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Abstract 
In this paper, we explore the requirements of emerging 

complex SoC’s and describe StepNP, an experimental 
flexible, multi-processor SoC platform targeted towards 
communications and networking applications.  

We present the results of mapping an internet protocol 
(IPv4) packet forwarding application, running at 2.5Gb/s 
and 10Gb/s. We demonstrate how the use of high-speed 
hardware-assisted messaging and dynamic task allocation 
in the StepNP platform allows us to achieve very high 
processor utilization rates (up to 97%) in spite of the 
presence of high network-on-chip and memory access 
latencies. The inter-processor communication overhead is 
kept very low, representing only 9% of instructions.   
 
 

1. Introduction 
The continued increase in the non-recurring expenses 

(NRE) for the manufacturing and design of nanoscale 
systems-on-chip (SoC), in the face of continued time-to-
market pressures, is leading to the need for significant 
changes to their design and manufacturing. As discussed in 
[1], [2], these factors are the drivers behind the emergence 
of domain-specific S/W programmable SoC platforms 
consisting of large, heterogeneous sets of embedded 
processors, reconfigurable H/W and networks-on-chip 
(NoC) [3]. Industrial case studies justifying the use of 
various platform components were described in [4].  

2. Survey of Multi-Processor SoC Platforms 
A number of multi-processor platforms designed for 

SoC-scale applications have been described. Daytona [5] 
was an early attempt to reach high DSP performances 
through MIMD processing elements (PE). Each PE 
consists in a 32b GP-RISC and a vector unit with four 16b-
MAC's. The performances reach a peak value of 1.6 billion 
16b-MAC/s, assuming no cache misses. Such results are 
extremely dependent on the instruction locality and require 
homogeneous data stream rates. This would not be 
expected  for applications that are more control dominated.  

The PROPHID [6] based platform, namely Eclipse [7], 
has already been tuned into several dedicated instances. 
Among them is the well-known Viper [8] that provides set-
top boxes applications with relevant multimedia features. 
Unfortunately, the use of numerous application-specific 
hardware accelerators inevitably leads to the high NRE 
costs of ASIC-style design.  

The MESCAL system [9] allows a platform designer to 
build a platform instance in a targeted, domain-specific 
way. This is achieved through a range of activities – 
spanning PE architecture and micro-architecture design, to 
network topology definition – achieved with the assistance 
of the Mescal development system [10]. An OSI-like 
message passing model [11] is used. While this approach 
may be used to achieve the best cost/performance trade-off, 
it still implies high design and maskset NRE’s.  

S3E2S [12] is a design environment for heterogeneous 
multi-processor architectures based on libraries of 
components. A sequential model of the application is first 
translated in a CDFG-like objects graph. Then each object 
is targeted to the most relevant processor selected from the 
libraries. The design-space exploration addresses the CPU's 
choice (ranging from GP CPU, DSP to highly specific 
ones) while taking into account the local memory accesses. 
Message-passing is the only supported communication 
mechanism. Also, the NoC topology and implementation is 
not addressed (nor modeled).  

3. StepNP, a Domain-specific multi-processor 
SoC platform 

Figure 1 depicts the StepNPTM flexible multi-processor 
architecture platform. The StepNP platform includes 
models of configurable processors, a network-on-chip, 
configurable H/W processing elements, as well as 
networking-oriented I/O’s. It embodies what we believe are 
the key features of emerging MP-SoC platforms in order to 
address the requirements for flexibility, rapid platform 
development and platform end-user productivity.  
3.1 StepNP Processors 

It is our conviction that the large-scale use of software 
programmable embedded processors will emerge as the key 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1530-1591/04 $20.00 (c) 2004 IEEE 



  

means to improve flexibility and productivity. These 
processors will come in a wide diversity, from general-
purpose RISC to specialized application-specific 
instruction-set processors (ASIP), with different trade-offs 
in time-to-market versus product differentiation (power, 
performance, cost). Domain- or application-specific 
processors will play an important role in bridging the gap 
between the required ease-of-use and high flexibility of 
general-purpose processors on one end, and the higher 
speed and/or lower power of hardware on the other. 
Configurable processors are one possible means to achieve 
processor specialization from a RISC-based platform.  
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Figure 1. StepNP MP-SoC Platform 

A common requirement for all classes of processors is 
the efficient handling of the latencies of the interconnect, 
memory and co-processors. A variety of approaches can be 
used. These include caching, multi-threading, memory pre-
fetching, and split-transaction interconnect. Multi-threading 
lets the processor execute other streams while another 
thread is blocked on a high latency operation. A hardware 
multithreaded processor has separate register banks for 
different threads, allowing low-overhead switching 
between threads, often with no disruption to the processor 
pipeline.  

