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ABSTRACT
Networks-on-Chip (NoC) is emerging as a practical development
platform for future systems-on-chip products. We propose an energy-
efficient static algorithm which optimizes the energy consumption
of task communications in NoCs with voltage scalable links. In or-
der to find optimal link speeds, the proposed algorithm (based on a
genetic formulation) globally explores the design space of NoC-
based systems, including task assignment, tile mapping, routing
path allocation, task scheduling and link speed assignment. Exper-
imental results show that the proposed design technique can reduce
energy consumption by 28% on average compared with existing
techniques.

Categories and Subject Descriptors: C.3 [Special-purpose and
application-based systems]: Real-time and embedded systems

General Terms: Algorithms, Design

Keywords: Network-on-chip, Real-time systems, Low-power de-
sign

1. INTRODUCTION
Networks-on-Chip (NoC) have recently been proposed as a prac-

tical development platform for systems-on-chip (SoC) products [1,
3]. NoCs are especially useful in overcoming complex on-chip
communication problems by providing a more structured and mod-
ular network interface. Since networks are structured and wired
beforehand, their electrical parameters can be well controlled and
optimized, which makes it possible to use aggressive signaling cir-
cuits thus significantly reducing power dissipation and propaga-
tion delay. And a standard interface between modules facilitates
reusability and interoperability.

As shown in Figure 1(a), an NoC-based system is typically di-
vided into regular tiles, where each tile might be a programmable
microprocessor, an ASIC, or an FPGA. Instead of being connected
by dedicated wires, each of these tiles is connected to an intercon-
nection network that routes packets between tiles. As shown in
Figure 1(b), the router in NoCs consists of input and output links,
buffers and a crossbar switch.
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In NoC-based systems, on-chip networks take up a substantial
portion of system power budget, e.g. the MIT Raw on-chip net-
work in which the communication between 16 tiles containing pro-
cessing elements consumes 36% of the total chip power [14]. And
on the Alpha 21364 processor, 20% of the total chip power is con-
sumed by the router and links [11].

One promising low-power technique for energy-efficient NoCs
is to scale the speeds of the communication links with the corre-
sponding voltage level [6]. There are two kinds of speed scaling
techniques. One is an on-linescheme, which adjusts the communi-
cation speed dynamically, based on variations in the run-time com-
munication traffic. The other is an off-linescheme which assigns an
appropriate fixed communication speed to each link, based on the
communication patterns of target applications. The off-linescheme
is better suited to real-time applications since system designers are
able to predict communication delays at the design time.

In this paper, we propose an off-line link speed assignment algo-
rithm for energy-efficient NoCs with voltage scalable links. Given
the task graph of a periodic real-time application, our proposed al-
gorithm assigns an appropriate communication speed to each link,
which minimizes the energy consumption of the NoC while guar-
anteeing the timing constraints of the real-time application. In ad-
dition, the proposed algorithm turns off links statically when no
communications are scheduled because the leakage power of an in-
terconnection network is not negligible (for example, 21% of the
total (leakage+switching) power consumption in 0.07µm technol-
ogy [2]).

As with other multiprocessor-based systems, the design flow of
NoC-based systems involves several (interacting) steps, of which
link speed assignment is the last step. In a typical multiprocessor
system, the design flow includes two key steps, task assignmentand
task scheduling. Given a task graph with design constraints (e.g.
the execution time and the power consumption) and processing el-
ements (PEs), we first assign each task to an appropriate PE (task
assignment). Then, each task is scheduled for execution within the
PE (task scheduling). However, in NoC-based systems, two addi-
tional steps are necessary, tile mappingand routing path allocation.
The tile mapping step maps a PE to one of the tiles in an NoC. The
routing path allocation step determines communication paths be-
tween tiles. For example, if an NoC has sixteen PEs, as shown in
Figure 1(a), then we need to decide on which tile each PE will be
located. If data has to be transferred from the tile t1 to the tile t16,
then we must determine which switches among s1, · · · ,s16 will for-
ward the data. (In this paper, we use the term network assignment
to refer to both the tile mapping and routing path allocation steps.)

