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Abstract - Minimum area is one of the important objectives in 
technology mapping for lookup table-based FPGAs. It has been 
proven that the problem is NP-complete. This paper presents a 
polynomial time algorithm which can run in O(n3) time to 
generate an efficient solution where n is the total number of gates 
in the circuit. The proposed algorithm partitions the graph 
representing the given circuit into subgraphs such that the 
solution can be obtained by merging the subgraph solutions. The 
greedy technique is then used to find the solution for each 
subgraph. It is shown that except for some cases the greedy 
method can find an optimal solution of a given problem.  We 
have tested our algorithm on a set of benchmark examples. The 
experimental results demonstrate the effectiveness of our 
algorithm. 

I. Introduction 

The merits of low cost and short turnaround time have made 
field programmable gate arrays (FPGAs) an important technology 
in VLSI designs. In an FPGA device, a configurable logic block 
(CLB) contains a k-input lookup table (LUT) and can implement 
any Boolean function whose input number must not exceed k, k 
being a function of the CLB hardware constraints on the number 
of inputs.   

The technology mapping problem for LUT-based FPGA is to 
produce an equivalent circuit for a given circuit using gates that 
can be implemented with LUTs. The optimization objectives of 
this problem can be area [1-2], performance [3-5], routability 
[7-8], and etc. For performance optimization, the algorithm 
proposed in FlowMap [5] is sophisticated. It assumes that the 
path delay is directly proportional to the number of logic levels 
and ensures the optimal solution can be found in polynomial 
times. 

In an area mapping solution, duplication of gates in the given 
circuit is usually allowed.  However, using a two-stage design 
process, it is possible to find a solution without duplication first, 
and then find the part that can be duplicated to reduce the total 
number of LUTs.  Thus in this paper, we focus on the first stage 
of the process in which gates are implemented by one and only 
one LUT and present an efficient algorithm for finding the 
area-minimum solution. This proposed algorithm first uses a 
partitioning algorithm that divides the given circuit system into 
subsystems such that one subsystem has only one output and the 
union of the solutions for these subsystem is the solution of the 
whole system.  

Unlike performance optimal mapping, the technology 
mapping problem for minimizing area cannot be found an optimal 
mapping solution. It is shown that the problem of area-optimal 
mapping is NP-complete [9-10].  A greedy approach is used to 
find the mapping solution for each subsystem. Two kinds of 
subgraphs of the graph representing a subsystem are selected, one 

at a time, in the procedure of the greedy method.  It is shown 
that except for some cases this method can find the optimal 
mapping of the subsystem.  The time complexity of this 
algorithm is bounded by O(n3), where n is the total number of 
gates in the given circuit. The experimental results on a number 
of MCNC benchmarks demonstrate the efficiency of this 
algorithm.  

The remainder of this paper is organized as follows. Section 
II describes the terminology and problem formulation. The 
area-optimal algorithm for duplication-free mapping solution is 
presented in Section III. Experimental results are shown in 
Section IV.   Finally, in Section V we present concluding 
remarks.  

II. Terminology and Problem Formulation  

A combinational logic circuit can be represented by a directed 
acyclic graph (DAG), G = (Vg∪Vio, E). A vertex in Vg represents 
a logic gate, while a vertex in Vio represents a pseudo gate that is 
either a primary input or a primary output. A directed edge <i, j> 
exists in E if the output of gate i is the input of gate j. Notice that 
a primary input vertex has no in-coming edge and a primary 
output vertex has no out-going edge. Figure 1.b shows the 
corresponding DAG of the combinational circuit illustrated in 
Figure 1.a.  A vertex in Vio is represented by a square box and a 
vertex in Vg by a circle in Figure 1.b.  