The StepNP simulation framework allows easy 
integration of a range of general-purpose to application-
specific processor models. We have integrated public 
domain instruction-set models of the most popular RISC 
processors. To explore various hardware multi-threading 
and pipeline depths, we encapsulate the functional 
instruction-set models into a SystemC model wrapper. This 
produces a cycle-based model implementing a configurable 
hardware multithreading capability and a simple n-stage 
pipeline, as described in [13].  

In order to explore network-specific instruction-set 
optimizations, the Tensilica XtensaTM configurable 
processor model [14] has been integrated by our academic 
research partners [15].  

The first planned StepNP platform implementation will 
use a combination of configurable and reconfigurable 
processors, using configurable embedded sea-of-gates 

(eSoG) and embedded field-programmable gate arrays 
(eFPGA), as explained further.  
3.2 StepNP Interconnect 

The StepNP platform makes a very important 
assumption on the interconnect topology: namely, it uses a 
single interconnect channel that connects all I/O and 
processing elements. An orthogonal, scaleable, 
interconnect approach with predictable bandwidth and 
latency is essential:  
1. It provides a regular, plug-and-play methodology for 

interconnecting various hardwired, reconfigurable or 
S/W programmable IP’s.  

2. It supports the high-level communication between 
processes on multiple processors, and simplifies the 
automatic mapping onto the interconnect technology.  

However, it moves the complexity of the effective use of 
communication resources to the resource allocation tools, 
which must be tuned to the interconnect topology.  

We advocate the recent so called ‘network-on-chip’ 
(NoC) approaches currently under development [3]. Our 
first interconnect channel used in StepNP was based on 
transaction-level models (TLM) of a communication 
channel using the OCP-IP protocol [16], as discussed in 
[13]. The first planned implementation of the StepNP 
platform will be based on an ST interconnect technology, 
the STBus [17]. The STBus protocol supports similar 
advanced features to OCP-IP, for example, out-of-order 
split-transactions. Despite the name, STBus is not a bus per 
se, but is in fact an interconnect generation framework, 
which supports the automatic generation of a range of 
interconnect topologies made up of buses, bridges and 
crossbars. The STBus toolset generates an RTL-
synthesizable implementation. We have integrated the 
STBus SystemC model into StepNP. Other NoC 
approaches are also being investigated:  
• In cooperation with the UPMC/LIP6 laboratory in 

Paris, we have developed a 32 port version of the 
SPIN network-on-chip [18], implemented using ST’s 
0.13 micron process.  

• A ring-based NoC topology is also under development. 
This provides high scalability and can be designed as 
non-blocking, but at the expense of higher latencies.  

• Finally, for the emerging 65nm process technology 
node and beyond, we are exploring globally 
asynchronous, locally synchronous approaches. One 
interesting example of this approach is the Star 
network, which serializes packets and uses 
plesiochronous clocking regions [19].  

A common issue with all NoC topologies is 
communication latency. In 50nm process technologies, it is 
predicted that the intra-chip propagation delay will be 
between six and ten clock cycles [3]. Moreover, the 
increasing gap between processor clock cycle times and 
memory access times further increases the need for latency 



  

hiding. Effective latency hiding is therefore key in 
achieving efficient parallel processing.  

This is the key reason for the adoption of hardware 
multi-threading processors in the StepNP platform. This 
implies that the programming tools must be able to 
automatically exploit this capability. This was achieved 
using hardware assisted dynamic task allocation, as 
described below.  
3.3 Embedded FPGA’s and Sea-of-Gates 

It is our belief that the large majority of end-user SoC 
product functionality will run on the heterogeneous 
embedded processors. However, power and performance 
constraints will dictate partitions where the majority of 
performance will come from a combination of optimized 
H/W, embedded sea-of-gates (eSoG) or embedded FPGA 
(eFPGA), implementing critical inner loops and parallel 
operations, but of lower functional complexity.  