In an NoC-based system, design decisions made in the network
assignment step, as well as the task assignment and the task schedul-
ing steps, can significantly affect the communication speed of each
link, because communication traffic patterns vary according to the
result of the design steps. Therefore, in order to make an NoC-
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Figure 1: An architectural overview of an NoC-based system.

based system energy-efficient, each step should be taken with an
awareness of its implication for energy consumption in links.

For example, consider the task graph g shown in Figure 2(a),
where the tasks τ1, τ2, τ3 and τ4 are assigned to the PEs p1, p2,
p3 and p4, respectively. A tile mapping algorithm might generate
the network assignment shown in Figure 2(b), where a, b, c and d
indicate the corresponding communication costs for the links. As-
suming that the routing paths are allocated by the XY-routing algo-
rithm [4], packets are first routed along the X-axis. Once a packet
reaches the column under which the destination tile is located, it
is then routed along the Y-axis. But if we change the tile mapping
to the network assignment NA2 (as shown in Figure 2(c)), we get
a different energy consumption. If b < c, the network assignment
NA2 consumes less energy than the network assignment NA1, be-
cause the energy consumed in the communication links are given
as (a +b +2c +d) and (a +2b + c +d) for NA1 and NA2, respec-
tively. Therefore, we can say that the network assignment NA2 is
better than NA1.

Now let us consider how to assign the communication speed of
each link in the network assignment NA2. If the task τ3 has a hard
deadline, then the link from tile1 to tile2 should have a high speed
because the link is on the critical path and it has to transfer the
data between τ2 and τ4 as well as τ2 and τ3. This suggests that the
network assignment NA2 could be improved so that the critical path
does not share links with non-critical paths. Therefore, the routing
path allocation should be performed with an awareness of its effect
on link speed scaling.

If we change the routing path of the edge (τ2,τ3) in NA2 from
tile1 → tile2 → tile4 to tile1 → tile3 → tile4, we get the network as-
signment NA3, shown in Figure 2(d). Although the network sched-
ule NA3 has the same amount of communication traffic as the net-
work assignment NA2, we can now assign a lower speed to the link
from tile1 to tile2.
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Figure 2: A motivational example.

In this paper, we show that the existing design algorithm for
NoCs is inappropriate for NoCs with voltage scalable links, and
we go on to propose a novel optimization algorithm (based on a
genetic formulation) which explores the overall design space ef-
ficiently. Experimental results show that the proposed design al-
gorithm can reduce the energy consumption by 28% on average
compared with the existing algorithm.

The rest of the paper is organized as follows. In Section 2, we
briefly review the related works on NoC design techniques. The
overall design flow and problem formulation are presented in Sec-
tion 3. The detailed design techniques are described in Section 4.
We present experimental results in Section 5. Section 6 concludes
with a summary and directions for future work.

2. RELATED WORKS
Several research groups have investigated design techniques for

minimizing the energy consumption in NoC-based systems. For
example, Simunic and Boyd [12] proposed a power management
technique for NoCs. Based on a network-centric power manage-
ment scheme, their technique makes better predictions of future
workload than techniques based on a node-centric power manage-
ment approach. While that work focused on PEs, other techniques [6,
11, 13, 15, 5] have been developed with the aim of reducing the en-
ergy consumption of communication links in NoCs, because they
are such a significant energy consumer [11]. Kim and Horowitz [6]
proposed variable-frequency links, which can track and adjust their
voltage level to the minimum supply voltage as the link frequency
is changed, thus reducing the power dissipation.

