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Abstract 
 
In the well-known “prisoners' problem”, a representative 
example of steganography, two persons attempt to 
communicate covertly without alerting the warden. One 
approach to achieve this task is to embed the message in 
an innocent-looking cover-media. In our model, the 
message contents are scattered in the cover in a certain 
way that is based on a secret key known only to the sender 
and receiver. Therefore, even if the warden discovers the 
existence of the message, he will not be able to recover it. 
In other words a covert or subliminal communication 
channel is opened between two persons who possess a 
secret key to reassemble its contents. In this article, we 
propose a video or audio steganographic model in which 
the hidden message can be composed and inserted in the 
cover in real-time. This is realized by designing and 
implementing a secret key steganographic micro-
architecture employing Field Programmable Gate Arrays 
FPGA. 
 
Keywords: Steganography, data hiding, FPGA, 
architecture, covert communications, subliminal channel. 
 

1. Introduction 
 
Quite recently, information hiding techniques have gained 
extended attention in a number of application areas, 
namely watermarking, fingerprinting, captioning, 
steganography and covert channels [1]. Moreover, a rather 
new and interesting application of data embedding is 
granting users with different access levels to the data [2].   
In this work, we present a hardware implementation of a 
secret-key steganographic algorithm. The basic idea of our 
algorithm is selecting the hiding bits in a pseudorandom 
manner as a function of a secret key to increase obscurity. 
We compare the performance of this algorithm to former 
algorithms found in the literature [3, 4]. By means of this 
performance comparison, as shown in section 5, we 

demonstrate that our approach has some clear advantages 
in applications utilizing real-time systems. 
The paper is organized as follows: in section 2 we provide 
a summary of the algorithm. Section 3 provides a brief 
description of our proposed micro-architecture. In section 
4, we discuss the simulation and implementation results. 
A performance analysis and comparison with other 
implementations are shown in section 5. Finally a 
summary and our conclusions come into view in section 6.  
 

2. The Algorithm 
 
In the following few lines, we provide a summary of our 
algorithm that can be applied to video frames, audio files 
or any type of covers to hide a given message. This 
message hiding uses a secret key known only to sender 
and receiver. 
ALGORITHM STEGO 
[Given a message, the aim of the algorithm is to hide this 
message into a cover such that even if an attacker detects the 
existence of the message he or she will not be able to recover it 
without the secret key that is known only to sender and receiver.] 

Input: Message M, Cover C, Key K, StateRegister SR 
Algorithm Body: 
Begin 
1. Load a block of the message Blki 
 into the message cache MC: 
Blki [M] → [MC]; 
2.  Load Key into the key Cache: 
K → [KC]; 
3.  Generate an address Adi; 
4.  Address memory to get one cover word CW: 
M [Adi] → CWi; 
5. Hide two message bits (mi, mi+1)  
by replacing (C0, C8)  in the cover word CW  
with (Mi, Mi+1): 
C [15:9], Mi+1,C[7:1],Mi → CM ; 
6. Write back steganographic word:  
CMi → CWi; 
7. If message cache is not empty: 
 7.1 Circulate key cache one bit right: 
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 Circ1R [KC];  
 7.2 Shift message cache one bit right: 
 Shif1R [MC]; 
 7.3 Goto 3: 
 GenerateAddressState → SR; 
8. Else if message cache is empty: 
            If message not finished 
 8.1 Load next block into message cache: 
 Blki +1 [M] → [MC]; 
 8.2 Goto 3: 
 GenerateAddressState → SR; 
            Else if message is finished then halt; 

        End Algorithm. 
 Output: Modulated Cover CM  
 

3. The Micro-architecture 
 
The architecture is divided into an embedder processor 
and an SDRAM controller as shown in Figure B-1. The 
embedder processor, depicted in Figure 1, issues read and 
write commands to the memory, which are processed and 
reformatted by the SDRAM control and waits for a 
confirmation from memory to ensure stabilized output. 
The controller halts the process when hiding is complete. 
In the next sections we discuss the various building blocks 
of our proposed micro-architecture. 
 
  
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
     
   
 
 
 
 
 

Figure 1: Micro-architecture block diagram 
 

    3.1 The Embedder Processor Overview and 
Organization  
 
The embedder processor generates addresses to initially 
cache the message and key from memory. It also 

generates addresses to access the cover randomly for 
message bit hiding. 
The embedder processor is composed of an address 
generator module, key cache, memory cache, key cache 
counter, message counter, message cache counter, 
message pointer, stegoblock, address multiplexer, control 
unit, and status register. In the following subsections, we 
provide a brief discussion of each of these components. 
  