Embedded FPGA’s are used in the StepNP platform to 
complement the processors, but with limited scope. The 
~50X cost and ~5X power penalty of eFPGA’s restricts 
more widespread use. Nevertheless, for high-throughput 
and simple functions, or highly parallel and regular 
computations, eFPGA’s can play an important role. An 
eFPGA test chip was developed in ST’s 0.18 micron 
CMOS process, and results were presented in [20] 

Embedded SoG technology, e.g. such as that proposed 
by eASIC [21], which is configured with one or two masks, 
is another interesting cost and flexibility compromise 
which we are also incorporating in StepNP. A test chip 
including this technology was developed in ST’s 0.13 
micron CMOS process. The 3x to 3.5x cost penalty over 
standard cells is compensated by the lower maskset NRE, 
which can be 10x to 30x lower cost than a complete 
maskset.  
3.4 Configurable Processor Implementation 

The StepNP platform uses eFPGA’s and eSoG in two 
roles. Their first use is for reconfigurable and configurable 
processors. ST has developped and manufactured a 1 
GOPS reconfigurable signal processing chip [20]. This 
combines a commercial configurable RISC core with an 
eFPGA which implements the application-specific 
instructions. In the StepNP physical implementation, we 
extend this approach to use embedded sea-of-gates to 
achieve a low-cost, one-time configurable version of these 
application-specific instructions.  
3.5 Hardware Processing Elements 

The hardware processing elements (H/W PE) of StepNP 
are implementable using a user-defined combination of 
eFPGA’s and eSoG’s. To facilitate interoperability, all 
processing elements communicate to the NoC via a 
standard protocol. The conversion between the H/W PE’s 
internal data representations and the packet-oriented format 
of the NoC (as depicted by the ‘packetization’ blocks of 

Figure 1), is performed by H/W wrappers automatically 
generated by the SIDL compiler described below.  

The key characteristic of the StepNP platform is that, 
although it is composed of heterogeneous hardware and 
software processing elements, memories and I/O blocks, 
the use of a single standardized protocol to communicate 
with a single global NoC allowed us to build a 
homogeneous programming environment supporting 
automatic application-to-platform mapping.  

4. MultiFlex Programming Models and 
Support 

The ‘MultiFlex’ application development environment 
was developed for multi-processor SoC systems, with 
networking and communications applications as the first 
key drivers. Our previous work was concerned mostly with 
the development of multi-processor modeling, debug and 
analysis tools [13]. Our current tool developments address 
parallel programming models and the mapping of a system-
level application onto multi-processor and hardware 
platforms. A brief summary of the supported programming 
models is provided here.  
4.1 MultiFlex Programming Models 

Two parallel programming models are used in the 
MultiFlex system. These models are inspired by leading-
edge approaches for large system development, but adapted 
and constrained for the SoC domain. These two models are:  
• Distributed System Object Component (DSOC) model. 

This model supports heterogeneous distributed 
computing, reminiscent of CORBA and Microsoft 
DCOM distributed component object models. It is a 
message-passing model and it supports a very simple 
CORBA-like interface definition language, dubbed 
SIDL.  Although the SIDL syntax is SystemC-like and 
therefore very different from CORBA’s, it shares 
conceptual similarities. The SIDL description defines 
the interface to an object, in a language neutral way.  A 
compiler is used to process this interface, and generate 
the client or server wrappers in the language of choice.  

• Symmetric multi-processing (SMP), supporting 
concurrent threads accessing shared memory. The 
SMP programming concepts used here are similar to 
those embodied in Java and C# and the implementation 
performs priority scheduling, and includes support for 
threads, monitors, conditions and semaphores.  

Both approaches have strengths and weaknesses, 
depending on the application domain. Here, objects can be 
declared as DSOC or SMP and they can be combined in an 
interoperable fashion.  These programming models and 
their implementation are described in detail in [22]. Here, 
we focus on the key hardware components of the platform 
used to support the DSOC distributed message-passing 
model. The IPv4 packet processing application presented 
below makes near exclusive use of the DSOC model.  



  

4.2 DSOC Programming Model Support 
As we are targeting this platform at high performance 

applications, such as network traffic management at 
10Gbit/sec line rates, a key design choice is the 
implementation of some of the key multi-processing 
functions in hardware. Figure 2 illustrates an instance of 
the StepNP platform, which includes three DSOC functions 
that are implemented in hardware:  
• The hardware Message Passing accelerator engine is 

used to optimize inter-process communication. It 
translates outgoing messages into a portable 
representation, formats them for transmission on the 
network-on-chip, and provides the reverse function on 
the receiving end.  

• The hardware Object Request Broker (ORB) engine is 
used to coordinate object communication. As the name 
suggests, the ORB is responsible for brokering 
transactions between clients and servers. Currently, a 
simple first-come, first-served load balancing 
mechanism is implemented. The ORB engine allows 
multiple servers to service a particular service ID. This 
allows the immediate direction of a client request to an 
idle server, if one is available.  