Based on the variable-frequency links proposed by Kim et al. [6],
Sang et al. [11] developed a history-based dynamic voltage scaling
(DVS) policy which adjusts the operating voltage and clock fre-
quency of a link according to the utilization of the link and the in-
put buffer. Soterious et al. [13] proposed a simple dynamic power
management technique for communication links based on the com-
munication traffic variance to reduce the leakage power consump-
tion. Worm et al. [15] proposed an adaptive low-power transmis-
sion scheme for on-chip networks. They minimized the energy re-
quired for reliable communications, while satisfying a QoS con-
straint by dynamically, varying the voltage on the links.

Unlike these existing techniques, that are all on-line schemes,
our proposed technique is an off-line technique which assigns the
appropriate constant speeds to each link. We exploit the informa-
tion on communication patterns from a task graph. Hu and Mar-
culescu [5] tackled a similar problem. Their algorithm determines
a network assignment which is designed to minimize the dynamic
power consumption by reducing the communication traffic. How-
ever, they did not address the issue of link speed scaling, but only
the network assignment problem, assuming task assignment and
task scheduling had been completed. Lei and Kumar [7] has also
used the communication patterns of a task graph in tile mapping.
But the objective of their algorithm is to find a tile mapping that
minimizes the overall execution time of the task graph.

3. OVERALL DESIGN FLOW FOR NOCS

3.1 Specification and Architectural Model
We represent a periodic real-time application by a task graph

(TG) G =< V,E >, which is a directed acyclic graph, where V is
the set of tasks and E is the set of directed edges between tasks. In
a TG, each directed edge e(τi,τ j) represents a precedence relation
between τi and τ j. That is, e(τi,τ j) means that the task τi must
complete its execution before the task τ j starts its execution. (For
descriptive purposes, we will denote e(τi,τ j) by ei, j .) The TG has
a period H. A task τi in TG may have a deadline di, which must
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be met to ensure correct functionality of the application. Each edge
ei, j is associated with a value w(ei, j) which indicates the amount of
communication data required between τi and τ j, in the case that τi
and τ j are allocated in different PEs. Figure 2(a) shows an example
of a task graph. Each edge e has a value of w(e), and the task τ3
has a deadline.

We denote an NoC-based system N with m×m tiles as a tuple
< T,L >, where T = {t1, · · · ,tm, · · · ,tm2} is the set of tiles and L =
{�1, · · · , �4m(m−1)} is the set of links between tiles. All tiles are
assumed to have the same area A . We will denote the link between
ti and t j by �i→ j . We also use the notation src(�i→ j) and dst(�i→ j)
to represent the source and destination of �i→ j respectively. For a
link �i, W (�i) indicates the total amount of data which is transferred
across the link. We denote the set of PEs as R = {r1, · · · ,rn}, where
ri indicates the i-th PE. We assume that the number of PEs and the
number of tiles are the same, i.e., |R|= |T |. Each tile has associated
coordinate values, ti.x and ti.y which specify row and column. (In
this paper, we set ti.x and ti.y to be the quotient and the remainder
of (i−1)/m respectively.)

3.2 Problem Formulation
For a given task graph G =< V,E >, an initial step assigns each

task in G into one of the available PEs. We use the function Φ :
V → R to represent this task assignment step. Task assignment af-
fects the total communication load because only the tasks assigned
into different PEs generate communication loads. Each PE is then
assigned to one of tiles in the NoC. The function Ψ : R → T is used
to represent this tile mapping step. The mapping also affects the
total communication load because the distances between tiles are
changed. The routing path between tiles is then allocated, and the
function Ω : E → P is used to denote this routing path allocation
step, where P is the set of link sequences. After the routing path
allocation, we set W (�i) for all �i in L to be ∑∀e j ,�i∈Ω(e j) w(e j).

In this paper, we only consider a static minimal-path routing
algorithm, because that is more suitable for an on-chip network
and generates less communication traffic than non-minimal rout-
ing paths. The routing path allocation step does not affect the total
communication load because we consider only the minimal routing
path. However, since the allocation affects the communication load
of each link W (�), it also affects the speed of the links. The task
scheduling step determines the execution order of tasks assigned
to the same PE. Since the task scheduling step converts the task
graph G to G′ by inserting additional edges, we describe it with
the function O : G → G. Because we need to know the commu-
nication delay between tasks for task scheduling, the tile mapping
and the routing path allocation steps are executed first. The link
speed assignment step decides the clock speed of each link to re-
duce the energy consumption by utilizing what would otherwise be
slack time. We use function S : L →C to denote the link speed as-
signment step, where C is the set of possible clock speeds for the
links.

