

Low Energy Security Optimization in Embedded
Cryptographic Systems

 Catherine H. Gebotys
Dept of Elec and Comp Engineering

University of Waterloo
Waterloo, Ont, Canada

(519)885-1211
cgebotys@uwaterloo.ca

ABSTRACT
Future embedded and wireless devices will be increasingly
powerful supporting many applications including one of the most
crucial, security. Although many wireless and embedded devices
offer more resistance to bus probing attacks due to their compact
size, susceptibility to power/electromagnetic attacks must be
analyzed. This paper presents optimized synthesis of new low
energy masking countermeasures into cryptographic software. In
particular a model for key masking with the objective of
minimizing energy overhead is presented. Experimental results
using real power measurements are shown to support up to 2.5
energy overhead savings and improved security compared to
previous research. With the emergence of security applications in
PDAs, cell phones, line card accelerators, etc, optimizing low
energy countermeasures for resistance to power/ electromagnetic
attacks is crucial for supporting future secure embedded devices.

Categories and Subject Descriptors
C.3 [Special Purpose and Application Based Systems].

General Terms
Design, Security.

Keywords
Power Analysis, Smart Cards, Embedded, Countermeasure.

1. INTRODUCTION
A wide range of embedded security will proliferate in automobile
electronics, security for IP core protection in FPGAs and ASIC
technologies, wireless devices such as PDAs, cell phones, and
other areas. The cryptographic algorithms which are essential for
these applications are typically run by embedded processors. As
more security applications migrate to the wireless device, low
energy resistance to attacks on the PDA or cell phone will become a
necessity. Other embedded systems, such as line card accelerators,
VPN systems, require high performance security. Unfortunately

cryptographic algorithms are already known to consume significant
amounts of energy [2]. Even worse, cryptographic algorithms which
are resistant to attacks are known to have latency overheads up to
1.9 times[5]. These attack resistant algorithms have been developed
for smartcard applications, where energy dissipation or high
performance is not viewed as important. These attacks may not only
arise from device theft or loss but also during everyday use where
unintentional electromagnetic (EM) waves radiated from the
wireless device during cryptographic computations may leak
confidential data to a nearby attacker. Researchers have already
demonstrated that this new attack is viable[8]. Since EM waves are
highly correlated with power, ensuring wireless devices are secure
from power analysis attacks is important. Nevertheless large
overheads in energy to achieve this resistance may not be practical.
Both low energy and high performance constraints are often not
considered in smart card research, where the main objective is to
provide highest resistance to power analysis attacks or tampering at
the lowest cost. Outside of smartcard research (which typically has
been in the past limited to cheaper 8 bit or 16 bit processors), few
researchers have examined secure implementations of cryptographic
software under the threat of power attacks on 32 bit processors. For
example a very popular embedded processor is the ARM which is
suitable for portable devices ranging from game devices to PDAs to
cryptographic applications [5]. There is an important need to study
energy optimized countermeasures for wireless portable devices,
constrained by energy, or other embedded devices constrained by
performance.
 Typically smart card applications are not time critical
and energy dissipation is not a major concern since power is attained
from the card reader (or ATM machine, etc). The measurement of
power while a processor is executing an application (or a power
trace) has been used in power-attacks of cryptographic devices, such
as smart cards[1]. In particular the analysis of the variation of
power, and computations on a number of power traces can be used
to detect data and algorithmic dependencies[1]. This research
studied the correlation of power variation with data values being
manipulated and instruction sequencing[6]. For example hamming
weight attacks have been studied by correlating the power for
loading data with the hamming weight of the data[4]. In the former
case, known as differential power attacks (DPA). Differential power
attacks of embedded low power processors have not been reported
in the literature. Higher order differential attacks[10] are an
extension of the 1st order DPA which involve using joint statistics
on multiple points within power traces.

