
A Novel Deadlock Avoidance Algorithm and Its Hardware
Implementation

Jaehwan Lee
Georgia Institute of Technology

Atlanta, Georgia, U.S.A.

jaehwan@ece.gatech.edu

Vincent John Mooney III
Georgia Institute of Technology

Atlanta, Georgia, U.S.A.

mooney@ece.gatech.edu

ABSTRACT
This paper proposes a novel Deadlock Avoidance Algorithm
(DAA) and its hardware implementation, the Deadlock Avoid-
ance Unit (DAU), as an Intellectual Property (IP) core that
provides a mechanism for very fast and automatic dead-
lock avoidance in MultiProcessor System-on-a-Chip (MP-
SoC) with multiple (e.g., 10) processing elements and multi-
ple (e.g., 40) resources. The DAU avoids deadlock by not al-
lowing any grant or request that leads to a deadlock. In case
of livelock, the DAU asks one of the processes involved in the
livelock to release resource(s) so that the livelock can also
be resolved. We simulated two realistic examples that can
benefit from the DAU, and demonstrated that the DAU not
only avoids deadlock in a few clock cycles but also achieves
a 37% speed-up of application execution time over avoiding
deadlock in software. Finally, the SoC area overhead due to
the DAU is small, under 0.01% in our example.

Categories and Subject Descriptors: C.3 [Special-Purpose
and Application-Based Systems]: Real-time and Embedded
Systems–Hardware Support; D.4.1 [Software]: Operating
Systems–Deadlock

General Terms:Algorithms, Design, Experimentation

Keywords: Deadlock Avoidance Hardware IP design

1. INTRODUCTION AND MOTIVATION
In most current embedded systems, deadlock is not a crit-

ical issue due to the use of only a few (e.g., two) proces-
sors and a couple of custom hardware resources (e.g., direct
memory access hardware plus a video decoder). However,
in the coming years future chips may have five to twenty
processors and ten to a hundred resources all in a single
chip as shown in Figure 1. This is the way we predict Mul-
tiProcessor System-on-a-Chip (MPSoC) will rapidly evolve.
Even in the platform design area, Xilinx already has been
able to include multiple PowerPC processors in the Virtex-II
Pro FPGA [1]. Given current technology trends, we predict
that MPSoC designers and users are going to start facing
deadlock problems more and more often.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CODES+ISSS’04, September 8–10, 2004, Stockholm, Sweden.
Copyright 2004 ACM 1-58113-937-3/04/0009 ...$5.00.

PE10

Q1

Q2

Q40

MEMORY

PE2

PE1

..

.
PE: Processing Element
Q: Resource

Figure 1: Future MPSoC.

How can we efficiently and timely cope with deadlock
problems in such an MPSoC? Although MPSoC may pro-
duce deadlock problems, MPSoC architecture can also pro-
vide efficient hardware solutions to deadlock. This paper
proposes one such solution, a novel Deadlock Avoidance Al-
gorithm (DAA) and its hardware implementation, the Dead-
lock Avoidance Unit (DAU), to improve the reliability and
correctness of applications running on an MPSoC under an
RTOS. Of course, adding a centralized module on MPSoC
may lead to bottleneck. However, since resource allocation
and deallocation are preferably managed by an operating
system (which already implies some level of centralized op-
eration), adding hardware can potentially reduce the burden
on software rather than becoming a bottleneck.

Traditional deadlock avoidance essentially requires a pri-
ori knowledge about the maximum necessary resource re-
quirements for all processes in a system [2, 3], which unfor-
tunately makes the implementation of deadlock avoidance
difficult in real systems. Our novel approach to mixing dead-
lock detection and avoidance (thus, not requiring advanced,
a priori knowledge of resource requirements) contributes to
easier adaptation of deadlock avoidance in an MPSoC by ac-
commodating both maximum freedom (i.e., maximum con-
currency of requests and grants depending on a particular
execution trace) with the advantage of deadlock avoidance.