We can define the link energy optimization problem for energy-
efficient NoCs as follows:

Link Energy Optimization Problem
Given G =< V,E >,R and N =< T,L >,

find the functions Φ,Ψ,Ω,O and S such that

E = ∑
�i∈L

(CL ·W (�i) · f (�i)2 +H ·Pleakage(�i)) is minimized

subject to ∀τi ∈V, θ(τi) ≤ di.

CL is the average switching capacitance of the links. f (�i) and
Pleakage(�i) are the clock speed and the leakage power of a link �i.
For a link �i with W (�i) = 0, Pleakage(�i) is 0, because we can turn
off an inactive link. θ(τi) is the end time of τi.

Since the task assignment may change the total computation en-
ergy consumption on PEs due to the heterogeneous architecture, we
should consider both the computation energy of PEs and the com-
munication energy of links. However, in this paper, we consider
only the communication energy assuming the homogeneous PEs to
concentrate on the network assignment problem.

4. ENERGY-EFFICIENT NOC DESIGN
Figure 3 shows the design flow for NoC-based systems, which

consists of five optimization steps. Unfortunately, this design prob-
lem has a very large solution space, as the search space increases
factorially with the number of tiles in an NoC [5]. Moreover, since
all the design steps are closely related to the link speed assignment
step, it is unlikely that a good speed assignment will be found by
optimizing each step independently. We use three nested genetic
algorithms (GAs) to explore the design space efficiently. There are
a GA-based task assignment algorithm (GA-TA), a GA-based tile
mapping algorithm (GA-TM) and a GA-based routing path alloca-
tion algorithm (GA-RPA).

NoC Architecture Description
Task Graph Description

Optimized Link Speeds

G
A

-T
A

G
A

-T
M

G
A

-R
PA

Task Assignment

Tile Mapping

Routing Path
Allocation

Task Scheduling

Link Speed
Assigment

Evaluation

Evaluation

Evaluation

Figure 3: An overall design flow for NoCs.

Genetic algorithms imitate the principles of natural evolution to
solve search and optimization problems, and are a promising tech-
nique for system-level design which has a large solution space. GA
is especially suitable for multiple-objective optimization. Figure 4
shows a typical structure of a genetic algorithm. Starting with an
initial population, a genetic algorithm evolves a population using
the crossover and mutation operations. Since the performance of a
genetic algorithm depends on the encoding, the crossover and the
mutation schemes, we need to select these schemes carefully.

Genetic Algorithm (CTG G)
1: initialize a population with n individuals;
2: ranking each individual according to its fitness;
3: repeat {
4: select two individuals, p1 and p2;
5: child = crossover(p1,p2);
6: child = mutation(child);
7: replace the lowest ranked individual with child;
8: } until (there is no improvement during m-iterations).

Figure 4: A typical structure of a genetic algorithm.

4.1 GA-based Task Assignment
The more tasks that are assigned to a PE, the larger its area

becomes, because it requires more memory or gates. Since each
tile has the same size, the area constraint may be expressed as
AΦ(ri) ≤ A , where AΦ(ri) means the area of a PE ri under the
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task assignment function Φ. If there is an edge e between two tasks
assigned to the same PE, its value w(e) is changed to 0. This task
assignment step affects the total communication load. We will rep-
resent a task assignment solution as an array of integers. For exam-
ple, in Figure 5(a), the task τ1 is mapped to r8 in the individual p1.
Our crossover operation is the two-point crossover, which is widely
used in GAs. Both parent individuals p1 and p2 are divided at the
same two points and the child individual c1 is generated from the
first part of p1, the second part of p2 and the third part of p1. Our
mutation operation changes the values of randomly selected genes
into new values, which make up a new individual.

