

Application of a Multi-Processor SoC Platform

to High-Speed Packet Forwarding

Pierre G. Paulin, Chuck Pilkington,
Essaid Bensoudane, Michel Langevin, Damien Lyonnard

Central R&D, STMicroelectronics, Ottawa, Canada
pierre.paulin@st.com

Abstract
In this paper, we explore the requirements of emerging

complex SoC’s and describe StepNP, an experimental
flexible, multi-processor SoC platform targeted towards
communications and networking applications.

We present the results of mapping an internet protocol
(IPv4) packet forwarding application, running at 2.5Gb/s
and 10Gb/s. We demonstrate how the use of high-speed
hardware-assisted messaging and dynamic task allocation
in the StepNP platform allows us to achieve very high
processor utilization rates (up to 97%) in spite of the
presence of high network-on-chip and memory access
latencies. The inter-processor communication overhead is
kept very low, representing only 9% of instructions.

1. Introduction
The continued increase in the non-recurring expenses

(NRE) for the manufacturing and design of nanoscale
systems-on-chip (SoC), in the face of continued time-to-
market pressures, is leading to the need for significant
changes to their design and manufacturing. As discussed in
[1], [2], these factors are the drivers behind the emergence
of domain-specific S/W programmable SoC platforms
consisting of large, heterogeneous sets of embedded
processors, reconfigurable H/W and networks-on-chip
(NoC) [3]. Industrial case studies justifying the use of
various platform components were described in [4].

2. Survey of Multi-Processor SoC Platforms
A number of multi-processor platforms designed for

SoC-scale applications have been described. Daytona [5]
was an early attempt to reach high DSP performances
through MIMD processing elements (PE). Each PE
consists in a 32b GP-RISC and a vector unit with four 16b-
MAC's. The performances reach a peak value of 1.6 billion
16b-MAC/s, assuming no cache misses. Such results are
extremely dependent on the instruction locality and require
homogeneous data stream rates. This would not be
expected for applications that are more control dominated.

The PROPHID [6] based platform, namely Eclipse [7],
has already been tuned into several dedicated instances.
Among them is the well-known Viper [8] that provides set-
top boxes applications with relevant multimedia features.
Unfortunately, the use of numerous application-specific
hardware accelerators inevitably leads to the high NRE
costs of ASIC-style design.

The MESCAL system [9] allows a platform designer to
build a platform instance in a targeted, domain-specific
way. This is achieved through a range of activities –
spanning PE architecture and micro-architecture design, to
network topology definition – achieved with the assistance
of the Mescal development system [10]. An OSI-like
message passing model [11] is used. While this approach
may be used to achieve the best cost/performance trade-off,
it still implies high design and maskset NRE’s.

S3E2S [12] is a design environment for heterogeneous
multi-processor architectures based on libraries of
components. A sequential model of the application is first
translated in a CDFG-like objects graph. Then each object
is targeted to the most relevant processor selected from the
libraries. The design-space exploration addresses the CPU's
choice (ranging from GP CPU, DSP to highly specific
ones) while taking into account the local memory accesses.
Message-passing is the only supported communication
mechanism. Also, the NoC topology and implementation is
not addressed (nor modeled).

3. StepNP, a Domain-specific multi-processor
SoC platform

Figure 1 depicts the StepNPTM flexible multi-processor
architecture platform. The StepNP platform includes
models of configurable processors, a network-on-chip,
configurable H/W processing elements, as well as
networking-oriented I/O’s. It embodies what we believe are
the key features of emerging MP-SoC platforms in order to
address the requirements for flexibility, rapid platform
development and platform end-user productivity.
3.1 StepNP Processors

It is our conviction that the large-scale use of software
programmable embedded processors will emerge as the key

1530-1591/04 $20.00 (c) 2004 IEEE

means to improve flexibility and productivity. These
processors will come in a wide diversity, from general-
purpose RISC to specialized application-specific
instruction-set processors (ASIP), with different trade-offs
in time-to-market versus product differentiation (power,
performance, cost). Domain- or application-specific
processors will play an important role in bridging the gap
between the required ease-of-use and high flexibility of
general-purpose processors on one end, and the higher
speed and/or lower power of hardware on the other.
Configurable processors are one possible means to achieve
processor specialization from a RISC-based platform.

