: Message M, Cover C, Key K, StateRegister SR
Algorithm Body:
Begin
1. Load a block of the message Blki
 into the message cache MC:
Blki [M] → [MC];
2. Load Key into the key Cache:
K → [KC];
3. Generate an address Adi;
4. Address memory to get one cover word CW:
M [Adi] → CWi;
5. Hide two message bits (mi, mi+1)
by replacing (C0, C8) in the cover word CW
with (Mi, Mi+1):
C [15:9], Mi+1,C[7:1],Mi → CM ;
6. Write back steganographic word:
CMi → CWi;
7. If message cache is not empty:
 7.1 Circulate key cache one bit right:

1530-1591/04 $20.00 (c) 2004 IEEE

 Circ1R [KC];
 7.2 Shift message cache one bit right:
 Shif1R [MC];
 7.3 Goto 3:
 GenerateAddressState → SR;
8. Else if message cache is empty:
 If message not finished
 8.1 Load next block into message cache:
 Blki +1 [M] → [MC];
 8.2 Goto 3:
 GenerateAddressState → SR;
 Else if message is finished then halt;

 End Algorithm.
 Output: Modulated Cover CM

3. The Micro-architecture

The architecture is divided into an embedder processor
and an SDRAM controller as shown in Figure B-1. The
embedder processor, depicted in Figure 1, issues read and
write commands to the memory, which are processed and
reformatted by the SDRAM control and waits for a
confirmation from memory to ensure stabilized output.
The controller halts the process when hiding is complete.
In the next sections we discuss the various building blocks
of our proposed micro-architecture.

Figure 1: Micro-architecture block diagram

 3.1 The Embedder Processor Overview and
Organization

The embedder processor generates addresses to initially
cache the message and key from memory. It also

generates addresses to access the cover randomly for
message bit hiding.
The embedder processor is composed of an address
generator module, key cache, memory cache, key cache
counter, message counter, message cache counter,
message pointer, stegoblock, address multiplexer, control
unit, and status register. In the following subsections, we
provide a brief discussion of each of these components.

3.1.1 Address Generator. The address generator is
composed of a shuffler, a block pointer memory and a
shift & concatenate unit. The address generator receives
an eight bit key and outputs an address of 17 bits as shown
in Figure 2. We have chosen 17 bits only in order to
access an image of size no more than 128 Kbytes. It is a
common size where video frames most probably never
exceed.

Figure 2: Address generator block diagram

The status register indicates whether to use cover
information in address generation. The cover is logically
divided into eight segments. The status register indicates
also whether to hide in all segments or in some of them.

3.1.1.1 Block Pointer Memory. This module consists of 64
eight-bit counters. The module takes six bits as an input to
decide which one of the counters to be incremented. The
outputs of all counters are concatenated to form 512 bits
and sent to the shuffler.

3.1.1.2 Shuffler. This module receives 512 bits from the
block pointer memory module and based on the key, it
selects one of 64 pointers to be transmitted to the shift and
concatenate unit. Each pointer is eight bits. Therefore, the
address space for each pointer is 256 words. We consider
these 256 words as one block. Therefore, if each time the
octet generated from the key is different from the one
generated before, then the message bit will be inserted
into a different block in the image. As there are only 64
pointers, only 64 blocks can be addressed. This means that
only 64x256 words can be used for hiding. This problem
was overcome by using the upper bits of the octet
generated from the key as a segment selector. Each
segment is 16384-word large. As a result of this
improvement, the message bits may be 16384 words apart
in the best case and one word apart in worst case. This
worst case will happen if a large number of octets in the
key are repeated. Therefore, we have developed a short
program for generating a key that covers the whole cover

Memory
of Pointers Shuffler

Key

Concatenate
and Shift Left

8 bit

512 bit 8 bit
17 bit

 Message
 Cache

Key Cache Address
 Generator

Stego Block

Message
Counter

 Key
Counter

 Control
 Unit

Logic
gates

Status
register

Address

17 bits

Data Out

16 bits

13 bits

4 bits

2 bits

Data In
6 bits

8 bits

10 bits

Output control
signals

10 bits

10 bits

 80

 60

 40

 20

0

N
um

be
r o

f o
ct

et

tit
i

 0 8 16 24 32 40 48 56 64
Key octet values

image and attempts all blocks evenly. This new key will
also avoid large repetition in the key octets. The histogram
in Figure 3 is not uniform and the key doesn’t cover the
whole key space. This is an indication of a “bad” key.
This key will make hiding biased to a certain area in the
image. The histogram in Figure 4 is almost uniform and
the key covers 100% of the key space, which proves that
all image blocks will be attempted evenly. This key is
shared by the sender and the receiver to reassemble the
message at the receiver side, as mentioned before.