4.2 GA-based Tile Mapping
We encode a tile mapping solution as an array of integers. For

example, in Figure 5(b), the PE r1 is mapped to t8 in the individual
p1. To achieve GA-based tile mapping, we need to be careful in
designing the crossover operation. If we were to use a two-point
crossover for tile mapping, we would obtain illegal solutions be-
cause different PEs might be allocated into the same tile. Therefore,
we use the cycle crossover [8], which is appropriate when the en-
coding represents a sequence. Figures 5(b)-(d) show how to make
child individuals using the cycle crossover. In the mutation opera-
tion in the mapping, two randomly selected genes are exchanged to
make a new individual.

For each individual, we perform routing path allocation, task
scheduling and link speed assignment steps to evaluate the fitness
value. To reduce the computation time, we check whether one in-
dividual is topologically identical to another individual, and omit
the evaluation step if an identical individual has already been eval-
uated. To achieve this operation, we first transform each individ-
ual into an ordered form and compare the ordered forms of indi-
viduals. The ordered form has the following two properties: (1)
the PE Ψ−1(t1) has a smaller index than the indices of Ψ−1(tm),
Ψ−1(tm2−m+1) and Ψ−1(tm2), where t1, tm, tm2−m+1 and tm2 are
four corner tiles; (2) the PE Ψ−1(tm) has a smaller index than the
index of Ψ−1(tm2−m+1). We can transform a tile mapping into the
ordered form by rotating or mirroring the tile mapping structure.

8  7  1  9  6  3  4  5  2

9  2  4  3  1  5  6  8  7

8  2  4  9  1  3  6  5  7

8  7  1  9  6  3  4  5  2

9  2  4  3  1  5  6  8  7

8  2  1  9  6  3  4  5  7

9  7  4  3  1  5  6  8  2 9  7  4  3  1  5  6  8  2
(d) 3rd step of cycle crossover(c) 2nd step of cycle crossover
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Figure 5: Crossover operations in GA-TA and GA-TM.
After tile mapping, we compose the set of communication loads,

CL. For each edge ei, j for which w(ei, j) > 0, we make a commu-
nication load υ which has three properties: υsrc = Ψ(Φ(τi)), υdst =
Ψ(Φ(τ j)), and υdata = w(ei, j).

4.3 GA-based Routing Path Allocation
In routing path allocation, we assume that the source tile sends

the data packet with the routing information represented by a binary
number. Each bit of the binary number represents routing direction,
i.e. bits 1 and 0 correspond to moves along the X-direction and Y-

direction respectively. (Although there are two output links in each
direction, there is no ambiguity in practice, because we assume a
minimal path routing.) The intermediate routers between the source
tile and the destination tile determine the forward direction from the
most significant bit of routing information and forwards the rout-
ing information after shifting it by one bit. The routing path allo-
cation step determines n directions, where the Manhattan distance
between two tiles is n.

The individuals in the GA-based routing path are represented by
one-dimensional arrays of binary numbers. Each binary number
represents the routing path for a communication load υ ∈ CL. For
example, Figure 6 shows two different routing paths for the com-
munication load υ where υsrc = t1 and υdst = t16. The routing paths
p1 and p2 can be represented as follows:

p1 = {�1→2,�2→3,�3→7,�7→11,�11→15,�15→16}
p2 = {�1→2,�2→6,�6→7,�7→11,�11→12,�12→16}.

1  1  0  0  0  1 1  0  1  0  1  0

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

p1 p2

Figure 6: Routing path encoding.

By representing the routing path in this way, we can use an ef-
fective crossover and mutation operation as well as reducing the
memory required for a population. When the X-distance and the
Y-distance of a communication load are n and m respectively, the
initial population is generated using random binary numbers which
has n-number of 1s and m-number of 0s1.