Some countermeasures to these attacks have been
suggested such as secret splitting[7], and random masking[5]. Secret
splitting, involves splitting the secret data into smaller pieces and
combining them with random data [7]. Then the cryptographic

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
CODES+ISSS’04, September 8–10, 2004, Stockholm, Sweden.
Copyright 2004 ACM 1-58113-937-3/04/0009...$5.00.

224

algorithm is run on each word, which is composed of random and
secret data. When the table look ups (know as Sbox tables) are
encountered, the key splitting approach requires the tables to be
larger and requires an extra table. In the masking countermeasure,
each secret piece of data is exclusive-or’d with a random data value
(called a mask). Remasking the tables (or exclusive-or each table
entry with a mask) within the algorithm is performed when the mask
changes. In [5] remasking is suggested for every invocation of the
algorithm (to thwart hamming weight attacks), whereas in [9] it is
suggested for each round key. Overheads in latency[5] have been
reported up to 1.9 times for AES (a standardized encryption
algorithm). These overheads are largely due to remasking of tables,
so some researchers have investigated storing a limited number of
masked tables [9]. The authors define the terms key XORing DPA
and Sbox DPA. The key XORing DPA was an attack on the result
of exclusive oring the plaintext with the (masked or unmasked) key.
The Sbox DPA was an attack on the (masked or unmasked) output
of the Sbox table. In both attacks it is assumed that the attacker has
control over the input plaintexts which are exclusive or’d with the
key to index the Sbox table. However results using real power
measurements were not performed. Later a second order DPA attack
was developed [10] using the key XORing or “data whitening” as an
example. A second order is required since the power sample of the
mask and the power sample of the XOR result are used (in an nth
order DPA n power samples are required). Other research has
avoided the use of table to support masking during key
generation[14], however the use of tables provides significant
performance improvements. Even though cryptographic algorithms
often have symmetry, masking through key generation is difficult to
perform by hand, due to the way round keys are generated and
manipulated. Researchers have explored splitting the secret data,
however splitting the masking data which is needed to obtain the
secret data has not been explored.

Although integer linear programming (ILP) optimization
is NP complete in general, it becomes practical in many instances
when the problems have structure (such as network flow, matching,
and other problems). Automatic mapping into a ILP can be
supported with logical inferences. In particular if the ILP can be
formulated from all Horn clauses, then this model can be solved
optimally in polynomial time[11]. However it has also been shown
that many logical inference models can be solved as a relaxed LP
even though they are not Horn clauses[12].

Power analysis countermeasures must be energy
optimized and/or performance optimized for many embedded
systems such as wireless device implementation or VPN
accelerators. A methodology for incorporating optimized masking
countermeasures for cryptographic algorithms is presented with the
objective of minimizing the energy overhead. The key generation
phase is extracted from the algorithm and an ILP model is generated
using logical inferences. The energy overhead is minimized and the
model solves for the best masking with high order security. Attacks
are discussed using high order DPAs as well as hamming weight
information which an attacker may possibly obtain. Constraints to
support mask randomization can also be incorporated as well as
loop and conditional branch support. Unlike previous research,
masks are split (split masks) through key generation such that the
final mask on the round keys are never explicitly computed,
enforcing a higher order security. Significant energy overhead is
saved by eliminating the need to remask tables within the
cryptographic algorithm.

2. METHODOLOGY FOR SECURITY
This section will describe the methodology for synthesizing the low
energy masking countermeasure into a cryptographic application.
Initially this methodology focuses on the key generation stage of the
cryptographic application (however in theory it could be extended
into the encryption stage as well). The methodology first determines
the lower bound on the memory overhead and energy overhead for
implementing the masking countermeasure on the cryptographic
application. It then investigates constraints on the memory size and
minimizes the total energy overhead of the countermeasure. If the
energy overhead is too high, the memory size is increased and the
optimization problem is rerun. The methodology utilizes an
optimization model to obtain bounds and synthesize the masking
solutions. The cryptographic application or key generation task is
first converted into propositional logic. Next the logic is converted
into the conjunctive normal form and finally into the linear
mathematical form. The logical variables are replaced by binary
variables. This will be further illustrated in section 3.