FPGAFPGAFPGA FPGAH/W PE
(eSoG)

H/W PE
(eFPGA)

. . .

Processor 1Processor 1 Processor NProcessor N

eMEM
. . .

eMEM

NetworkNetwork--onon--ChipChip

Proc.

eRAMeSoG

P1
Pn

Proc.

eRAM

P1
Pn

MPU
I/O

SPI4.2

Hyper
Transport

QDR
Mem I/O

Gen-purp
I/O

eSoG

Figure 1. StepNP MP-SoC Platform

A common requirement for all classes of processors is
the efficient handling of the latencies of the interconnect,
memory and co-processors. A variety of approaches can be
used. These include caching, multi-threading, memory pre-
fetching, and split-transaction interconnect. Multi-threading
lets the processor execute other streams while another
thread is blocked on a high latency operation. A hardware
multithreaded processor has separate register banks for
different threads, allowing low-overhead switching
between threads, often with no disruption to the processor
pipeline.

The StepNP simulation framework allows easy
integration of a range of general-purpose to application-
specific processor models. We have integrated public
domain instruction-set models of the most popular RISC
processors. To explore various hardware multi-threading
and pipeline depths, we encapsulate the functional
instruction-set models into a SystemC model wrapper. This
produces a cycle-based model implementing a configurable
hardware multithreading capability and a simple n-stage
pipeline, as described in [13].

In order to explore network-specific instruction-set
optimizations, the Tensilica XtensaTM configurable
processor model [14] has been integrated by our academic
research partners [15].

The first planned StepNP platform implementation will
use a combination of configurable and reconfigurable
processors, using configurable embedded sea-of-gates

(eSoG) and embedded field-programmable gate arrays
(eFPGA), as explained further.
3.2 StepNP Interconnect

The StepNP platform makes a very important
assumption on the interconnect topology: namely, it uses a
single interconnect channel that connects all I/O and
processing elements. An orthogonal, scaleable,
interconnect approach with predictable bandwidth and
latency is essential:
1. It provides a regular, plug-and-play methodology for

interconnecting various hardwired, reconfigurable or
S/W programmable IP’s.

2. It supports the high-level communication between
processes on multiple processors, and simplifies the
automatic mapping onto the interconnect technology.

However, it moves the complexity of the effective use of
communication resources to the resource allocation tools,
which must be tuned to the interconnect topology.

We advocate the recent so called ‘network-on-chip’
(NoC) approaches currently under development [3]. Our
first interconnect channel used in StepNP was based on
transaction-level models (TLM) of a communication
channel using the OCP-IP protocol [16], as discussed in
[13]. The first planned implementation of the StepNP
platform will be based on an ST interconnect technology,
the STBus [17]. The STBus protocol supports similar
advanced features to OCP-IP, for example, out-of-order
split-transactions. Despite the name, STBus is not a bus per
se, but is in fact an interconnect generation framework,
which supports the automatic generation of a range of
interconnect topologies made up of buses, bridges and
crossbars. The STBus toolset generates an RTL-
synthesizable implementation. We have integrated the
STBus SystemC model into StepNP. Other NoC
approaches are also being investigated:
• In cooperation with the UPMC/LIP6 laboratory in

Paris, we have developed a 32 port version of the
SPIN network-on-chip [18], implemented using ST’s
0.13 micron process.

• A ring-based NoC topology is also under development.
This provides high scalability and can be designed as
non-blocking, but at the expense of higher latencies.

• Finally, for the emerging 65nm process technology
node and beyond, we are exploring globally
asynchronous, locally synchronous approaches. One
interesting example of this approach is the Star
network, which serializes packets and uses
plesiochronous clocking regions [19].