From prior work we utilize a novel parallel deadlock de-
tection algorithm (PDDA) and a deadlock detection hard-
ware unit (DDU) [4] that has a computational complexity of
O(min(m, n)) [5]. The DDU has a matrix mapped from a
resource allocation graph (RAG). Request and grant edges
of a RAG are translated into elements of a matrix, each el-
ement of which represents (stores) either request-, grant-,
or no-edge. During deadlock detection, reducible edges that
are not involved in deadlock are temporarily removed from
the matrix iteratively. If all edges are reducible, there exists
no deadlock; otherwise, there exists a deadlock. The DDU
traces neither cycles nor paths, nor requires linked lists. Not
only that, because a series of detection operations can occur
in one clock cycle throughout rows and columns of a ma-

200

trix in parallel hardware, the detection has been proven to
take at most (2 × min(m, n) − 3) cycles [5]. Much detailed
information about the DDU is described in [5]. Unlike the
DDU [4, 5], we have thought that it would be very helpful
if there were a hardware unit that not only detects dead-
lock but also avoids possible deadlock within a few clock
cycles and with a small amount of hardware. In Section 6
we will describe scenarios where our approach reduces dead-
lock avoidance time by up to 312X resulting in application
speedup of up to 44%, all at a cost of only 0.01% increase
in SoC area.

2. PREVIOUS WORK
A traditional well-known deadlock avoidance algorithm

is the Banker’s algorithm [3]. The algorithm requires each
process to declare the maximum requirement (claim) of each
resource it will ever need. In general, deadlock avoidance is
more expensive than deadlock detection or may be impracti-
cal because of the following disadvantages: (i) an avoidance
algorithm must be executed for every request prior to grant-
ing a resource, (ii) deadlock avoidance restricts resource uti-
lization, which degrades system performance, and (iii) the
maximum resource requirements (and thus requests) could
not be known in advance [2, 3]. In contrast, the DAU re-
quires neither prior knowledge about requirements of pro-
cesses nor constraints of resource usage, yet achieves real-
time deadlock avoidance; this constitutes the major novelty
in our solution to deadlock avoidance.

In 1990, Belik proposed a deadlock avoidance technique [6],
in which a path matrix representation is used to detect a
potential deadlock before the actual allocation of resources.
However, Belik’s method requires O(m×n) time complexity
for updating the path matrix in releasing or allocating a re-
source and thus an overall complexity for avoiding deadlock
of O(m × n), where m and n are the numbers of resources
and processes, respectively. Furthermore, Belik does not
mention any solution to livelock although livelock is a pos-
sible consequence of deadlock avoidance.

Although many deadlock avoidance approaches have been
introduced so far [2, 3, 6, 7, 8], to the best of our knowl-
edge, there has been no prior work in a hardware implemen-
tation of deadlock avoidance. The reason we conjecture is
that MPSoC is not full-blown yet; thus people tend to nei-
ther notice nor pay attention to coming deadlock problems,
which we predict are on the horizon. The DAU we present
not only provides a solution to both deadlock and livelock
but is also up to 312X faster than an equivalent software
solution (please see the details in Section 6).

3. DEFINITIONS AND SYSTEM MODEL
In this section, we first mention some deadlock definitions

for better understanding our methodology to be introduced
in Section 4. Then, we describe our system model.

3.1 Definitions
Definitions of deadlock and livelock in our context can be

stated as follows.
Definition 1. A system has a deadlock if and only if the

system has a set of processes, each of which is blocked (either
preempted or spinning), waiting for requirements that can
never be satisfied.

Definition 2. Livelock is a situation where a request for
a resource is repeatedly denied because of the unavailability
of the resource.

In addition, we define two kinds of deadlock: request
deadlock (R-dl) and grant deadlock (G-dl).

Definition 3. For a given system, if a request from a
process causes the system to have a deadlock, then we denote
this case as request deadlock or R-dl.

Example 1. Request deadlock (R-dl) Example

In an MPSoC application, on-chip processors may have to use several

resources, for example, to process streaming data. Figure 2 shows

such a system having two processors, a Very-Long Instruction Word

(VLIW) Processor (VP) and a Specialized Processor (SP), and two

resources, a Bluetooth Interface (BI) and a Moving Picture Experts

Group (MPEG) decoder. Each processor (VP or SP) has to use

both resources exclusively to complete its processing of the streaming

data. In the case shown in Figure 2(b), VP holds resource MPEG

while SP holds resource BI. (Please see the event sequence marked

on the side of each edge shown in Figure 2(b).) Furthermore, VP

requests BI, and SP requests MPEG. When SP requests MPEG,

the system will have a deadlock since neither VP nor SP gives up

or releases the resources they currently hold; instead, they wait for

their requests to be fulfilled. We denote this case, in which a request

causes a deadlock, as request deadlock or R-dl. 2

1 2

4

3

(a) (b)

B
U

S

BI
Bluetooth

(VP)

VLIW
Processor

(BI)
VPInterface

(SP)
SPProcessor

Specialized

EG
MPMPEG

Decoder

Figure 2: Request deadlock (R-dl) example.