To provide key security, the master key is initially masked
with a set of masks (since the key is typically 128bits or more).
Masks are then introduced throughout the key generation (which
generates numerous round keys to be used later in
encryption/decryption). A mask set is generated from an initial set of
masks (masks of the master key) by combining all possible masks to
create new masks. The final round keys are constrained to have a
fixed mask. In the model the user can fix this value as a combination
of given masks within the mask set or the model can determine the
best fixed final mask. If the user fixed this value, security constraints
can be added to ensure resistance to 1st and 2nd DPA attacks. This
final fixed mask for the round keys supports the use of one masked
table to be used during encryption (without requiring energy
expensive table regeneration). The optimization problem minimizes
the additional operations (masking, loading of masks, conversion of
masks,etc). In general both boolean masking and arithmetic masking
may be required depending upon the operations within the key
generation algorithm. Both are supported in this methodology and
conversion between the maskings are also accounted for in the
energy objective.

This paper will illustrate the methodology using Boolean
masking within Rijndael[15] (or AES) a current standard for
encryption. In Rijndael the 128 bit master key, represented by rk(0),
rk(1), rk(2), rk(3) is input to the key generation algorithm. The key
generation algorithm derives all round keys rk(4), rk(5),…,rk(43)
for use in the Rijndael encryption algorithm. The following code
represents part of the key generation followed by part of the
encryption algorithm (using Tables Te0-3), where ⊕ represents the
exclusive or operation:
For i = 0 to4{

rk(8i+4) = keyrotate(rk(8i+3) ⊕ rcon(i) ⊕ rk(8i+0)
rk(8i+5) = rk(8i+1) ⊕ rk(8i+4)
rk(8i+6) = rk(8i+2) ⊕ rk(8i+5)
rk(8i+7) = rk(8i+3) ⊕ rk(8i+6) … }

… s0 = pt ⊕ rk0 ; s1 = pt1 ⊕ rk1 ; …
t0=Te0(s0>>24) ⊕ Te1(s1>>16) ⊕ Te2(s2>>8) ⊕ Te3(s3) ⊕ rk4
…
s0 =Te0(t0>>24) ⊕ Te1(t1>>16) ⊕ Te2(t2>>8) ⊕ Te3(t3) ⊕ rk8
…

225

Since all round keys will have a fixed value of mask, table
regeneration is not required (since tables are precomputed once
for all keys). By eliminating the table regeneration, the Rijndael
encryption will have high performance and significantly lower
energy dissipation. This section will describe a model for
automating the masking process such that energy overhead is
minimized. The model will be illustrated for AES key generation
which is one of the most complex key generation algorithms, as
described in the previous section. The model will determine the
optimal values of masks (shown below as mmasked(), mfinal())
such that the energy overhead is minimized. For example the AES
example now becomes generalized (with masked tables
masked_Te0-3 being accessed by all round keys)
For i = 0 to 4{

rk(8i+4) = keyrotate(rk(8i+3) ⊕ rcon(8i+0) ⊕
rk(8i+0)
rk(8i+0) ⊕ =mfinal(0) ; rk(8i+4) ⊕ =mmasked(4)
rk(8i+5) = rk(8i+1) ⊕ rk(8i+4)
rk(8i+1) ⊕ =mfinal(1) ; rk(8i+5) ⊕ =mmasked(5)
rk(8i+6) = rk(8i+2) ⊕ rk(8i+5)
…rk(8i+7)=rk(8i+3) ⊕ rk(8i+6) …}

… s0 = pt ⊕ rk(0) ; s1 = pt1 ⊕ rk(1) ; …
t0 = masked_Te0(s0>>24) ⊕ masked_Te1(s1>>16) ⊕
masked_Te2(s2>>8) ⊕ masked_Te3(s3) ⊕ rk4; …

The next section will introduce the notation, model and
extensions for supporting optimized masking for energy, memory
and security constraints.