3.1.1 Address Generator. The address generator is 
composed of a shuffler, a block pointer memory and a 
shift & concatenate unit. The address generator receives 
an eight bit key and outputs an address of 17 bits as shown 
in Figure 2.  We have chosen 17 bits only in order to 
access an image of size no more than 128 Kbytes. It is a 
common size where video frames most probably never 
exceed. 
 
 
 
 
 
 

Figure 2: Address generator block diagram 
 
The status register indicates whether to use cover 
information in address generation. The cover is logically 
divided into eight segments. The status register indicates 
also whether to hide in all segments or in some of them. 
 
3.1.1.1 Block Pointer Memory. This module consists of 64 
eight-bit counters. The module takes six bits as an input to 
decide which one of the counters to be incremented. The 
outputs of all counters are concatenated to form 512 bits 
and sent to the shuffler. 
 
3.1.1.2 Shuffler. This module receives 512 bits from the 
block pointer memory module and based on the key, it 
selects one of 64 pointers to be transmitted to the shift and 
concatenate unit. Each pointer is eight bits. Therefore, the 
address space for each pointer is 256 words. We consider 
these 256 words as one block. Therefore, if each time the 
octet generated from the key is different from the one 
generated before, then the message bit will be inserted 
into a different block in the image. As there are only 64 
pointers, only 64 blocks can be addressed. This means that 
only 64x256 words can be used for hiding. This problem 
was overcome by using the upper bits of the octet 
generated from the key as a segment selector. Each 
segment is 16384-word large. As a result of this 
improvement, the message bits may be 16384 words apart 
in the best case and one word apart in worst case. This 
worst case will happen if a large number of octets in the 
key are repeated. Therefore, we have developed a short 
program for generating a key that covers the whole cover 
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image and attempts all blocks evenly. This new key will 
also avoid large repetition in the key octets. The histogram 
in Figure 3 is not uniform and the key doesn’t cover the 
whole key space. This is an indication of a “bad” key. 
This key will make hiding biased to a certain area in the 
image. The histogram in Figure 4 is almost uniform and 
the key covers 100% of the key space, which proves that 
all image blocks will be attempted evenly. This key is 
shared by the sender and the receiver to reassemble the 
message at the receiver side, as mentioned before. 
 
 
 
 
 
 
 
 
 

Figure 3:  Histogram of the key octet values before improvement 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: Histogram of the key octet values after improvement 
 
3.1.1.3 Shift & Concatenate Unit. This unit forms the 17 bit 
output by shifting and concatenating the shuffler’s output 
and some parts of the key. 
 
3.1.2 Stegoblock. The stego unit acquires one memory 
word and hides two bits in the zero and eight location. 
    
3.1.3 Status and State Registers. The 10-bit status 
register contains a run bit, set by the reset push button on 
the FPGA board and reset when message counter is zero 
and message cache is empty, a cover-dependence bit, set 
by the user to indicate the desire of making the addresses 
generated to be unique for each cover, a two segment bits, 
set by the user to limit the area of hiding in the cover, a 
memdone bit, set by the SDRAM when it is ready to send 
the requested word or when it has finished writing the 
prompted word, a msgcntrzero bit, set by the message 
counter when it arrives to zero value, a msgcacheempty 
bit, set by the message cache when it is empty, a 
msgcachefull bit, set by the message cache to show that it 
is full, a loadkey bit, set by the control unit after loading 
the key into key cache, and finally a keycachefull bit, set 
by the key cache when it is full. 

The 3-bit state register is given new values by the control 
unit and in turn it indicates the state of the program. The 
state can be one of the following: 

• Message load 
• Key load 
• Control word load 
• Address generation 
• Hiding 
• Waiting for a reset 

     
3.1.4 Message Cache (MC). The message cache is 
organized as a rather large shift register. The message to 
be embedded into the cover image is saved consecutively 
starting from location 131,072. Blocks of this message is 
cached during the hiding process. The message cache 
stores, and then shifts the message bit by bit to the right. 
These shifted out bits are to be hidden in the cover word 
by the stegoblock.  
The message cache improves performance as it saves 
eight memory calls per bit, during the hiding process. The 
memory used in this design is a synchronous dynamic 
RAM, which requires more cycles in the read and write 
operations than the static RAM. The dynamic RAM on the 
other hand is larger and can support large images as is 
needed in our case. As shown in the coming sections the 
SDRAM is divided into 512 columns and 4096 rows. The 
addressing of consecutive words in same memory row 
requires three clock cycles. The addressing of words 
spaced out in different memory rows requires from 8 to 9 
clock cycles. Since, changing the address from the cover 
location to the message location in the memory requires 
from 8 to 9 clock cycles, it is better to address the message 
consecutively and then address the cover. This improves 
performance and is achieved by caching the message 
before the embedding process. 
 