Definition 4. For a given system, if the grant of a re-
source to a process causes the system to have a deadlock,
then we denote this case as grant deadlock or G-dl.

Example 2. Grant deadlock (G-dl) Example

We show a sequence of requests and grants that leads to a deadlock

as shown in Figure 3. It is assumed that p2 has a priority higher than

p3. At time t1, process p1 requests both q1 and q2, which are then

granted to p1. After that, p1 starts working. At time t2, p3 requests

q2 and q3. However, only q3 is granted to p3 since q2 is unavailable.

At time t3, p2 also requests q2 and q3, which are not available for

p2 yet. When the computation of p1 is done, q1 and q2 are released

by p1 at time t4. Then q2 is granted to p2 at time t5 since p2 has

a priority higher than p3. This last grant will lead to a deadlock in

the system, which we denote as grant deadlock or G-dl. 2

t2
t3

t2

t3
t1t1 t5

t4

(a) (b)

1 2 3 1 2 3q q q q q q

pp p2 3 p p p1 2 31

Figure 3: Grant deadlock (G-dl) example.

3.2 Our System Model
To describe our system model, we first show a possible

MPSoC in the following example.

Example 3. A future Request-Grant MPSoC

We introduce the device shown in Figure 4 as a particular MPSoC

example. This MPSoC consists of four Processing Elements (PEs)

and four resources – a Video and Image capturing interface (VI), an

MPEG encoder/decoder, a DSP and a Wireless Interface (WI), which

we refer to as q1, q2, q3 and q4, respectively, as shown in Figure 4(b).

201

The MPSoC also contains memory, a memory controller and a DAU.

For the sake of simplicity, we assume that currently each PE has

only one active process; i.e., each process p1, p2, p3 and p4, shown

in Figure 4(b), runs on PE1, PE2, PE3 and PE4, respectively. In

the current state, resource q1 is granted to process p1, which in turn

requests q2. In the meantime, q2 is granted to p3, which requests

q4, while q4 is granted to process p4. The DAU in Figure 4 receives

all requests and releases, decides whether or not the request or grant

can cause a deadlock and then permits the request or grant only if

no deadlock results. 2

Wireless Interface (WI)

Memory Controller

(VI) (DSP) (WI)(MPEG)

q q

p p p p1 2 3 4

q q1 2 3 4

PEn: Processing Element n

(a) An SoC functional diagram (b) The corresponding RAG

B
U

S

PE3

PE2

PE1

PE4

Video Interface (VI)

DSP

MPEG

Memory

DAU

Figure 4: A practical MPSoC realization.

We consider this kind of request-grant system with many
resources and processes shown in Figure 4 as our system
model. Based on our system model, we now introduce some
underlying assumptions related to our deadlock avoidance
research in such MPSoCs.

Assumption 1. In our system model, there exists a fixed
number of resources.

Assumption 2. Each resource has one unit. Further-
more, each resource can serve only one process at any given
time. As a result, a process must wait for all requested un-
available resources to become available before proceeding.

Note that Assumption 2 disallows multiple-unit or pipe-
lined resources. As future work, we intend to relax As-
sumption 2 and thus support multiple-unit and pipelined
resources.

Assumption 3. A resource can be released only by the
process holding it.

Assumption 4. The RTOS provides a mechanism that
can ask a process to release any resource(s) the process cur-
rently holds.

Assumption 5. In our system model, all processes have
unique priorities.

Note that for our future work, we will support systems
with non-priority based scheduling as well, e.g., round-robin.