3. MODEL FOR ENERGY MASKING
Let },...2,1,0{ nrk = represents the set of n round keys,

},,{ finalmaskedoriginaltype = represents the type of round key
(original, masked or final masked), and

},,...,,...,1,0{ mnullmmmimmmask = represents the set of m+1
masks to be considered (where mnull represents no mask, for
example in boolean and arithmetic masking it is all zeros). When
a round key is first defined it’s type is original. It may be masked
or unmasked in this state, depending upon whether the values
used to generate it were masked or not. When a specific mask is
then used to further mask the round key it becomes the type
masked (and is used to generate other new round keys). Finally
when the round key is explicity masked for a second time its type
becomes final (so that all round keys have the same final mask).
In this model we assume that round keys are explicity masked at
most two times (although this can be modified easily). The type of
the round key has an ordering over time represented as

finalmaskedoriginal →→ . For example typetttt ∈→ 2,1,21 ,
can be used to represent t1,t2 as original, masked respectively or
t1,t2 as masked, final. The notation, kji rkrkrk =⊕ represents the
exclusive or of round keys i and j to produce round key k. The
binary variable ,, mtrx is one when the round key r of type t has

the mask, m. The binary variable ,, mtrmask is one when mask m

is used to create r of type t. The binary variable mmaskexists is
one if the m is loaded from memory as a mask for one or more
round keys. The binary variable mlemasked_tab is one if the
masked table input mask is m, where iim tablemaskedtable _=⊕ ,
where table is the original unmasked table. The following
parameters are used to describe the model:

 , , opnload EE represent the energy required to load a data word
from memory and to perform an operation opn.

The energy overhead of the synthesized masking can be used as
an objective function or in a constraint. Since each round key is
assumed to be explicitly masked two times (2n) at the most, the
second term of the energy function in (1) subtracts the number of
unused masks (mnull) to obtain the number of additional
operations used for masking. The first term in (1) is the number of
masked used in total. The memory overhead can also be
represented with the number of masks to be stored in memory.

×=

−+

=

∑

∑

∑

∈

∈∈
⊕

∈

maskm
mm

typetrkr
mnulltr

maskm
mload

masksizemaskexists

masknE

maskexistsE

 overheadMemory

2

 overheadEnergy

,
"",, (1)

The following constraints in (2) are used to ensure the binary
variables assign one mask to each type of round key and the
masked table has one input mask.

1_

|,,1

,,1

,,

,,

=

≠∈∈∀=

∈∈∀=

∑
∑
∑

m
m

m
mtr

m
mtr

tablemasked

originaltypetypetrkrmask

typetrkrx

 (2)

Round keys can be masked or not masked within the
algorithm at most two times. The round key masking inequality is
first converted to propositional logic. For example the logical
inference: if irk has an original mask m1 (proposition p1) and

irk has a resultant mask m3 (p3) then the mask m2 was applied
(p2) (where m1 ⊕ m2=m3); can be represented by

2)31(ppp →∧ . Next the propositional logic can be transformed
into this disjunction 2)31(ppp ∨∧¬ . This disjunction becomes

231 ppp ∨¬∨¬ . Since there is no more than one non-negated
term, it is called a Horn clause. This disjunction be translated
directly into an inequality, by replacing the first two negative
propositions by one minus the binary variables, translating the ∨
symbol into an addition and setting the expression to greater than
or equal to one. The inequality (3) illustrates the final form of this
constraint.