Routing path allocation also requires a special crossover oper-
ation. As we can see in Figure 7(a), if we were to use one-point
crossover for the path routing, we might get illegal solutions. The
crossover operation should guarantee that it generates only legal
solutions while passing on properties from parent individuals to
child individuals. In order to satisfy these requirements, we have
invented a special crossover, called the coordinate crossover, for
path routing. Figure 7(b) shows the coordinate crossover oper-
ation. First, we find the meeting points from two parent individ-
uals, where two different routing paths represented by the parents
meet at the meeting points. For example, in Figure 6, two rout-
ing paths represented by p1 and p2 meets at the tiles t1, t7 and t16.
The meeting points can be easily found by calculating the partial
sum si(k) from the first bit to the kth bit in the parent individual
pi. If two partial sums s1(k) and s2(k) of p1 and p2 are equal but
s1(k − 1) and s2(k − 1) are different, the location k is a meeting
point as shown in Figure 7(b). (The source and destination tiles
are always meeting points.) Second, both parent individuals are
divided at the meeting points and child individuals are created by
mixing parts from two parents like the multi-point crossover opera-
tion. The coordinate crossover only generates legal child individ-
uals because children have the same number of 1s as their parents.
The child individuals are also guaranteed to inherit the links which
both parents share. The turn model which prevents a deadlock can
be sustained with the coordinate crossover.

For the mutation operation, we exchange the locations of two bits
where one bit is 1 and another is 0. Using these specially designed
crossover and mutation operations, we are sure to explore only the
legal solution space.
1To prevent a deadlock in the routing path, we can use a turn model such
as west-first, north-last and negative-first [4]. A routing path can be repre-
sented so that it follows a specific turn model.

173



1  1 0  0  0  1

1  0 1  0  1  0

deformed child

deformed child

(a) one-point crossover (b) coordinate crossover

1  1 1  0  1  0

1  0 0  0  0  1

1  1  0

1  0  1

0  0  1

0  1  0

normal child

1  1  0 0  1  0

normal child

1  0  1 0  0  1

1  1  0  0 0  1

normal child

normal child

0  0  1  1 1  0

1  1  0  0 1  0

0  0  1  1 0  1

meeting points meeting points

0   1    1    2    2   3   3

0   1    2    2    2   2   3 0   1   2    2   2    2   3

0   0   0    1   2    3   3

partial
sum

p1p1

p2p2

c1c1

c2c2

p3

p4

c3

c4

Figure 7: Crossover operation for routing.

4.4 Task Scheduling
For task scheduling, we adopted a list scheduling algorithm which

uses the mobility of each task to determine its priority. The mobil-
ity of a task is defined as the difference between the ASAP start
time and the ALAP end time. To get these times, we need to know
the communication delay of an edge. However, we cannot know
its exact value due to the asynchronous communication protocol of
an NoC. Moreover, the communication delay at a link is dependent
on how many communication loads share the link. So, we use the
worst-case communication delay of each edge to satisfy the hard
real-time constraint. To estimate the worst-case communication de-
lay, we assumed that the worst-case delay at each link is the time
required to transfer all communication loads assigned the link2. We
can now calculate the worst-case communication delay of an edge
ei as follows:

δ(ei) = ∑
� j∈Ω(ei)

W (� j)
f (� j) ·B

, where B is the bandwidth of the communication links (in bits/sec).
The clock speed f (� j) is set to maximum but a lower speed can be
obtained by the following link speed assignment step.

4.5 Link Speed Assignment
For the link speed assignment, we have used a similar idea to the

voltage and clock speed selection algorithm proposed by Schmitz
and Al-Hashimi [10]. Their algorithm first estimates the slack time
of each task considering the deadline and precedence constraint. It
then calculates ∆E(τi) for a task τi which has slack time. ∆E(τi) is
the energy gain when the time slot for τi is increased by ∆t (with
a lower clock speed). After increasing the time slot for the task τi
with the largest ∆E(τi), by a time increment ∆t, it repeats the same
sequence of steps until there is no task with slack time.