Figure 3: Histogram of the key octet values before improvement

Figure 4: Histogram of the key octet values after improvement

3.1.1.3 Shift & Concatenate Unit. This unit forms the 17 bit
output by shifting and concatenating the shuffler’s output
and some parts of the key.

3.1.2 Stegoblock. The stego unit acquires one memory
word and hides two bits in the zero and eight location.

3.1.3 Status and State Registers. The 10-bit status
register contains a run bit, set by the reset push button on
the FPGA board and reset when message counter is zero
and message cache is empty, a cover-dependence bit, set
by the user to indicate the desire of making the addresses
generated to be unique for each cover, a two segment bits,
set by the user to limit the area of hiding in the cover, a
memdone bit, set by the SDRAM when it is ready to send
the requested word or when it has finished writing the
prompted word, a msgcntrzero bit, set by the message
counter when it arrives to zero value, a msgcacheempty
bit, set by the message cache when it is empty, a
msgcachefull bit, set by the message cache to show that it
is full, a loadkey bit, set by the control unit after loading
the key into key cache, and finally a keycachefull bit, set
by the key cache when it is full.

The 3-bit state register is given new values by the control
unit and in turn it indicates the state of the program. The
state can be one of the following:

• Message load
• Key load
• Control word load
• Address generation
• Hiding
• Waiting for a reset

3.1.4 Message Cache (MC). The message cache is
organized as a rather large shift register. The message to
be embedded into the cover image is saved consecutively
starting from location 131,072. Blocks of this message is
cached during the hiding process. The message cache
stores, and then shifts the message bit by bit to the right.
These shifted out bits are to be hidden in the cover word
by the stegoblock.
The message cache improves performance as it saves
eight memory calls per bit, during the hiding process. The
memory used in this design is a synchronous dynamic
RAM, which requires more cycles in the read and write
operations than the static RAM. The dynamic RAM on the
other hand is larger and can support large images as is
needed in our case. As shown in the coming sections the
SDRAM is divided into 512 columns and 4096 rows. The
addressing of consecutive words in same memory row
requires three clock cycles. The addressing of words
spaced out in different memory rows requires from 8 to 9
clock cycles. Since, changing the address from the cover
location to the message location in the memory requires
from 8 to 9 clock cycles, it is better to address the message
consecutively and then address the cover. This improves
performance and is achieved by caching the message
before the embedding process.

3.1.8 Key Cache (KC). The key cache holds the entire
key, which is 32 bytes. It is designed to circulate its
contents to the right, bit by bit, and always outputs the
least significant eight bits. The key is responsible for the
block that will be chosen for the hiding to take place and
therefore choosing a “good” key is not a trivial matter.
Some issues on the key where discussed in section 3.1.3.

3.1.9 Counters. The key cache counter (KC) and the
message cache counter (MC) are used in the loading
interval of the message and key cache in order to acquire
the exact number of memory words needed. As the
XSA100 did not allow us to create a message cache as
large as the message, a message counter is needed to know
whether to load another message block into cache or the
whole message is already processed.

3.1.10 Address and Data Multiplexers. These
multiplexer are controlled by the control unit in order to

 30

 23

 15

 8

 0 N

um
be

r o
f o

ct
et

 re
pe

tit
io

n

 0 8 16 24 32 40 48 56 64
Key octet values

10 bits

3 bits

3 bits8 bits

10 bits

Status register

Control logic gates

 State register

 3 x 8 decoder

Output control signals

select the appropriate data and addresses in the right state
to be sent to the memory.

3.1.11 Address Extender. Some of the generated
addresses by the different modules in the organization are
less than 23 bits, which are needed to address the
SDRAM. Therefore, an address extender is used to unify
the output size to 23 bits.

3.1.12 Control Unit. The control signals are generated in
the hardwired control unit and provide control inputs for
all integrated modules. The block diagram of the control
unit is shown in Figure 5.

Figure 5: Control unit block diagram
It consists of one decoder, a state register, and a number of
control logic gates. The status register supplies the control
unit with the needed signals. The outputs of the state
register are decoded into eight state signals explained
above. Based on some logic operations and on the state
signals, a 10-bit output is generated by the control unit.
This output consists of a msgptrinc bit, which increments
the address of the next message block to be loaded into
cache, a msgcacheload bit that controls message cache
loading, a memwr and a memrd bit that control the
read/write signal of the SDRAM, a setloadkey bit that
controls loading of the key cache, a msgcachecntrinc bit
that increments the message cache counter, a generateaddr
bit that enables the generation of a new address for hiding,
and a 3-bit addressselector bus that controls the address
multiplexers explained above.