21,321|
3,2,1,

,111 2,2,3,2,1,1,

ttmmm
maskmmmrki

maskxx mtimtimti

→=⊕
∈∈∀

≥+−+−

 (3)

The cryptographic operations which generate round
keys are next used to formulate constraints for the model. For
AES key generation, the round keys are generated from the
exclusive or of other round keys. The unmasked round key
generation from AES key scheduling, in general, is represented by

kji rkrkrk =⊕ . When irk and jrk are masked, the equation

becomes ,)3()2()1(kji rkmrkmrkm ⊕=⊕⊕⊕ for any m1, m2,

226

m3 321 where mmm =⊕ . The round key generation inequality is
derived from the logical inference : if irk has mask m1 and krk

has mask m3 then jrk must have mask m2. This Horn clause
becomes transformed into the inequality (4). For example from
the previous section, for i=0, this constraint is generated for round
key operations rk5=rk1 ⊕ rk4 , by 4 ⊕ 5=1 (for i ⊕ j=k in (4)).

kjimaskmmmrkkji

x

xx

mmaskedj

moriginalkmmaskedi

=⊕∈∈∀

≥+

−+−

|3,2,1,,,

,1

11

2,"",

3,"",1,"",

 (4)

The next inequality involves a second type of operation
from AES key generation, where some round keys are generated
from the exclusive or of a round key and a table look up. For
example,)0()(034 conrkrkkeyrotaterk ⊕⊕= , where the
keyrotate() table has a masked output and con(0) is a constant.
This round key generation for masking purposes will be
represented as)0()4(rktablerk ⊕= in the model. Again the
inequality is formed from logical inferences as given below in (5).

ktableimaskmmmrkki
tablemasked

xx

m

moriginalkmmaskedi

=⊕∈∈∀
≥+

−+−

|3,2,1,,
,1_

11

2

3,"",1,"",

 (5)

The variable mmaskexists can be defined from the
variable ,, mtrmask using the two generalized upper bound
inequalities as given in (6).

In this masking optimization problem the final mask of
all the round keys must be the same to avoid table regeneration. In
AES, to reduce the number of variables, four masks ma,mb,mc,md
and all combinations of them are considered in generating the set
mask. The masking begins by masking the 128bit master key,
represented as four 32bit (round keys) words 0, 1, 2, 3 with
ma,mb,mc,md. The final mask on all round keys is set to

mdmcmbma ⊕⊕⊕ (where maskmabcd ∈ represents this
mask). Respectively this can be represented by the following
settings of constraints on variables in (7).

mnullmmaskmfinalmaskedtype

maskexistsmask

mnullmmaskmtypetrkr
maskexistsmask

m
typetrkr

mtr

mmtr

≠∈∈∀

≥

≠∈∈∈∀

≤

∑
∈∈

|},,{1

,

|,,
,

1,
,,

,,

 (6)

To ensure that the final mask is never computed (to
avoid a 2nd order DPA attack) we add the following security
constraint, (8). Unlike previous research[9], the masks of each
round key are never computed (since they automatically result
from masking before the key generation process), hence a higher
security is achieved.

rkrx
mdmcmbmammaskexists

xx

xx

mabcdfinalr

m

mdoriginalmcoriginal

mboriginalmaoriginal

∈∀=
∈∀=

===

=

,1
},,,{,1

,1

,"",

,"",3,"",2

,"",1,"",0

 (7)

typetrkrmask mabcdtr ∈∈∀= ,,0,, (8)
The general model illustrated for AES key generation

can also support loops. For example in AES, the mask of round
key 0 must be the same as the mask for round key 8, to support

the loop in section 2. To support this loop, eight round keys (0 to
7) are used and inequality (4), for i ⊕ j=k, would be generated for
5 ⊕ 0=1 instead of 5 ⊕ 8=9, 6 ⊕ 1=2 instead of 6 ⊕ 9=10, etc.
Conditionals can also be supported (although these constructs are
not advisable in security algorithms since their power profiles are
easily identifiable, thus leaking information) by adding constraints
that the variables must have the same mask after conditional
blocks have been exited. The model can also support mask
randomization (where random values are used to change hamming
weights of pairs of masks in key generation). Randomization
allows the individual mask values to change (thus thwarting
hamming weight attacks), yet provides minimized energy
overhead by keeping the final mask for round keys fixed. For
example additional costs on certain masks would be added for
extra energy overhead with randomization. As an example
consider randomizing masks ma through md with random values
r1, r2, where ma ⊕ =r1, mb ⊕ =r1 and mc ⊕ =r2, md ⊕ =r2. The
final fixed mask input to the tables (ma ⊕ mb ⊕ mc ⊕ md) does not
change (since r1 and r2 cancel out), however many other masks
will be randomized. For example, consider mi, where mi=ma ⊕ mc
, randomizing the masks will require that mi be updated by
r1 ⊕ r2, hence adding additional energy overhead which must be
accounted for. Alternatively one can provide complete
randomization of all masks and intermediate masks, using random
values rx, ry, rz, rw (where rw = rx ⊕ ry ⊕ rz) , where ma ⊕ =rx,
mb ⊕ =ry and mc ⊕ =rz, md ⊕ =rw.