• The Thread Manager is a hardware device that 
coordinates the creation and synchronization of 
execution threads. All logical application threads are 
directly mapped onto hardware threads.  No 
multiplexing of software threads onto hardware 
threads is done. Requests for new threads are sent to 
the thread manager, which selects a free hardware 
thread to serve the request. The cycle-by-cycle 
scheduling of active hardware threads on a processor is 
done by the processor hardware, which currently uses 
a round robin scheduler.  

The end result of this hardware-software partition is that 
we are able to sustain end-to-end DSOC object calls from 
one processor to another, at a rate of about 10 million per 
second, using 500 MHz RISC processors.   

5. An IPv4 forwarding application 
To illustrate the concepts discussed in this paper, we 

have mapped a MultiFlex model of a complete IPv4 fast-
path application of Figure 2 a) onto the multi-processor 
execution platform depicted in Figure 2 b).  
5.1 Networking application framework 

Our application software platform makes use of MIT’s 
open source Click modular router framework for the rapid 
development of embedded routing-application software 
[23].  Figure 2 a) depicts sample Click modules performing 
packet classification, discarding, stripping, and queuing.  

We have extended the Click IPv4 packet forwarding 
model to be compatible with the DSOC  programming 
model by encapsulating Click functions in SIDL-based 
interfaces. The granularity of the partitioning is user-

defined and can be defined at the intra-packet and/or inter-
packet levels. It is the latter that is most naturally exploited 
here, due to low inter-packet dependencies.  
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Figure 2. Platform for IPv4 application 

5.2 StepNP target architecture 
The target architecture platform used here is depicted in 

Figure 2 b). In order to support wire-speed network 
processing, a mixed H/W and S/W architecture is used. For 
example, at a 10Gbps line rate, the packet processing time 
is approximately 40 nsec. To achieve this, the packet I/O 
and network address searches are implemented in 
hardware. The packet I/O component is implemented using 
32 hardware threads. It receives input packets, and controls 
the DMA to memory.  The network search engine model is 
based on ST’s NPSE search engine [24]. The platform was 
configured with the following variable parameters:  
• RISC processor ISA:   ARM v4 
• Number of processor pipeline stages: 4 
• Processor clock frequency:   500 MHz 
• Data/Program cache size:   4 KB 
• Number of processors:   1 to 48 
• Number of H/W threads (per proc.):  4 to 32 
• One-way NoC latency:   0 to 160 ns 
• NoC latency jitter    +/- 25% 

In this experiment, the NoC latency is a configurable 
parameter. It represents the total lumped one way delay of a 
data item sent between one master (or slave) to another. 
We have not attempted to model the detailed behavior of 
the NoC interconnect, such as contention, blocking, etc. 
Since the latency value used in the experiment was varied 
from 0 to 160 ns (or 80 clock cycles at 500 MHz), we 
believe this is a realistic upper bound on the effect of NoC 
contention or blocking. Moreover, we include a random 
jitter on the NoC latency of +/- 25%. This emulates the 
effect of out-of-order packet processing.  

We assume a simple fine-grained multi-threaded 
processor architecture in which there is a different thread in 



  

each of the pipeline stage; thus, for the 4 pipeline stages we 
considered, a minimum of 4 threads per processors is 
necessary to fully use this resource.  
5.3 Multi-processor Compilation and Distribution  

Figure 2 illustrates the basic compilation and mapping 
process used in the MultiFlex MP compilation and 
allocation approach. The three superimposed boxes of 
Figure 2 a) represents the processing of three different 
packets. The top-level IPv4 application can be partitioned 
at two different levels:  
• At the inter-packet processing level. For IPv4, the 

inter-packet dependencies are very low. This allows 
for a high level of natural parallelism. This parallelism 
is depicted in Figure 2 a) via the overlapping boxes. 
Each packet processing is assignable to a different 
thread.  

• At the intra-packet processing level. This involves 
cutting the processing graph at basic block boundaries. 
This is depicted in with the dotted lines illustrating cut 
points within a single packet processing.  