Let v and u be two vertices of Vg.  If there is a directed path 
from v to u, v is said to be a predecessor of u and u is a successor 
of v.  If v is connected to u by a single edge, v is said to be a 
fan-in vertex of u and u is a fan-out vertex of v. Let Vs be a subset 
of Vg and sV = V – Vs. A fan-in signal of Vs is a signal associated 

with an edge directed from a sV vertex to a Vs vertex. A fan-out 
signal of Vs is a signal associated with an edge directed from a Vs 
vertex to a sV  vertex. It is defined that Input(Vs) represents the 
set of fan-in signals of Vs. Similarly, Output(Vs) represents the set 
of fan-out signals. The output signal of a gate may feed to more 
than one gate. The signal is said to have multiplicity fanout at the 
gate.  Equivalently, a vertex in G may have more than one 
out-edge. Such a vertex is called a multiplicity vertex. The output 
signal from a multiplicity vertex propagates through distinct paths 
and ends at either 1) more than one primary output vertex or 2) 
one-output vertex.  The multiplicity vertices are called 
multiple-fanout sources in the first case and reconvergent source 
in the second case. For example, in Figure 1.b, s is a reconvergent 
source and u and x are multiple-fanout sources. Notice that a 
vertex can be a multiple-fanout source as well as a reconvergent 
source. 

Assume Cv is the subgraph induced by Vv.  The subgraph Cv 
is said to be a cone if there exists a vertex v ∈ Vv such that for 
every vertex u∈ Cv there is a directed path from u to v in Cv.  
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The vertex v is called the tip of the cone. A cone, Cv, is said to be 
a single output cone (SO cone) if Output(Vv)=1. A cone, Cv, is 
said to be k-feasible if it is a SO cone and Input(Vv)≦k.  Since 
Cv is the induced subgraph of Vv, the set of fan-in signals of Cv is 
exactly equal to Input(Vv). For convenience, Input(Vv) and 
Input(Cv) are used simultaneously and interchangeable in the rest 
of this paper.  Let Cu =  (Vu, Eu) and Cv = (Vv, Ev) be two cones.  
Cu and Cv are said to be overlaped if Vu ∩ Vv ≠∅; Cu is said to be 
covered with Cv if Vu ⊆ Vv.  

(a)     (b) 
Fig. 1: a) A combinational circuit; b) The DAG corresponding to 

the circuit in (a).  

A SO cone tipped at v, Cv, is called a primary block if it 
covers all SO cones tipped at v and v is either a primary output 
vertex or a multiple-fanout source. For example, in Figure 1.b, the 
cone, Cx, containing vertices x, n, and p is a primary block.   

A network is said to be k-bounded if the in-degree of every 
vertex is less than or equal to k in the network. In the rest of this 
paper, it is assumed that the given DAG is transformed into a 
2-input simple gate network by using the decomposition 
algorithm [4]. Formally, a collection of k-feasible cones is said to 
be a mapping solution of G = (Vg∪Vio, E) if each vertex in Vg is 
included in one and only one cone. Therefore, the technology 
mapping problem for LUT-based FPGA designs can be 
formulated as a graph-covering problem as follows:  

Given a 2-bounded network, find a mapping solution such that 
the number of cones in the mapping is minimum. 

III. Outline of the Mapping Algorithm  

The divide-and-conquer approach and greedy method are two 
major techniques used in the algorithm. The divide-and conquer 
approach is usually used to reduce the complexity of computation. 
To use this approach, we must be able to partition the given 
problem into sub-problems such that each sub-problem can be 
solved independently and the solutions for the sub-problems can 
be combined to be the solution of the whole problem.  

The proposed algorithm is divided into two steps: 1) 
partitioning the graph representing the given circuit system into 
primary blocks, and 2) using the greedy method to find the 
solution for each primary blocks.  

To use greedy method to find the optimal mapping for a 
primary block GB, we must find a k-feasible cone Ct such that the 
optimal solution of GB is the union of {Ct} and the optimal 
solution of GB −Ct. Subgraphs are selected in the iterations of the 
greedy procedure. It is shown that in an iteration the selection of a 
subgraph of a special kind can always lead to an optimal solution. 

However, a subgraph of this special kind may not exist in the 
selection procedure. In such a case, a subgraph of the second kind 
is selected. It is shown that except for some particular cases the 
selection of the second kind can also lead to finding the optimal 
solution.  