While this algorithm determines the operating speed of each task
assigned on the DVS-enabled PE, our link speed assignment algo-
rithm determines an operating speed for each link which does not
change dynamically at run time. To estimate the slack time for
each link, we need to consider the edges whose communication
loads share that link. The slack time of a link is the minimum value
among the slack times of the edges, i.e., ξ(�i) = min�i∈Ω(e j)(ξ(e j)),
where ξ(�i) and ξ(e j) are the slack times of �i and e j respectively.

5. EXPERIMENTAL RESULTS
We started by estimating the efficiency of each optimization tech-

nique at the task assignment, tile mapping, routing path allocation

2Although there are special on-chip network architectures for hard real-
time systems [9], we have assumed no special architecture and have used
an aggressive communication delay model. However, such a network ar-
chitecture could be combined with our design technique by modifying the
communication delay model.

and link speed assignment steps. For our experiments, we gen-
erated random task graphs g1 to g16. Figure 8 shows the energy
consumptions of the communication links under various optimiza-
tion configurations. The results were normalized against the en-
ergy consumption obtained by a design technique which uses ran-
dom task assignment, random tile mapping, XY-routing and no link
speed scaling.

The first bar for each task graph represents the result when we
applied only the link speed scaling technique (optLS). The second
bar represents the result when we used the GA-RPA algorithm for
routing path allocation, as well as link speed scaling (optLS+R).
The third bar shows the result when the GA-TM algorithm for
tile mapping is also applied (optLS+R+T M). The fourth bar shows
the energy efficiency when all optimization algorithms are used
(optLS+R+T M+TA). The energy consumption is reduced by 8%,
17%, 27% and 43% on average by the optLS , optLS+R, optLS+R+T M
and optLS+R+T M+TA techniques, respectively. These reduction ra-
tios are dependent on the characteristics of the task graph (e.g.,
slack time and communication load) and the performance of the
random configurations. For example, the link speed scaling (optLS)
showed small energy reductions because the random task assign-
ment, the random tile mapping and the XY-routing generate little
slack time. From these results, we realize that all design steps have
large effects on communication energy, and it is necessary to opti-
mize the energy consumption at all design steps. (We did not com-
pare the task scheduling step with other techniques because the list
scheduling is universally popular.)
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Figure 8: Effects of the nested optimization techniques.

We also compared our GA-based NoC design technique with
previous techniques. Hu and Marculescu proposed a tile mapping
technique that uses a branch-and-bound (B&B) algorithm and a
routing path allocation algorithm that balances the communication
workload across the links [5]. We expanded their algorithm by inte-
grating it with our task assignment, task scheduling and link speed
assignment algorithms. We denote the integrated algorithm as BB
in this paper.

In BB, the cost of a solution is estimated from the amount of traf-
fic, which is proportional to the dynamic power consumption of the
communication links. We improved the BB algorithm by assuming
that we can turn off a link which has no communication traffic. We
call this technique as BB+ to distinguish it from BB. The BB+

technique takes into account the leakage power in estimating the
cost of a solution.

The heuristic for routing path allocation is also improved in BB+,
which gives priority to the links with non-zero traffic. Using this
algorithm, the number of links without traffic can be increased.

In [5], the authors showed that their algorithm can find an op-
timal solution within a short time. However, if we consider task
scheduling and link speed assignment, BB and BB+ cannot find an
optimal solution because the exact cost of an internal node3 cannot
be estimated before task scheduling and link speed assignment.

3In the branch-and-bound technique, the bound step compares UBC, the
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Figure 9 shows experimental results that compare our GA-based
algorithm with BB and BB+. To compare only the network assign-
ment step, all the algorithms were executed with the same prede-
termined task assignment. The results were normalized againt the
energy consumption of the random tile mapping and XY-routing
technique. As we can see from the results, BB reduces the energy
consumption by 16% on average but sometimes generates worse
results than the random mapping (e.g., the task graph g15). This is
because BB does not consider leakage power or link speed assign-
ment. The BB+ technique and the GA-based technique reduced
the energy consumption by 22% and 39% on average, compared
with the random mapping and XY-routing technique. The GA-
based technique reduced the energy consumption by 28% on av-
erage, compared with the BB technique.