4. METHODOLOGY
4.1 Our Deadlock Avoidance Method

This section introduces the main concept of the DAU.
The DAU, if employed, tracks all requests and releases of
resources. In other words, the DAU receives, interprets and
executes commands from processes; then it returns DAU
processing results back to processes. The DAU avoids dead-
lock by not allowing any grant or request that leads to a
deadlock.

Algorithm 1 shows our first approach to deadlock avoid-
ance. When a process requests a resource from the DAU
(line 2), the DAU checks for the availability of the resource
requested (line 3). If the resource is available (i.e., no one is

using it), the resource will be granted to the requester im-
mediately (line 4). If the resource is not available, the DAU
checks the possibility of request deadlock (R-dl) (line 5). If
the request would cause R-dl, the DAU does not accept the
request (i.e., the request is denied); thus R-dl can be avoided
(line 6). On the other hand, if the request does not cause
R-dl (line 7), the DAU makes the request be pending since
the resource is not available (line 8).

When the DAU receives a resource release command from
a process (line 11), if no process is waiting for the resource
(line 18), the resource simply becomes available (line 19).
On the other hand, if a process is waiting for it, the DAU
checks for the possibility of grant deadlock (G-dl) (line 13)
and next grants the resource to the requester only if the
grant does not result in G-dl (line 16). If, however, the grant
would cause G-dl, the resource is not granted (line 14).

Algorithm 1. Deadlock Avoidance Algorithm (DAA)
DAA (event) {
1 case (event) {
2 a request:
3 if the resource is available
4 grant the resource to the requester
5 else if the request would cause request deadlock (R-dl)
6 deny the request
7 else
8 make the request be pending
9 end-if
10 break;

11 a release:
12 if any process is waiting for the released resource
13 if the grant of the resource would cause grant deadlock
14 do not grant the resource
15 else
16 grant the resource to the process waiting
17 end-if
18 else
19 make the resource become available
20 end-if
21 } end-case

}

The above scheme will avoid deadlock. However, in line 6
of Algorithm 1, when a request is denied because of poten-
tial request deadlock (R-dl), the situation may introduce
the starvation of the processes involved in the potential R-
dl (i.e., even though a system does not have a deadlock, no
progress can be made by some processes, which is also known
as livelock). In addition, in line 14 of Algorithm 1, although
a resource becomes available, it cannot be granted because
of grant deadlock (G-dl), resulting in resource underutiliza-
tion and/or livelock. Thus, the above scheme requires some
modification.

Here, we propose two novel approaches. Algorithm 2 im-
plements an approach that avoids not only deadlock but also
livelock. When a request would cause R-dl (line 5), the re-
quest is denied with an error code telling the requester that
it is potentially in R-dl (line 6, i.e., currently in livelock)
by setting the R-dl bit in a status register the requester
reads. In this way, the requester is informed of potential
livelock; we assume that the requester voluntarily releases
some resource(s) it holds in order to remove the possibility
of livelock.

In addition, when the DAU receives a resource release
command from a process (line 11) and any process is wait-
ing for the resource (line 12), before actually granting the
released resource to one of the requesters, the DAU tem-
porarily marks a grant of the resource to the highest pri-
ority process (on its internal matrix). Then, to check po-
tential grant deadlock, the DAU executes its deadlock de-
tection algorithm. If the temporary grant does not cause

202

grant deadlock (G-dl) (line 15), it becomes a fixed grant;
thus the resource is granted to the highest priority requester
(line 16). On the other hand, if the temporary grant causes
G-dl (line 13), the temporary grant will be undone; then, be-
cause the released resource cannot be granted to the highest
priority requester because of G-dl, the DAU tries to grant
the resource to a lower priority requester (line 14). The
DAU continues checking all processes to see if the released
resource can be granted to a process without the involve-
ment of deadlock. As a result, resources can be effectively
exploited. Other behaviors are the same as Algorithm 1.