As explained above, the packet I/O and network address 
search functions are manually assigned to H/W. The 
remaining IPv4 packet processing is automatically 
distributed over the RISC processor threads.  The hardware 
object request broker load-balances the input from the I/O 
object to the IPv4 packet forwarding clients executing on 
the RISC processors. When a RISC processor thread 
completes the main IPv4 processing, another call is issued 
to the I/O object for output transmission.  
5.4 IPv4 Results 

Some simulation results using a minimum packet length 
of 54 bytes are depicted in Figure 3. This depicts the packet 
processing rate obtained, normalized for one processor, 
while varying the number of hardware threads supported 
per processor (from 4 to 32) and the one way NoC latency 
(from 0 to 160 ns). Three important observations:  
• The highest processing rate achievable for a single 

processor is approximately 260 Mb/sec. This provides 
a lower bound of 40 processors to target a system 
performance aggregate throughput of 10Gb/sec.  

• Assuming a perfect, zero latency interconnect, we 
observe that the 4 threads configuration nearly 
achieves the highest processing rate. However, 
realistic latencies cause significant degradation of 
processor utilization, dropping below 15% for a 160 ns 
latency.  

• As the number of threads is increased from 4 to 32, the 
NoC latency is increasingly well masked. This results 
in high processor utilization (as high as 97%), even 
with NoC latencies as high as 160 nsec.  

Profiling of the compiled IPv4 application code running 
on the ARM shows that 860 instructions are required to 
process one packet. Approximately one out of eight (108 
out of 860) of these instructions lead to a NoC access.  This 

high access rate, which is inherent to the IPv4 application 
code, highlights the importance of masking the effect of 
communication latency.  
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Figure 3. IPv4 Simulation  
This example illustrates the importance of the effective 

utilization of multiple threads in the presence of high 
latency interconnects.  For example, in the presence of a 
latency of 160 ns, the throughput per processor varies 
between 40 Mb/s for 4 threads, to 250 Mb/s for 32 threads.  

The inter-processor communication represents only 9% 
of the total packet processing instructions. This very low 
overhead – especially in this high-speed packet processing 
context – is achieved using the hardware-based message 
passing and task scheduling mechanisms described above.  

Two representative experimental results are summarized 
in Table 1. This provides architecture parameters to 
achieve 2.5Gbps (OC48) and 10Gbps (OC192).  

Table 1.   IPv4 Simulation Results 

 
For OC48, a configuration with 16 ARMs with 8 threads 

each can support the 2.5Gbps line-rate with a NoC latency 
of 40ns. For OC192, a configuration of 48 ARMs with 16 
threads each can support a 10Gbps line-rate. Here, we 
assumed a higher NoC latency (80ns instead of 40ns) due 
to the higher number of processing elements. The total 
packet latency for this configuration is 30us.  

In comparison with the 2.5Gbps result, a line rate of 4x 
is achieved with only 3x processors, in spite of a higher 
NoC latency (80ns instead of 40 ns). This is a result of the 
higher processor utilization (86%), which is achieved by 
using 16 threads instead of 8.  

Note that even higher processor utilizations are 
achievable. With 40 processors and 24 threads, a 97% 

Line-rate #Ar
m 

#thread NoC 
latency 

ARM 
utilization 

Packet 
latency 

2.5Gbps 16 8 40ns 67% 16us 

10Gbps 48 16 80ns 86% 30us 



  

processor utilization was obtained. However, this does not 
offer enough headroom for additional functionality.  

For both configurations, 50% of the reported latency to 
process a packet is a consequence of the NoC latency 
resulting from the required 108 NoC accesses.  

Note that the StepNP platform instance used for this 
application makes use of standard RISC processors only 
(ARM v4 ISA). The use of application-specific instructions 
is not warranted in regular IPv4 packet forwarding since 
there are very few repeated sequences of operations to 
optimize. However, our academic partners demonstrated 
that the use of a Tensilica configurable processor optimized 
for a secure IPv4 packet forwarding application (using 
encryption) led to speedups up to 4.55X over an 
unoptimized core [15]. This example better demonstrates 
the value of configurable processors in the general StepNP 
platform.  

6. Summary 
The StepNPTM flexible multi-processor SoC platform 

consists of multiple configurable hardware multi-threaded 
processors, configurable hardware processing elements and 
networking-oriented I/O, connected via a network-on-chip.  

Using the MultiFlex DSOC distributed message-passing 
parallel programming model, combined with hardware 
support for message passing and dynamic task allocation, 
we achieved a utilization rate of the embedded RISC 
processors as high as 97%, even in presence of network-
on-chip interconnect latencies of up to 160ns, while 
processing worst-case IPv4 traffic at a 10 Gbps line rate. 
Only 9% of processor instructions are required for inter-
processor communication.  
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