3.1.8 Key Cache (KC). The key cache holds the entire 
key, which is 32 bytes. It is designed to circulate its 
contents to the right, bit by bit, and always outputs the 
least significant eight bits. The key is responsible for the 
block that will be chosen for the hiding to take place and 
therefore choosing a “good” key is not a trivial matter.  
Some issues on the key where discussed in section 3.1.3. 
 
3.1.9 Counters. The key cache counter (KC) and the 
message cache counter (MC) are used in the loading 
interval of the message and key cache in order to acquire 
the exact number of memory words needed. As the 
XSA100 did not allow us to create a message cache as 
large as the message, a message counter is needed to know 
whether to load another message block into cache or the 
whole message is already processed. 
 
3.1.10 Address and Data Multiplexers. These 
multiplexer are controlled by the control unit in order to 
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select the appropriate data and addresses in the right state 
to be sent to the memory. 
 
3.1.11 Address Extender. Some of the generated 
addresses by the different modules in the organization are 
less than 23 bits, which are needed to address the 
SDRAM. Therefore, an address extender is used to unify 
the output size to 23 bits. 
 
3.1.12 Control Unit. The control signals are generated in 
the hardwired control unit and provide control inputs for 
all integrated modules. The block diagram of the control 
unit is shown in Figure 5. 
 
 
 
 
 
 
 
 
 
 

Figure 5: Control unit block diagram 
It consists of one decoder, a state register, and a number of 
control logic gates. The status register supplies the control 
unit with the needed signals. The outputs of the state 
register are decoded into eight state signals explained 
above. Based on some logic operations and on the state 
signals, a 10-bit output is generated by the control unit. 
This output consists of a msgptrinc bit, which increments 
the address of the next message block to be loaded into 
cache, a msgcacheload bit that controls message cache 
loading, a memwr and a memrd bit that control the 
read/write signal of the SDRAM, a setloadkey bit that 
controls loading of the key cache, a msgcachecntrinc bit 
that increments the message cache counter, a generateaddr 
bit that enables the generation of a new address for hiding, 
and a 3-bit addressselector bus that controls the address 
multiplexers explained above.  
 
  3.2 SDRAM Controller 
 
The XSA100 Spartan 2 Xilinx FPGA board has a 16 M 
Byte synchronous dynamic random access memory 
mounted on it. The SDRAM controller allows the 
interface with the large capacity SDRAM. The 16M 
SDRAM is organized as 4096 row x 512 column x 4 
banks. Therefore, the 23-bit address is divided in three 
parts, naming column (9 bits), row (12 bits) and bank (2 
bits). The SDRAM is word addressable. Each word is 16 
bits. 
The basic SDRAM commands are: 

• Mode register set command 
• Row address strobe and bank active command 

• Pre-charge 
• Column address and write command 
• Column address and read command 
• Auto refresh command 

A sequence of these commands comprises the primitive 
operations of read, write and refresh.  The circuit 
realizations of all of the above are shown in Appendix B. 
 

4. Simulation & Implementation Results 
 
At the start, the circuit is at the default state waiting for a 
reset signal. During the reset signal the whole circuit is 
initialized. Once the reset is driven low the hiding process 
commences. The loading of message cache is presented in 
Figure 6. Note that the memory address bus, memaddr22 
bus, has the value 20000hex at the start. This value is 
equal to 131072 in decimal format, which is the address of 
the first message word in the memory as mentioned in 
section 3.1.7. 
 
 
 

 
 
 
 
 
 
 
 

 
Figure 6: Simulation of message cache loading 

Finally, the hiding process is illustrated in the simulation 
results as shown in Figure 7. The step in the embedding 
process is requesting a cover word from the memory. 
Then, the memory drives the memdone bit high to indicate 
end of transaction. 
Afterwards, the cover word, which in this case is 5544hex, 
is to be received by the embedder processor. Two bits are 
replaced by two message bits, namely the bits in the zero 
and eighth location. This results in a modulated cover 
word that is equal to 5445hex. This modulated cover word 
is written back to memory. Following this operation, a 
new address is prompted to the memory to start the hiding 
process all over again for two new message bits. Based on 
the simulation results in Figure 7, the new address 
requires 5 ns to take place. On the other hand, according 
to timing results shown later in Appendix A, the shuffler 
circuit requires 30.846 ns in order to generate one address. 
This time difference is due to the fact that the address 
generator module works in parallel during the embedding 
process. Hence, the new address is complete inside the 
address generator module waiting for the new embedding 

Loading Message Cache 

A pulse in the reset signal 



sequence to start. Consequently, only 5 ns were required 
to output the prepared generated address. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 7: Simulation of the hiding process 
 