Algorithm 2. DAA (Approach Two)
DAA (event) {
1 case (event) {
2 a request:
3 if the resource is available
4 grant the resource to the requester
5 else if the request would cause request deadlock (R-dl)
6 deny the request and inform the potential R-dl (i.e., livelock)

(let the requester take care of this livelock situation)
7 else
8 make the request be pending
9 end-if
10 break;

11 a release:
12 if any process is waiting for the released resource
13 if the grant of the resource would cause grant deadlock
14 grant the resource to a lower priority process waiting
15 else
16 grant the resource to the highest priority process waiting
17 end-if
18 else
19 make the resource become available
20 end-if
21 } end-case

}

While the second approach is a good strategy, it is some-
what passive since the resolution of livelock solely depends
on the last requester having caused the potential request
deadlock (R-dl). Additionally, the request case of Algo-
rithm 2 does not consider the importance (i.e., priorities) of
processes competing for resources. Thus, in order to more
actively and efficiently resolve livelock, we propose another
approach.

Algorithm 3. DAA (Approach Three)
DAA (event) {
1 case (event) {
2 a request:
3 if the resource is available
4 grant the resource to the requester
5 else if the request would cause request deadlock (R-dl)
6 if the priority of the requester greater than that of the owner
7 make the request be pending
8 ask the current owner of the resource to release the resource
9 else
10 ask the requester to give up resource(s)
11 end-if
12 else
13 make the request be pending
14 end-if
15 break

16 a release:
17 the same as Algorithm 2
18 } end-case

}

As shown in Algorithm 3, if a request would cause re-
quest deadlock (R-dl) (line 5) – note that the DAU tracks
all requests and releases – the DAU compares the priority
of the requester with that of the current owner of the re-
quested resource. If the priority of the requester is higher
than that of the current owner of the resource (line 6), the
DAU makes the request be pending for the requester (line 7),
and then the DAU asks the owner of the resource to give up

the resource so that the higher priority process can proceed
(line 8, the current owner may need time to finish or check-
point its current processing). On the other hand, if the pri-
ority of the requester is lower than that of the owner of the
resource (line 9), the DAU asks the requester to give up the
resource(s) that the requester already has but is most likely
not using yet (since all needed resources are not yet granted,
line 10). Other behaviors are the same as Algorithm 2.

Either Algorithm 2 or Algorithm 3 can potentially be em-
ployed in a system. For instance, Algorithm 2 can be used
in a system that does not satisfy Assumption 4. We chose
to implement Algorithm 3 in hardware because it resolves
livelock more actively and efficiently than Algorithm 2, in
which the resolution of livelock depends on the last requester
without considering priorities of processes.

4.2 Run-time Complexity of DAU
The DAU becomes active and starts working only when

a request or a release event occurs. Once the DAU is acti-
vated, it operates in at most 2 × min(m, n) + (n × k) clock
cycles, where m and n are the numbers of resources and
processes, respectively, and where k is the number of cycles
that each trial of unsuccessful grants takes, stated in line 14
of Algorithm 2. This run-time is a theoretical lower bound
on the complexity and is valid as long as the clock period is
longer enough than the maximum delay of a critical calcula-
tion. After finishing operation, the DAU remains idle until
a next event occurs. Processes and the DAU communicate
via specific application programming interfaces (APIs).

5. IMPLEMENTATION
5.1 Architecture of the DAU

status

commandcell access

address

registers

registers

DAA

Logic

(deadlock detection unit)
(deadlock avoidance algorithm)

(Algorithm 3)

decoder
address

control
and

data

done

deadlock

start

reset

(matrix)

DDU

*DDU
*DAA

Figure 5: DAU architecture.

Figure 5 illustrates the DAU, implemented in the Verilog
Hardware Description Language (HDL). The DAU consists
of four parts: a Deadlock Detection Unit (DDU [4]), com-
mand registers, status registers and a unit implementing
Algorithm 3 with a finite state machine. The DDU em-
ploys a matrix of requests and grants for quickly detecting
deadlocks. Command registers receive commands from each
PE. The processing results of the DAU are stored into sta-
tus registers read by all PEs. While a command register
contains a release or request of a resource, a status register
contains the information of done, busy, successful, pending,
give-up, which-process, which-resource, livelock as well as G-
dl and R-dl. The DAA logic mainly controls the DAU be-
havior, i.e., interprets and executes commands (requests or
releases) from PEs, and returns processing results back to
PEs via status registers.