Other key generation operations [13] such as rotation,
permutation, shifting, addition, etc can also be supported in the
model. This is facilitated through the use of mask sets where a
general operation is represented by a mapping from one or two
sets of masks into one other mask. For example in DES the
subkey gets successively rotated by 1 or 2 bits in each round in
DES. Since the rotated subkey at each round becomes joined and
permuted in a fixed way to become the round key, the
optimization for masking involves the subkey (which directly
transforms into a round key). Depending upon the memory
requirements of the application the user can define different sized
mask sets to be used in the optimization algorithm. Specifically
the mask set can be initiated with an initial mask on the first
subkey, m. For example by supporting masks of at most 2bit
rotations, one would support
masks:),)2((),)1((,2,1, mmmmmmm ⊕⊕ <<<<

))2()1(()),2()1((mmmmm ⊕⊕⊕ <<<< , or as represented in
the model as m0,m1,m2,m3,m4,m5,m6 respectively, where < w
represents rotation to the left by w). For example an inequality
supporting masking of a subkey or round key, i, (where srk is the
set of round keys and subkeys) could be represented in (9).

21,013|
3,0,1,,

,111 1,2,0,2,3,1,

ttmmm
maskmmmsrki

maskxx mtimtimti

→=⊕
∈∈∀

≥+−+−

. (9)

 For example since the subkey is successively rotated, a larger
mask set may support rotations up to x bits, x>2. In this example a
final fixed mask could be chosen as any of m2 through m7. The
model can also be applied to arithmetic masking where instead of
the exclusive or operation, one would use the modulo addition
operation.

227

4. EXPERIMENTAL RESULTS
The ILP optimization model results, the energy

overheads, and evaluation of the low energy countermeasure
security will be presented in this section. The optimization model
was solved using IBM’s OSL optimization software on a PC
laptop. Real power measurements were used to evaluate the
security and energy of the optimization technique. A high sample
rate oscilloscope, a trigger probe, a differential probe and an
ARM7TDMI evaluation board (providing access to the core’s
power supply) were used to acquire power traces. The differential
probe measured the instantaneous current drawn on the 3.3V
ARM7TDMI processor core power supply line. In this paper we
will refer to the processor current as the power consumed (since
the supply voltage was assumed to be stable at 3.3V). The trigger
signal was controlled by software and measured with a probe in
order to synchronize the measurements. The scope sampled at
rates up to 2.5Gsamples/sec, and allowed many power traces to be
acquired automatically. The evaluation board had the 16/32 bit
ARM7TDMI RISC processor core on one chip separate from the
memory. Hence all the power measurements reflect the processor
core power consumption only and not the input/output buffer
power or memory power. The ARM7TDMI could be set to
different clock frequencies (up to 56MHz) and utilized a three
stage pipeline. This ARM processor core is often referred to as a
low power processor consuming on average 0.6mA/MHz at 3V.

The ILP optimization model was created for AES and
DES. In AES, loops were supported and masking on the 8 round
keys was optimized for energy. The model had 673 variables and
7.9K equations, requiring 23 nodes in the branch and bound tree
to minimize the energy overhead with given memory constraints.
Another model for masking with 16 round keys had 1313
variables and 15.8K equations and solved the optimization with
only 19 nodes searched in the branch and bound tree. The small
number of nodes in the branch and bound tree is most likely due
to the Horn clauses and logic inference structure in the ILP
similar to previous research findings[12]. In AES the minimum
energy solution utilized 9 masks and the minimum memory sized
solution used 6 masks.