5. Performance analysis 
 
As described in the previous sections, the algorithm 
selects the cover words in a pseudorandom fashion as a 
function of a secret key, to hide in it the message bits. The 
algorithm presented in references [3, 5] is implemented 
using hash functions. In reference [4], a hardware design 
of the MD5 and Secure Hash Algorithm (SHA) a hash 
function is implemented. As shown in these references, 
the MD5 running at 60.2 MHz, takes 66 cycles to generate 
a hash number, while the SHA, running at 38.6 MHz 
requires 22 cycles. The algorithm in reference [3] consists 
of three hash operations, one division, four modulo 
operations, one multiplication and four addition 
operations. If we assume using a Montgomery multiplier 
[6] and that the input is nine-bit large, then the total 
number of cycles needed for generating an address using 
this technique, will be 342 cycles using the MD5 and 210 
cycles using the SHA as shown in Table 1 . The table 
shows that our shuffler, the module that generates memory 
addresses in a pseudorandom order, requires only one 
cycle. The throughput in the last row in Table 1 
demonstrates the higher throughput obtained when 
applying our algorithm. This throughput is calculated for 
the operations required to hide only one message bit. The 
throughput is computed as in [3] by the following 
equation: 
 

S = 1 x F/ C   (1) 
 
Where S is the Throughput, F is the clock frequency and 
C is the number of cycles. 
 
 
 
 

Table1. Performance comparison 
 

 Shuffler Design using 
SHA 

Design using 
MD5 

Number of cycles 1 210 342 
Frequency in MHz 35.4 38.6 60.2 

Throughput in Mbps 1.576 0.174 0.170 
 
 

5.1 Testing for Obscurity 
 
The information is hidden using the designed chip in the 
sense that it is perceptually and statistically undetectable. 
To prove this, a sample of the cover and its modulated 
version is shown in Figure 8. As it is apparent from 
comparing these two pictures, there is hardly any visible 
significant difference. This modulated cover is statistically 
analyzed using a discrete Laplacian Filter [7].  The result 
of this type of analysis is shown in Figure 9b. If the 
embedding process adds noise that is statistically quite 
different from true random noise, then the output of the 
Laplacian filter will lose the high peak illustrated in 
Figure 9a and instead two lower peaks with high side 
fluctuations will appear as shown in Figure 9c. 
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Figure 8: Hiding using designed chip. (a) Cover image. (b) Modulated 

cover image. 
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Figure 9: Laplacian Filter. (a) Filter output of cover image. (b) Filter output of 
modultated cover image. (c) Filter output of distorted cover 
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Summary and Conclusion 
 

Motivated by the need for a fast hardware implementation 
suitable for real-time applications, we have provided a 
micro-architecture of a secret-key steganographic FPGA 
implementation. The distinctive features of this design are 
as follows:  
 

• The address generator generates an output every 
clock cycle. This is a major advantage as 
compared to SHA-based algorithm that requires 
210 cycles or MD5 designs with 342 cycles.  

• The shuffler design is our conceptually 
developed hardware that provides the required 
randomization in the embedding process. 

• The shuffler operates in parallel with the hiding 
module. This saves about 25 ns for each hidden 
bit. 

• The address generator is capable of generating an 
address in a 32,768-byte block or in multiple of 
these blocks based on the user preference. This 
allows the user to efficiently handle different 
image sizes.  

• This address generator design is particularly 
suitable for a special-purpose processor design 
since it needs large sizes of busses, like 64-bit 
and 512-bit busses, which cannot be supported 
by general-purpose processors. 

• The address generator can generate various 
sequences of addresses for different frames from 
a single 32-byte key by XORing with the cover. 
This is an essential requirement for video hiding 
schemes, since it is not realistic to ask the user 
for a new key for each video frame. 

We realize that there is a large number of testing 
procedures for obscurity that are called steganalysis 
techniques. However, we have shown by proper choice of 
the key, that our approach has provided an acceptable 
degree of data hiding with minimal distortion of the cover.  
This was proven utilizing the Laplacian Filter Technique. 
We believe that our approach is refined enough to escape 
the watchful eyes of a passive adversary (the warden). 
Comparing this architecture with other types of 
steganographic algorithm implementations, we have 
demonstrated the dominance of our algorithm in time-
critical applications. 
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APPENDIX A: IMPLEMENTATION RESULTS 
Target Device: x2s100 
Target Package: tq144 
Target Speed   : -6 
Mapper Version: spartan2 -- C.22 
The Total Design 
Timing Summary: 
      Minimum period:  48.811ns (Maximum frequency:  20.487MHz) 
      Maximum combinational path delay:  49.783ns 
      Maximum net delay:  11.980ns 
Device utilization summary: 

   Number of External GCLKIOBs         2 out of 4         50% 
   Number of External IOBs                  43 out of 92       46% 
   Number of SLICEs                        1195 out of 1200   99% 

APPENDIX B: CIRCUIT REALIZATIONS 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure B-1:Embedder processor and SDRAM control top-level view. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure B-2: Embedder Processor’s inside view 
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