 3.2 SDRAM Controller

The XSA100 Spartan 2 Xilinx FPGA board has a 16 M
Byte synchronous dynamic random access memory
mounted on it. The SDRAM controller allows the
interface with the large capacity SDRAM. The 16M
SDRAM is organized as 4096 row x 512 column x 4
banks. Therefore, the 23-bit address is divided in three
parts, naming column (9 bits), row (12 bits) and bank (2
bits). The SDRAM is word addressable. Each word is 16
bits.
The basic SDRAM commands are:

• Mode register set command
• Row address strobe and bank active command

• Pre-charge
• Column address and write command
• Column address and read command
• Auto refresh command

A sequence of these commands comprises the primitive
operations of read, write and refresh. The circuit
realizations of all of the above are shown in Appendix B.

4. Simulation & Implementation Results

At the start, the circuit is at the default state waiting for a
reset signal. During the reset signal the whole circuit is
initialized. Once the reset is driven low the hiding process
commences. The loading of message cache is presented in
Figure 6. Note that the memory address bus, memaddr22
bus, has the value 20000hex at the start. This value is
equal to 131072 in decimal format, which is the address of
the first message word in the memory as mentioned in
section 3.1.7.

Figure 6: Simulation of message cache loading

Finally, the hiding process is illustrated in the simulation
results as shown in Figure 7. The step in the embedding
process is requesting a cover word from the memory.
Then, the memory drives the memdone bit high to indicate
end of transaction.
Afterwards, the cover word, which in this case is 5544hex,
is to be received by the embedder processor. Two bits are
replaced by two message bits, namely the bits in the zero
and eighth location. This results in a modulated cover
word that is equal to 5445hex. This modulated cover word
is written back to memory. Following this operation, a
new address is prompted to the memory to start the hiding
process all over again for two new message bits. Based on
the simulation results in Figure 7, the new address
requires 5 ns to take place. On the other hand, according
to timing results shown later in Appendix A, the shuffler
circuit requires 30.846 ns in order to generate one address.
This time difference is due to the fact that the address
generator module works in parallel during the embedding
process. Hence, the new address is complete inside the
address generator module waiting for the new embedding

Loading Message Cache

A pulse in the reset signal

sequence to start. Consequently, only 5 ns were required
to output the prepared generated address.

Figure 7: Simulation of the hiding process

5. Performance analysis

As described in the previous sections, the algorithm
selects the cover words in a pseudorandom fashion as a
function of a secret key, to hide in it the message bits. The
algorithm presented in references [3, 5] is implemented
using hash functions. In reference [4], a hardware design
of the MD5 and Secure Hash Algorithm (SHA) a hash
function is implemented. As shown in these references,
the MD5 running at 60.2 MHz, takes 66 cycles to generate
a hash number, while the SHA, running at 38.6 MHz
requires 22 cycles. The algorithm in reference [3] consists
of three hash operations, one division, four modulo
operations, one multiplication and four addition
operations. If we assume using a Montgomery multiplier
[6] and that the input is nine-bit large, then the total
number of cycles needed for generating an address using
this technique, will be 342 cycles using the MD5 and 210
cycles using the SHA as shown in Table 1 . The table
shows that our shuffler, the module that generates memory
addresses in a pseudorandom order, requires only one
cycle. The throughput in the last row in Table 1
demonstrates the higher throughput obtained when
applying our algorithm. This throughput is calculated for
the operations required to hide only one message bit. The
throughput is computed as in [3] by the following
equation:

S = 1 x F/ C (1)

Where S is the Throughput, F is the clock frequency and
C is the number of cycles.

Table1. Performance comparison

 Shuffler Design using
SHA

Design using
MD5

Number of cycles 1 210 342
Frequency in MHz 35.4 38.6 60.2

Throughput in Mbps 1.576 0.174 0.170

5.1 Testing for Obscurity

The information is hidden using the designed chip in the
sense that it is perceptually and statistically undetectable.
To prove this, a sample of the cover and its modulated
version is shown in Figure 8. As it is apparent from
comparing these two pictures, there is hardly any visible
significant difference. This modulated cover is statistically
analyzed using a discrete Laplacian Filter [7]. The result
of this type of analysis is shown in Figure 9b. If the
embedding process adds noise that is statistically quite
different from true random noise, then the output of the
Laplacian filter will lose the high peak illustrated in
Figure 9a and instead two lower peaks with high side
fluctuations will appear as shown in Figure 9c.