5.2 Synthesized Result of the DAU
We used the Synopsys Design Compiler (DC) [12] to syn-

thesize the DAU for five processes and five resources with

203

the QualCore Logic .25µm standard cell library [14]. The
Synthesis result is shown in Table 1. The “Total Area” col-
umn denotes the area in units equivalent to a minimum-sized
two-input NAND gate in the library, and “# steps” means
the worst case number of steps. In case where an SoC con-
tains four PowerPC 755 PEs (1.7M gates each) and 16MB
memory (33.5M gates), the area overhead in the SoC due to
the DAU is about .005%.

Module Lines Total # Steps # Steps
Name of Area in in

Verilog Detection Resolution

DDU 5x5 203 364 6 –
Others in Figure 5 344 1472 – 8

Total 547 1836(.005%) – 6 × 5 + 8 = 38
SoC 40.344M –

Table 1: Synthesized result of the DAU.

6. EXPERIMENTS
6.1 Simulation Environment Setup

The experimental simulations were carried out using Seam-
less Co-Verification Environment (CVE) [13] aided by Syn-
opsys VCSTM for Verilog HDL simulation and XRAYTM for
software debugging. We used Atalanta RTOS version 0.3 [9],
a shared-memory multiprocessor RTOS. The RTOS code re-
sides in the shared memory, and all PEs execute the same
RTOS code and share kernel structures as well as the states
of all processes and resources.

6.2 Experimental System
For the experimental simulations, we implemented in Ver-

ilog HDL the MPSoC with four processing elements (PEs)
and four resources introduced in Figure 4 (except PE cores,
which are typically provided by simulation tool vendors such
as processor support packages from Seamless CVE [13]).
The MPSoC has four Motorola MPC755s as PEs. Each
MPC755 has separate instruction and data L1 caches each of
size 32KB. The MPSoC of Figure 4 also has four resources: a
video interface (VI) device, a DSP, an MPEG processor and
a wireless interface (WI) device. These four resources have
timers, interrupt generators and input/output ports that are
necessary to support our simulations. In addition, the MP-
SoC has a DAU for five processes and five resources, an ar-
biter and 16MB of shared memory. The master clock period
of the bus system is 10 ns. Code for each MPC755 runs on
an instruction-accurate (not cycle-accurate) MPC755 sim-
ulator provided by Seamless CVE [13]. As mentioned in
Example 3, we invoke one process on each PE and prioritize
all processes, p1 being the highest and p4 being the lowest.

6.3 Application Example I
We show a sequence of requests and grants that would lead

to grant deadlock (G-dl) as shown in Figure 6 and Table 2.
Recall that there is no constraint on the ordering of the
resource usage. That is, when a process requests a resource
and the resource is available, it is granted immediately to the
requesting process. At time t1, process p1, running on PE1,
requests both VI and MPEG, which are then granted to p1.
After that, p1 starts receiving a video stream through VI
and does MPEG processing. At time t2, process p3, running
on PE3, requests MPEG and WI to convert a frame to an
image and to send the image through WI. However, only WI
is granted to p3 since MPEG is unavailable. At time t3, p2

running on PE2 also requests MPEG and WI, which are not
available for p2. When MPEG is released by p1 at time t4,

MPEG would typically (assuming the DAU is not used) be
granted to p2 since p2 has a priority higher than p3; thus,
the system would typically end up in deadlock. However,
the DAU checks the potential G-dl and then avoids the G-
dl by granting MPEG to p3 even though p3 has a priority
lower than p2. Then, p3 uses and releases MPEG and WI
at time t6. After that, MPEG and WI are granted to p2 at
time t7, which finishes its job at time t8.

t1 t1 5tt t t t22 33

t4

(VI) (MPEG) (DSP) (WI) (VI) (MPEG) (DSP) (WI)

q q q q q q q1 2 3 4 1 2 3 4

p p p p p p p p1 2 3 4 1 2 3 4

q

Figure 6: Events RAG (G-dl).

Time Events

t0 The application starts.

t1 p1 requests q1 and q2, which are granted to p1 imme-

diately.

t2 p3 requests q2 and q4; only q4 is granted to p3 since

q2 is not available.

t3 p2 also requests q2 and q4.

t4 q1 and q2 are released by p1.

t5 Then, the DAU tries to grant q2 to p2 since p2 has a

priority higher than p3. However, the DAU detects

potential G-dl. Thus, the DAU grants q2 to p3, which

does not lead to a deadlock.

t6 q2 and q4 are used and released by p3.

t7 q2 and q4 are granted to p2.

t8 p2 finishes its job, and the application ends.