A common issue with all NoC topologies is
communication latency. In 50nm process technologies, it is
predicted that the intra-chip propagation delay will be
between six and ten clock cycles [3]. Moreover, the
increasing gap between processor clock cycle times and
memory access times further increases the need for latency

hiding. Effective latency hiding is therefore key in
achieving efficient parallel processing.

This is the key reason for the adoption of hardware
multi-threading processors in the StepNP platform. This
implies that the programming tools must be able to
automatically exploit this capability. This was achieved
using hardware assisted dynamic task allocation, as
described below.
3.3 Embedded FPGA’s and Sea-of-Gates

It is our belief that the large majority of end-user SoC
product functionality will run on the heterogeneous
embedded processors. However, power and performance
constraints will dictate partitions where the majority of
performance will come from a combination of optimized
H/W, embedded sea-of-gates (eSoG) or embedded FPGA
(eFPGA), implementing critical inner loops and parallel
operations, but of lower functional complexity.

Embedded FPGA’s are used in the StepNP platform to
complement the processors, but with limited scope. The
~50X cost and ~5X power penalty of eFPGA’s restricts
more widespread use. Nevertheless, for high-throughput
and simple functions, or highly parallel and regular
computations, eFPGA’s can play an important role. An
eFPGA test chip was developed in ST’s 0.18 micron
CMOS process, and results were presented in [20]

Embedded SoG technology, e.g. such as that proposed
by eASIC [21], which is configured with one or two masks,
is another interesting cost and flexibility compromise
which we are also incorporating in StepNP. A test chip
including this technology was developed in ST’s 0.13
micron CMOS process. The 3x to 3.5x cost penalty over
standard cells is compensated by the lower maskset NRE,
which can be 10x to 30x lower cost than a complete
maskset.
3.4 Configurable Processor Implementation

The StepNP platform uses eFPGA’s and eSoG in two
roles. Their first use is for reconfigurable and configurable
processors. ST has developped and manufactured a 1
GOPS reconfigurable signal processing chip [20]. This
combines a commercial configurable RISC core with an
eFPGA which implements the application-specific
instructions. In the StepNP physical implementation, we
extend this approach to use embedded sea-of-gates to
achieve a low-cost, one-time configurable version of these
application-specific instructions.
3.5 Hardware Processing Elements

The hardware processing elements (H/W PE) of StepNP
are implementable using a user-defined combination of
eFPGA’s and eSoG’s. To facilitate interoperability, all
processing elements communicate to the NoC via a
standard protocol. The conversion between the H/W PE’s
internal data representations and the packet-oriented format
of the NoC (as depicted by the ‘packetization’ blocks of

Figure 1), is performed by H/W wrappers automatically
generated by the SIDL compiler described below.

The key characteristic of the StepNP platform is that,
although it is composed of heterogeneous hardware and
software processing elements, memories and I/O blocks,
the use of a single standardized protocol to communicate
with a single global NoC allowed us to build a
homogeneous programming environment supporting
automatic application-to-platform mapping.

4. MultiFlex Programming Models and
Support

The ‘MultiFlex’ application development environment
was developed for multi-processor SoC systems, with
networking and communications applications as the first
key drivers. Our previous work was concerned mostly with
the development of multi-processor modeling, debug and
analysis tools [13]. Our current tool developments address
parallel programming models and the mapping of a system-
level application onto multi-processor and hardware
platforms. A brief summary of the supported programming
models is provided here.
4.1 MultiFlex Programming Models

Two parallel programming models are used in the
MultiFlex system. These models are inspired by leading-
edge approaches for large system development, but adapted
and constrained for the SoC domain. These two models are:
• Distributed System Object Component (DSOC) model.