We also experimented with the task graph of the real application
(a multimedia system with an H.263 encoder/decoder and an MP3
encoder/decoder) introduced previously [5]. Since each task is as-
signed to a processing element in the task graph, we only evaluated
the tile mapping and routing path allocation steps. Our GA-based
algorithm reduced the energy consumption by 35% compared with
the random tile mapping and XY-routing technique.
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Figure 9: Performance comparison between the B&B and GA
techniques.

Table 1 shows the features of the task graphs and the execution
times of the optLS+R+T M algorithm running on a Pentium-III 500
MHz Linux machine. The execution time of the genetic algorithm
depends on various design factors, such as the population size, the
mutation probability and the termination condition. We initialized
the population sizes as |T |2/2 and |T | in GA-TM and GA-RPA re-
spectively. For our experiments, the number of tiles, |T |, was 9
(3× 3) or 16 (4× 4). From Table 1, we see that the GA-based al-
gorithm takes a long time when a task graph has a large number
of edges, i.e., there are many communication loads. Exceptions
such as the task graphs g3 and g14 are due to the nature of the
link speed assignment algorithm. The link speed assignment algo-
rithm iterates, increasing the delay time of a link by ∆t until there
is no slack time. So it takes longer as a task graph has long slack
times. So we can improve the speed of the algorithm with a fast
link speed assignment module. The BB and BB+ performed well
when |T | = 9, but become very slow when |T | = 16. Without spe-
cial speedup techniques, BB takes over 1 hour for the graph g2
when |T | = 16. But our GA-based algorithm take under a minute,
even for quite complex task graphs, which makes it acceptable for
a design methodology.

6. CONCLUSIONS
In this paper, we have proposed an energy-efficient algorithm

to optimize the communication energy consumption in NoC-based

best cost of leaf nodes generated up to the current time, with LBC, the lower-
bound cost of the leaf nodes which are still to be generated from the current
internal node.

time (sec)

TG Nnode/Nedge 3×3 4×4 TG Nnode/Nedge 3×3 4×4

g1 26/43 5.2 8.4 g9 30/29 6.5 43.9
g2 40/77 9.3 35.5 g10 36/50 12.5 57.9
g3 20/33 9.6 38.8 g11 37/36 9.0 26.3
g4 40/77 11.6 38.6 g12 24/33 5.0 9.6
g5 20/26 5.7 20.1 g13 31/56 9.9 58.6
g6 20/27 3.6 13.8 g14 29/56 6.2 19.3
g7 18/26 5.1 15.8 g15 12/15 3.2 9.4
g8 16/15 3.2 12.2 g16 14/19 2.8 4.2

* Nnode= # of nodes and Nedge= # of edges

Table 1: Execution times of optLS+R+T M algorithm.

systems with voltage scalable links. The proposed algorithm opti-
mizes communication energy at the various design steps, i.e., task
assignment, tile mapping, routing path allocation and link speed as-
signment. We used genetic algorithms to explore the large design
space of energy-efficient NoCs effectively. Our algorithm reduced
the energy consumption of on-chip network by 39% on average
compared with an algorithm which uses random tile mapping and
XY-routing.

Our work can be extended in several directions. Due to the
asynchronous communication protocol, we estimated the worst-
case communication delay pessimistically. However, by consider-
ing the precedence dependency in the task graph, we could obtain
a tighter bound on the communication delay. In particular, we can
find communication loads that never overlap by analyzing the task
graph. Another issue is the buffer size of each router. Since the
required buffer size changes depending on the tile mapping and the
routing path allocation, it is necessary to design NoC-based sys-
tems under a buffer size constraint.
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