Table 2: A sequence of requests and grants that
could lead to grant deadlock (G-dl).

With the above scenario, we wanted to measure two fig-
ures, the average execution time of deadlock avoidance al-
gorithms and the total execution time of the application in
two cases: (i) using the DAU versus (ii) using DAA (Algo-
rithm 3) in software.

6.4 Experimental Result I
Table 3 shows that the DAU achieves a 312X speed-up

of the average algorithm execution time and gives a 37%
speed-up of application execution time over avoiding dead-
lock with DAA in software. Note that during the run-time of
the application, the deadlock avoidance algorithms were in-
voked 12 times, respectively (since every request and release
invokes one of the algorithms).

Method of Algorithm Application
Speedup

Implementation Run Time Run Time

DAU(hardware) 7 34791 47704−34791

34791
= 37%

DAA in software 2188 47704

*The unit is a clock, and the values are averaged. The speedup is
calculated according to the formula by Hennessy and Patterson [10].

Table 3: Execution time comparison (G-dl).

6.5 Application Example II
We show a sequence of requests and grants that would

lead to request deadlock (R-dl) as shown in Figure 7. In
this example, we assume the following: (i) Process p1 re-
quires resources q1 (VI) and q2 (MPEG) to complete its
job. (ii) Process p2 requires resources q2 (MPEG) and q3

204

(DSP). (iii) Process p3 requires resources q3 (DSP) and q1

(VI). The detailed sequence is shown in Table 4. At time t6,
when process p1 requests q2, request deadlock (R-dl) would
occur. However, the DAU detects the potential R-dl and
then avoids the R-dl by asking p2 to give up resource q2

since p1 has a priority higher than p2, which is the current
owner of q2. As a result, at time t7, p2 gives up and releases
q2, which is going to be granted to p1 (of course, p2 has to
request q2 again). After using q1 and q2, p1 releases q1 and
q2 at time t8. While q1 is going to be granted to p3, q2 is
going to be granted to p2. Thus, p3 uses q1 and q3 and then
releases q1 and q3 at time t9; q3 is granted to p2, which then
uses q2 and q3 and finishes its job at time t10.

t1 2t 3t

t6 5tt4

(VI) (MPEG) (DSP) (WI) (VI) (MPEG) (DSP) (WI)

p p p p p p p p1

1

2 3 4 1 2 3 4

q q q q q q q q2 3 4 1 2 3 4

Figure 7: Events RAG (request deadlock).

Time Events

t0 The application starts.

t1 p1 requests q1; q1 is granted to p1.

t2 p2 requests q2; q2 is granted to p2.

t3 p3 requests q3; q3 is granted to p3.

t4 p2 requests q3, which becomes pending.

t5 p3 requests q1, which also becomes pending.

t6 p1 requests q2, which is about to lead to R-dl. How-

ever, the DAU detects the possibility of R-dl. Thus,

the DAU asks p2 to give up resource q2.

t7 p2 releases q2, which is granted to p1. A moment

later, p2 requests q2 again.

t8 p1 uses and releases q1 and q2. Then, while q1 is

granted to p3, q2 is granted to p2.

t9 p3 uses and releases q1 and q3, which are granted to

p2.

t10 p2 finishes its job, and the application ends.

Table 4: A sequence of requests and grants that
would lead to request deadlock (R-dl).

We similarly measured two figures, the average execution
time of deadlock avoidance algorithms and the total execu-
tion time of the application in two cases: (i) exploiting the
DAU and (ii) using DAA in software.

6.6 Experimental Result II
Table 5 demonstrates that the DAU achieves a 294X speed-

up of the average algorithm execution time and gives a 44%
speed-up of application execution time over avoiding dead-
lock with DAA in software. Note that during the run-time
of the application, the deadlock avoidance algorithms were
invoked 14 times, respectively.

Method of Algorithm Application
Speedup

Implementation Run Time Run Time

DAU(hardware) 7.14 38508 55627−38508

38508
= 44%

DAA in software 2102 55627
*The unit is a clock, and the values are averaged.

Table 5: Execution time comparison (R-dl).