This model supports heterogeneous distributed
computing, reminiscent of CORBA and Microsoft
DCOM distributed component object models. It is a
message-passing model and it supports a very simple
CORBA-like interface definition language, dubbed
SIDL. Although the SIDL syntax is SystemC-like and
therefore very different from CORBA’s, it shares
conceptual similarities. The SIDL description defines
the interface to an object, in a language neutral way. A
compiler is used to process this interface, and generate
the client or server wrappers in the language of choice.

• Symmetric multi-processing (SMP), supporting
concurrent threads accessing shared memory. The
SMP programming concepts used here are similar to
those embodied in Java and C# and the implementation
performs priority scheduling, and includes support for
threads, monitors, conditions and semaphores.

Both approaches have strengths and weaknesses,
depending on the application domain. Here, objects can be
declared as DSOC or SMP and they can be combined in an
interoperable fashion. These programming models and
their implementation are described in detail in [22]. Here,
we focus on the key hardware components of the platform
used to support the DSOC distributed message-passing
model. The IPv4 packet processing application presented
below makes near exclusive use of the DSOC model.

4.2 DSOC Programming Model Support
As we are targeting this platform at high performance

applications, such as network traffic management at
10Gbit/sec line rates, a key design choice is the
implementation of some of the key multi-processing
functions in hardware. Figure 2 illustrates an instance of
the StepNP platform, which includes three DSOC functions
that are implemented in hardware:
• The hardware Message Passing accelerator engine is

used to optimize inter-process communication. It
translates outgoing messages into a portable
representation, formats them for transmission on the
network-on-chip, and provides the reverse function on
the receiving end.

• The hardware Object Request Broker (ORB) engine is
used to coordinate object communication. As the name
suggests, the ORB is responsible for brokering
transactions between clients and servers. Currently, a
simple first-come, first-served load balancing
mechanism is implemented. The ORB engine allows
multiple servers to service a particular service ID. This
allows the immediate direction of a client request to an
idle server, if one is available.

• The Thread Manager is a hardware device that
coordinates the creation and synchronization of
execution threads. All logical application threads are
directly mapped onto hardware threads. No
multiplexing of software threads onto hardware
threads is done. Requests for new threads are sent to
the thread manager, which selects a free hardware
thread to serve the request. The cycle-by-cycle
scheduling of active hardware threads on a processor is
done by the processor hardware, which currently uses
a round robin scheduler.

The end result of this hardware-software partition is that
we are able to sustain end-to-end DSOC object calls from
one processor to another, at a rate of about 10 million per
second, using 500 MHz RISC processors.

5. An IPv4 forwarding application
To illustrate the concepts discussed in this paper, we

have mapped a MultiFlex model of a complete IPv4 fast-
path application of Figure 2 a) onto the multi-processor
execution platform depicted in Figure 2 b).
5.1 Networking application framework

Our application software platform makes use of MIT’s
open source Click modular router framework for the rapid
development of embedded routing-application software
[23]. Figure 2 a) depicts sample Click modules performing
packet classification, discarding, stripping, and queuing.

We have extended the Click IPv4 packet forwarding
model to be compatible with the DSOC programming
model by encapsulating Click functions in SIDL-based
interfaces. The granularity of the partitioning is user-

defined and can be defined at the intra-packet and/or inter-
packet levels. It is the latter that is most naturally exploited
here, due to low inter-packet dependencies.

ParameterizableParameterizable NetworkNetwork--onon--Chip (latency LChip (latency Li, ji, j))

. . .