Figure 1 illustrates the energy overhead of the previous
research where table regeneration is required compared to the
optimized approach presented in this paper. The energy required
to regenerate the tables in AES is an order of magnitude larger
than the energy required to encrypt 128bits of data. In DES the
table regeneration energy is approximately 5 times larger than
encryption 64bits of data in DES. The total energy for key
generation and encryption of 2KB using AES and DES is shown
in figure 1a) due to the optimization approach (OptMask), and
previous research requiring table regeneration after every 64
(TblR64) and 16 (TblR16) bytes of data being encrypted. Figure
1b) illustrates the energy overhead required by the
countermeasures during encryption with table regeneration (scaled
by 0.1), previous masking and optimized masking for 2KB of
data. For 128bits of data, the energy savings is 2.5 times over
previous masking approaches where masking is only performed
within the encryption (without accounting for table regeneration).
In comparison with [9] which requires at least double the number
of tables, our approach also requires less energy since a smaller
memory could be used. For example, one set of tables is required
along with storage of 20 words, for 4 masks (ma,mb,mc,md) and

16 intermediate masks (for the masking solution of 16 round keys
within a loop).

To evaluate the security of the low energy optimized
masking countermeasure, both hamming weight attacks (for non-
randomized implementation) and DPA attacks were analyzed.
Although our real power measurements were unable to correlate
the power to hamming weights, assuming it may be possible with
other processors, the security was evaluated. Fig 2a) illustrates the
number of possible key guesses which could be derived from the
hamming weight of the key, mask and the exclusive or,
key ⊕ mask. Figure 2a) illustrates a hamming weight attack
possible on previously researched masking. The optimized
approach uses multiple masks, hence the number of key guesses

a)

0

200

400

600

800

1000

AES DES

OptMask

TblR64

TblR16

b)

0

20

40

60

80

AES

TblReg0.1

Prev Mask

OptMask

Fig 1. a) Energy comparison (uJ) for 2KB data encryption
using previous researched techniques and the optimized
approach (OptMask). Energy Overheads in b).

possible given the hamming weight of the first mask (m1), the
second mask (m2), the key and the exclusive or of all three
(m1 ⊕ m2 ⊕ key) is illustrated in Fig 2b). In both cases the
maximum number of possible solutions is 601 million solutions
(for a number of hamming weight combinations). The average
number and sum of key guesses increased by 8 and 280 times
respectively in b) over a). Hence security has increased for the
low energy split masks countermeasure optimization.
The second order (from previous research) and third order (from
optimized approach) DPA results were obtained using real power
measurements. A third order DPA (requiring three power
samples) is required for this optimized split mask approach since
power samples of mask ma ⊕ mb , mask mc ⊕ md, and the
exclusive or results of the masked round key (whose final mask is
mabcd) and the plaintext are necessary. A second order DPA can
only be supported if the mask mabcd was computed (using two
power sample : mask mabcd and the exclusive or result) and in
our optimized approach the security constraint ensures it never is
computed. The results are shown in figure 3a) and b) respectively.
In figure 3a), after 2500 power traces, the 2nd order DPA
incorrectly predicts only 1 key bit out of 32 bits. However in Fig
3b) (the third order DPA) after analysis with 4500 power traces,
12 key bits were incorrectly predicted out of 32 bits. These results
also support the increased security from using optimized split
masks.

228

a) b)
Fig. 2. Number of key guesses for one a), and two split masks
b).

a) b
Fig. 3. The 2nd a), and 3rd b) order DPA results using real

power.