7. CONCLUSION
A novel Deadlock Avoidance Algorithm (DAA) and its

hardware implementation in the Deadlock Avoidance Unit

(DAU) are described in this paper. The DAU provides a
very fast and very low area way of avoiding deadlock at run-
time, which helps free programmers from worrying about
deadlock. Whenever a request occurs in a system, the DAU
checks for the possibility of request deadlock (R-dl); if the
request would lead to R-dl, then the DAU avoids the R-dl
by asking a lower priority process that is holding resource(s)
in an R-dl chain to give up resource(s). Whenever a re-
source is released and needs to be granted, the DAU quickly
detects the possibility of grant deadlock (G-dl) and then
resolves the situation by granting a released resource to an
appropriate process such that the grant does not cause G-dl.
We demonstrated the following with two examples: (i) The
DAU automatically avoided deadlocks as well as reduced the
deadlock avoidance time by 99% (about 300X) as compared
to DAA in software. (ii) The DAU achieved a 37% speed-up
of application execution time as compared to the execution
time of the same application that uses DAA in software.
While our examples are not industrial strength full product
code, nevertheless we expect similar results as MPSoC de-
signs become more commonplace; we predict that our DAU
can potentially help especially in real-time scenarios. For
our future work, we will extend this work to the design of
various sizes of DAU and also support systems with non-
priority based scheduling as well, e.g., round-robin.

Acknowledgment
This research is funded by NSF under INT-9973120, CCR-
9984808 and CCR-0082164. We would like to acknowledge
donations received from Denali, HP, Intel, QualCore, Men-
tor Graphics, National Semiconductor, Sun and Synopsys.

8. REFERENCES
[1] Xilinx, http://www.xilinx.com/.

[2] E. Coffman, M. Elphick and A. Shoshani, “System deadlocks,”
ACM Computing Surveys, pp. 67–78, June 1971.

[3] E. Dijkstra, “Cooperating sequential processes,” Tech. Rep.
EWD-123, Technological University, Eindhoven, The
Netherlands, Sep. 1965.

[4] P. Shiu, Y. Tan and V. Mooney, “A novel parallel deadlock
detection algorithm and architecture,” 9th International
Workshop on Hardware/Software Co-Design (CODES’01),
pp. 30-36, April 2001.

[5] J. Lee and V. Mooney, “An O(min(m,n)) parallel deadlock
detection algorithm,” Tech. Rep. GIT-CC-03-41, College of
Computing, Georgia Tech, Atlanta, GA, Sep. 2003,
http://www.coc.gatech.edu/research/pubs.html.

[6] F. Belik, “An efficient deadlock avoidance technique,” IEEE
Trans. on Computers, 39(7), pp. 882–888, July 1990.

[7] N. Gebraeel and M. Lawley, “Deadlock detection, prevention
and avoidance for automated tool sharing systems,” IEEE
Trans. on Robotics and Automation, 17(3) pp. 342–356, June
2001.

[8] J. Ezpeleta, F. Tricas, Garcia-Valles and J. Colom, “A
banker’s solution for deadlock avoidance in FMS with flexible
routing and multiresource states,” IEEE Trans. on Robotics
and Automation, 18(4) pp. 621–625, Aug. 2002.

[9] D. Sun, D. Blough and V. Mooney, “Atalanta: A new
multiprocessor RTOS kernel for System-on-a-Chip
Applications,” Tech. Rep. GIT-CC-02-19, College of
Computing, Georgia Tech, Atlanta, GA, 2002,
http://www.coc.gatech.edu/research/pubs.html.

[10] J. Hennessy and D. Patterson, Computer architecture - a
quantitative approach. Morgan Kaufmann Publisher, Inc., San
Francisco, CA, 1996.

[11] R. Holt, “Some deadlock properties of computer systems,”
ACM Computing surveys, pp. 179–196, Sep. 1972.

[12] Design Compiler,
http://www.synopsys.com/products/logic/logic.html.

[13] Mentor Graphics, Hardware/Software Co-Verification:
Seamless, http://www.mentor.com/seamless/.

[14] QualCore Logic. http://www.qualcorelogic.com/.

205

	Main Page
	CODES+ISSS'04
	Front Matter
	Table of Contents
	Author Index