10 Gb/s
IPv4
packet
forwarding

Memory

Pipe1

PipeP

RISC 1

…..
T1 Tm

Cache

Packet
I/O

Network
Search
Engine

MemoryMemory

DSOC / Click

Object
Request
Broker

Message
passing
wrapper

Task
scheduling

a)

b)

H/W

RISC

Dynamic mapping

Pipe1

PipeP

RISC 40

…..
T1 Tm

Cache

Pipe1

PipeP

RISC 2

…..
T1 Tm

Cache

Figure 2. Platform for IPv4 application

5.2 StepNP target architecture
The target architecture platform used here is depicted in

Figure 2 b). In order to support wire-speed network
processing, a mixed H/W and S/W architecture is used. For
example, at a 10Gbps line rate, the packet processing time
is approximately 40 nsec. To achieve this, the packet I/O
and network address searches are implemented in
hardware. The packet I/O component is implemented using
32 hardware threads. It receives input packets, and controls
the DMA to memory. The network search engine model is
based on ST’s NPSE search engine [24]. The platform was
configured with the following variable parameters:
• RISC processor ISA: ARM v4
• Number of processor pipeline stages: 4
• Processor clock frequency: 500 MHz
• Data/Program cache size: 4 KB
• Number of processors: 1 to 48
• Number of H/W threads (per proc.): 4 to 32
• One-way NoC latency: 0 to 160 ns
• NoC latency jitter +/- 25%

In this experiment, the NoC latency is a configurable
parameter. It represents the total lumped one way delay of a
data item sent between one master (or slave) to another.
We have not attempted to model the detailed behavior of
the NoC interconnect, such as contention, blocking, etc.
Since the latency value used in the experiment was varied
from 0 to 160 ns (or 80 clock cycles at 500 MHz), we
believe this is a realistic upper bound on the effect of NoC
contention or blocking. Moreover, we include a random
jitter on the NoC latency of +/- 25%. This emulates the
effect of out-of-order packet processing.

We assume a simple fine-grained multi-threaded
processor architecture in which there is a different thread in

each of the pipeline stage; thus, for the 4 pipeline stages we
considered, a minimum of 4 threads per processors is
necessary to fully use this resource.
5.3 Multi-processor Compilation and Distribution

Figure 2 illustrates the basic compilation and mapping
process used in the MultiFlex MP compilation and
allocation approach. The three superimposed boxes of
Figure 2 a) represents the processing of three different
packets. The top-level IPv4 application can be partitioned
at two different levels:
• At the inter-packet processing level. For IPv4, the

inter-packet dependencies are very low. This allows
for a high level of natural parallelism. This parallelism
is depicted in Figure 2 a) via the overlapping boxes.
Each packet processing is assignable to a different
thread.

• At the intra-packet processing level. This involves
cutting the processing graph at basic block boundaries.
This is depicted in with the dotted lines illustrating cut
points within a single packet processing.

As explained above, the packet I/O and network address
search functions are manually assigned to H/W. The
remaining IPv4 packet processing is automatically
distributed over the RISC processor threads. The hardware
object request broker load-balances the input from the I/O
object to the IPv4 packet forwarding clients executing on
the RISC processors. When a RISC processor thread
completes the main IPv4 processing, another call is issued
to the I/O object for output transmission.
5.4 IPv4 Results

Some simulation results using a minimum packet length
of 54 bytes are depicted in Figure 3. This depicts the packet
processing rate obtained, normalized for one processor,
while varying the number of hardware threads supported
per processor (from 4 to 32) and the one way NoC latency
(from 0 to 160 ns). Three important observations:
• The highest processing rate achievable for a single

processor is approximately 260 Mb/sec. This provides
a lower bound of 40 processors to target a system
performance aggregate throughput of 10Gb/sec.

• Assuming a perfect, zero latency interconnect, we
observe that the 4 threads configuration nearly
achieves the highest processing rate. However,
realistic latencies cause significant degradation of
processor utilization, dropping below 15% for a 160 ns
latency.

• As the number of threads is increased from 4 to 32, the
NoC latency is increasingly well masked. This results
in high processor utilization (as high as 97%), even
with NoC latencies as high as 160 nsec.

Profiling of the compiled IPv4 application code running
on the ARM shows that 860 instructions are required to
process one packet. Approximately one out of eight (108
out of 860) of these instructions lead to a NoC access. This

high access rate, which is inherent to the IPv4 application
code, highlights the importance of masking the effect of
communication latency.