5. DISCUSSION AND CONCLUSIONS
This paper presented for the first time an optimization

based methodology using split masks and masking before key
generation to provide a low energy countermeasure for embedded
cryptographic applications. However for embedded systems where
energy is not as important as security, this optimized methodology
can also be used with table regeneration, such that new random
values of ma,mb,mc,md are generated for each AES task or round.
For the low energy countermeasure, where tables are not
regenerated, added security (requiring no less than a 3rd order
DPA) is provided through the split masks. Hamming weight
attacks are also investigated, and found to add security over a
single mask case. Furthermore real power results illustrate the
difficulty of obtaining the key values from a 3rd order DPA. Hence
the security has been assessed along with the energy overhead
savings to support this optimization methodology as being useful
for many embedded energy constrained systems. Results with real
power measurements for the ARM7TDMI processor core showed
that finding all bits of the secret key required more than 4500
power traces (unlike previous research which investigated only a
few bits on an 8 bit processor[10]), indicating that this low-energy
high-performance countermeasure is very powerful and suitable
for embedded or wireless devices. The countermeasure was
focused on the key XORing attack previously studied[10].
However other attacks, such as the Sbox DPA attacks exist, and
low energy countermeasures for these should also be
incorporated.

This study presents a methodology for optimized
masking and for minimizing the memory and energy overheads of
power analysis countermeasures for cryptographic applications.
Unlike previous research [9,10], an optimization approach has
been developed to aid countermeasure synthesis within an
application. The optimization model uses a new concept called
split masks, which unlike previous research which splits the key,
this approach splits the mask of the key into multiple masks
enforcing a higher order DPA. Real power measurements have
confirmed the higher resistance to DPA and hamming weight
attacks. Most important the reduction in energy dissipation is
significant compared to previously researched approaches and can
be optimized within a model supporting memory and security
constraints. This research is crucial for supporting low energy and
high performance security for embedded systems which will be
prevalent in wireless and embedded devices designed with
nanometer technologies of the future. The author thanks S.Bulgin
for his work and financial support from NSERC, CITO, and RIM.

REFERENCES
[1] P.Kocher, J.Jaffe, B.Jun “Differential Power Analysis”
Crypto’99, LNCS 1666, 1999
[2] S.Ravi, etal. “Securing Wireless Data: System architecture
challenges”, ISSS, 2002, pp.195-200.
[3] J.Coron, etal. “Statistics and secret leakage” LNCS 1962,
2001, pp.157-173.
[4] T.Messerges, etal. “Investigations of Power analysis attacks on
Smartcards” USENIX workshop on Smartcard Technology, 1999.
[5] T.Messerges, “Securing the AES finalists against power
analysis attacks” LNCS 1978, 2001, pp.150-164.
[6] C.Gebotys “Design of Secure Cryptography against the threat
of power-attacks in DSP embedded processors”, ACM
Transactions on Embedded Computer Systems, Vol.3, No.1,
February 2004, pp92-113.
[7] S.Chari, etal. “Towards sound approaches to counteract
power-analysis attacks”, LNCS 1666, 1999, pp.398-412.
[8] D.Agrawal, etal. “The EM side-channel…methodologies” at
http ://www.research.ibm.com/intsec/emf.html
[9] K.Itoh etal. “DPA countermeasure based on the masking
method”, LNCS 2288, 2002,pp.440-456.
[10] T.Messerges “Using 2nd Order Power Analysis to attack DPA
resistant software”, LNCS 1965, 2000 pp.238-251.
[11] Chandrasekharan “Integer Programming problems..works”,
Progress in Comb.Opt. 1984, pp.101-6.
[12] Hooker “Resolution vs Cutting plane ..problems” Oper. Res.
Letters Vol.7,No.1(1), 1988.
[13] B. Schneier, Applied Cryptography, J.Wiley, 1996.
[14] J.Golic “Multiplicative Masking and power analysis of
AES”, CHES 2002.
[15] http://csr.nist.gov/encryption/aes/rijndael/Rijndael.pdf.

229

	Main Page
	CODES+ISSS'04
	Front Matter
	Table of Contents
	Author Index