 (a) (b)

Figure 8: Hiding using designed chip. (a) Cover image. (b) Modulated

cover image.

 (a) (b)

(c)

Figure 9: Laplacian Filter. (a) Filter output of cover image. (b) Filter output of
modultated cover image. (c) Filter output of distorted cover

5 ns
1. Read cover word

2. Memdone=1
3. Cover word

4. Stego word
5. Write stego word

Summary and Conclusion

Motivated by the need for a fast hardware implementation
suitable for real-time applications, we have provided a
micro-architecture of a secret-key steganographic FPGA
implementation. The distinctive features of this design are
as follows:

• The address generator generates an output every
clock cycle. This is a major advantage as
compared to SHA-based algorithm that requires
210 cycles or MD5 designs with 342 cycles.

• The shuffler design is our conceptually
developed hardware that provides the required
randomization in the embedding process.

• The shuffler operates in parallel with the hiding
module. This saves about 25 ns for each hidden
bit.

• The address generator is capable of generating an
address in a 32,768-byte block or in multiple of
these blocks based on the user preference. This
allows the user to efficiently handle different
image sizes.

• This address generator design is particularly
suitable for a special-purpose processor design
since it needs large sizes of busses, like 64-bit
and 512-bit busses, which cannot be supported
by general-purpose processors.

• The address generator can generate various
sequences of addresses for different frames from
a single 32-byte key by XORing with the cover.
This is an essential requirement for video hiding
schemes, since it is not realistic to ask the user
for a new key for each video frame.

We realize that there is a large number of testing
procedures for obscurity that are called steganalysis
techniques. However, we have shown by proper choice of
the key, that our approach has provided an acceptable
degree of data hiding with minimal distortion of the cover.
This was proven utilizing the Laplacian Filter Technique.
We believe that our approach is refined enough to escape
the watchful eyes of a passive adversary (the warden).
Comparing this architecture with other types of
steganographic algorithm implementations, we have
demonstrated the dominance of our algorithm in time-
critical applications.

References
[1] F. Petitcolas, R. Anderson, and Kuhn, “Information hiding—
a survey,” IEEE proceedings, special issue on protection of
multimedia content, vol. 87, No. 7, pp.1062-1078, Jul. 1999.
[2] D. Swanson, M. Kobayashi, A. Tewfik, “Multimedia Data
Embedding and Watermarking Technologies,” proceedings of
the IEEE, vol. 86, no. 6, June 1998, pp.1064-1087.

[3] T. Aura, “Invisible communication,” HUT Network Seminar
in Helsinki Institute of Technology, 1995.
[4] J. Diez, S. Bojanic, L. Stanimirovic, C. Carreras, O. Nieto-
Taladriz, “Hash algorithms for cryptographic protocols,” 10th
Telecommunications forum TELFOR’2022, Belgrade,
Yugoslavia, November 26-28, 2002.
[5] M. Luby, Ch. Rackoff, “How to construct pseudorandom
permutations from pseudorandom functions,” SIAM Journal on
Computing, 17(2), pp.373-386, April 1988.
[6] F. Tenca, K. Koc, ”A scalable architecture for modular
multiplication based on Montgomery's algorithm,” IEEE
Transactions on Computers, to appear, 2003.
[7] S. Katzenbeisser, F. Petitcolas, Information hiding techniques
for steganography and digital watermarking, Computer security
series, Artech House, 2000.

APPENDIX A: IMPLEMENTATION RESULTS
Target Device: x2s100
Target Package: tq144
Target Speed : -6
Mapper Version: spartan2 -- C.22
The Total Design
Timing Summary:
 Minimum period: 48.811ns (Maximum frequency: 20.487MHz)
 Maximum combinational path delay: 49.783ns
 Maximum net delay: 11.980ns
Device utilization summary:

 Number of External GCLKIOBs 2 out of 4 50%
 Number of External IOBs 43 out of 92 46%
 Number of SLICEs 1195 out of 1200 99%

APPENDIX B: CIRCUIT REALIZATIONS

Figure B-1:Embedder processor and SDRAM control top-level view.

Figure B-2: Embedder Processor’s inside view

Embedder Processor

 SDRAM controller

Message
Module

Hiding
Module

Key
Module

Address
Generator

Memory
Control

Control
Unit

	Main Page
	DF'04
	Front Matter
	Table of Contents
	Author Index

	DATE04