0

50

100

150

200

250

300

4 8 12 16 20 24 28 32

#Threads

Fo
rw

ar
di

ng
 R

at
e

(M
bp

s)

latency 0

latency 40

latency 80

latency 120

latency 160

Threads

Figure 3. IPv4 Simulation
This example illustrates the importance of the effective

utilization of multiple threads in the presence of high
latency interconnects. For example, in the presence of a
latency of 160 ns, the throughput per processor varies
between 40 Mb/s for 4 threads, to 250 Mb/s for 32 threads.

The inter-processor communication represents only 9%
of the total packet processing instructions. This very low
overhead – especially in this high-speed packet processing
context – is achieved using the hardware-based message
passing and task scheduling mechanisms described above.

Two representative experimental results are summarized
in Table 1. This provides architecture parameters to
achieve 2.5Gbps (OC48) and 10Gbps (OC192).

Table 1. IPv4 Simulation Results

For OC48, a configuration with 16 ARMs with 8 threads

each can support the 2.5Gbps line-rate with a NoC latency
of 40ns. For OC192, a configuration of 48 ARMs with 16
threads each can support a 10Gbps line-rate. Here, we
assumed a higher NoC latency (80ns instead of 40ns) due
to the higher number of processing elements. The total
packet latency for this configuration is 30us.

In comparison with the 2.5Gbps result, a line rate of 4x
is achieved with only 3x processors, in spite of a higher
NoC latency (80ns instead of 40 ns). This is a result of the
higher processor utilization (86%), which is achieved by
using 16 threads instead of 8.

Note that even higher processor utilizations are
achievable. With 40 processors and 24 threads, a 97%

Line-rate #Ar
m

#thread NoC
latency

ARM
utilization

Packet
latency

2.5Gbps 16 8 40ns 67% 16us

10Gbps 48 16 80ns 86% 30us

processor utilization was obtained. However, this does not
offer enough headroom for additional functionality.

For both configurations, 50% of the reported latency to
process a packet is a consequence of the NoC latency
resulting from the required 108 NoC accesses.

Note that the StepNP platform instance used for this
application makes use of standard RISC processors only
(ARM v4 ISA). The use of application-specific instructions
is not warranted in regular IPv4 packet forwarding since
there are very few repeated sequences of operations to
optimize. However, our academic partners demonstrated
that the use of a Tensilica configurable processor optimized
for a secure IPv4 packet forwarding application (using
encryption) led to speedups up to 4.55X over an
unoptimized core [15]. This example better demonstrates
the value of configurable processors in the general StepNP
platform.

6. Summary
The StepNPTM flexible multi-processor SoC platform

consists of multiple configurable hardware multi-threaded
processors, configurable hardware processing elements and
networking-oriented I/O, connected via a network-on-chip.

Using the MultiFlex DSOC distributed message-passing
parallel programming model, combined with hardware
support for message passing and dynamic task allocation,
we achieved a utilization rate of the embedded RISC
processors as high as 97%, even in presence of network-
on-chip interconnect latencies of up to 160ns, while
processing worst-case IPv4 traffic at a 10 Gbps line rate.
Only 9% of processor instructions are required for inter-
processor communication.

7. REFERENCES
[1] J. Henkel, “Closing the SoC Design Gap”, IEEE Computer

Magazine, Oct. 2003, pp. 119-121.
[2] P. Magarshack, P.G. Paulin, “System-on-Chip Beyond the

Nanometer Wall”, Proc. of 40th Design Automation
Conference (DAC), Anaheim, June 2003.

[3] A. Jantsch, H. Tenhunen (Eds.), “Networks on Chip”,
Kluwer Academic Publishers, 2003.

[4] P. G. Paulin et al, “Chips of the Future: Soft, Crunchy or
Hard”, Proc. of Design Automation and Test in Europe
(DATE), Paris, 2004.

[5] B. Ackland et al., “A Single Chip 1.6 Billion 16-b MAC/s
Multiprocessor DSP”, Proc. of Custom Integrated Circuits
Conference, 1999.

[6] J. A. J. Leijten et al., “PROPHID: A Heterogeneous
Multiprocessor Architecture for Multimedia”, Proc. of Int’l
Conference on Computer Design, 1997.

[7] M. Rutten et al., “A Heterogeneous Multiprocessor
Architecture for Flexible Media Processing”, IEEE Design &
Test of Computers, 19(4):39-50, July 2002.

[8] S. Dutta et al., “Viper: A Multiprocessor SoC for Advanced
Set-Top Box and Digital TV Systems”, IEEE Design & Test
of Computers, 18(5):21-31, September 2001.

[9] K. Keutzer, S. Malik, R. Newton, J. Rabaey and A.
Sangiovanni-Vincentelli, “System Level Design:
Orthogonalization of Concerns and Platform-Based Design”,
IEEE Trans. on Computer-Aided Design, 19(12), December
2000.

[10] M. Gries, S. Weber and C. Brooks, “The Mescal
Architecture Development System (tipi) Tutorial”, Technical
Report, UCB/ERLM03/40, Electronics Research Lab,
University of California at Berkeley, October 2003.

[11] M. Sgroi, M. Sheets, A. Mihal, K. Keutzer, S. Malik, J.
Rabaey and A. Sangiovanni-Vincentelli, “Addressing the
System-on-a-Chip Interconnect Woes through
Communication Based Design”, Proc. of Design Automation
Conf., pages 667-672, June 2001.

[12] L. Carro, M. Kreutz, F. R. Wagner and M. Oyamada,
“System Synthesis for Multiprocessor Embedded
Applications”, Proc. of Design Automation and Test in
Europe, pages 697-702, March 2000.

[13] P. G. Paulin, C. Pilkington, E. Bensoudane, “StepNP: A
System-Level Exploration Platform for Network
Processors”, IEEE Design & Test of Computers, vol. 19,
no.6, Nov. 2002, pp. 17-26.

[14] See Tensilica web site: http://www.tensilica.com
[15] D. Quinn et al, “A System-level Exploration Platform and

Methodology for Network Applications Based on
Configurable Processors”, Proc. of Design Automation and
Test in Europe (DATE), Paris, Feb. 2004.

[16] See OCP-IP web site: http://www.ocpip.org.
[17] See ST web site: http://www.stmcu.com/inchtml-pages-

STBus_intro.html
[18] A. Greiner et al, “SPIN: a Scalable, Packet-switched, On-

chip Micro-network, Proc. of Design Automation and Test in
Europe (Designer Forum), Munich, March 2003.

[19] S.-J. Lee et al, “An 800MHz Star-Connected On-Chip
Network for Application to Systems on a Chip”, Proc. of
Intl. Solid-State Circuits Conference (ISSC), San Francisco,
Feb. 2003.

[20] M. Borgatti et al, “A 0.18um, 1GOPS Reconfigurable Signal
Processing IC with embedded FPGA and 1.2GB/s, 3-Port
Flash Memory Subsystem”, Proc. of Intl. Solid-State Circuits
Conference (ISSC), San Francisco, Feb. 2003.

[21] See EASIC Corp. web site: http://www.easic.com.
[22] P. G. Paulin, C. Pilkington, E. Bensoudane, M. Langevin, “A

Multi-Processor SoC Platform and Tools for
Communications Applications”, in Embedded Systems
Handbook, CRC Press, to appear in May 2004.

[23] E. Kohler et al., “The Click Modular Router,” ACM Trans.
Computer Systems, vol. 18, no. 3, Aug. 2000, pp. 263-297.

[24] N. Soni et al, “NPSE: A High Performance Network Packet
Search Engine”, Proc. of Design Automation and Test in
Europe (Designer Forum), Munich, March 2003.

	Main Page
	DF'04
	Front Matter
	Table of Contents
	Author Index

	DATE04