IV. Partitioning the Given DAG into Primary Blocks 

According to the algorithm [6], it can be shown that 1) the 
primary blocks of a given DAG are mutual-exclusive, 2) the 
union of all primary blocks includes all vertices, and 3) for a SO 
cone, Ck, there is one and only one primary block, Cw, such that 
Ck ⊆ Cw.  Therefore, the mapping solutions for the primary 
blocks can be combined to be the solution of the whole DAG.   

To partition the given DAG into primary blocks, we label the 
vertices in the given DAG such that the vertices in a primary 
block have the same label. Starting from the primary output 
vertices, a traversal of the graph in topological order can label the 
vertices. A vertex is labeled with the same tag as its fan-out 
vertices if all its fan-out vertices have the same label; it is labeled 
with new tag otherwise. Figure 2 shows the result of labeling 
vertices of the graph in Figure 1.b. It is seen that in Figure 2 the 
fan-out vertices of vertex u have different labels and therefore 
vertex u is labeled with a new tag. 

Fig. 2. Partitioning a given DAG into primary blocks. 

According the labeling rule, a vertex that is labeled with a 
new tag must be a primary output vetex or a multiple fanout 
source. Hence, the subgraph induced by the vertices with the 
same label must be a SO cone tipped at a primary output vertex or 
a multiple-fanout source. Therefore, the subgraph induced by the 
vertices with the same label is a primary block. In this procedure, 
every edge is traversed once.  The time complexity is bounded 
by O(e). 

V. The Mapping Solution for a Primary Block 

In this subsection, we will use the greedy method to find the 
mapping solution for a primary block GB. It is discussed whether 
the selection of a k-feasible cone in each iteration of the greedy 
method will lead to finding the optimal mapping solution or not.   

A cone is called a floor cone if all its fan-in vertices are 
primary input vertices. In Figure 3.a, the cone including the 
vertex r and all its predecessors is a floor cone.  

Theorem 1: There exists an optimal mapping solution, MB, in GB 
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such that every feasible floor cone is covered with a cone in MB. 

Proof: Assume that Cw is a feasible floor cone tipped at w and it 
is not covered with a single cone in an optimal mapping solution 
MB.  Let Cv be the cone in MB that covers w. There are two cases 
with v and w: 1) v = w and 2) v ≠ w.  Consider the first case. 
Assume Cv≠ Cw. Because Cw includes all predecessors of w, Cv ⊂ 
Cw.  Let Gv = Cw − Cv and Sv be the set of cones covering Gv in 
MB.  It is obvious that v

SC
GC

v

=
∈
U . If we replace Cv and all the 

cones in Sv with Cw, the number of cones in the new mapping 
solution decreases.  This is a contradiction to the assumption 
that MB is an optimal mapping solution. Therefore, if v = w, then 
Cv = Cw.  The second case is shown in Figure 4. Let 

vww CCC ∩=' , Gu = Cw − '
wC , and ''

wvv CCC −= . Since w is 

the only vertex in Cw that has fan-out signal to '
vC  and 

|Output(Gu)| ≥ 1, |Input( '
vC )| = |Input(Cv)| − |Output(Gu)| +1 ≤ 

|Input(Cv)|. Therefore, '
vC  is a k-feasible cone.  Let SC be the 

set of cones covering Gu in MB.  Since |Output(Gu)| ≥ 1, |SC| ≥ 1.  
Accordingly, if we replace Cv and the cone in SC with '

vC  and 
Cw, the total number of cones in MB does not increase. ■ 

 (a)       (b) 
Fig. 3. a) A given DAG ; b) A new DAG derived from (a) by 

selecting a critical floor cone as a cone in the optimal mapping 
solution (k =5). 

Fig. 4. A feasible floor cone is not covered with a cone in an 
optimal mapping solution in GB. 

Let Cv be a k-feasible floor cone tipped at v. If the floor cone 
tipped at any successor of v is not k-feasible, Cv is called a 
saturated floor cone.  In Figure 3.a, the floor cone including the 
set of the vertices {x, m, n, o, p} is an example of a saturated floor 

cone. The floor cone including the set of the vertices {n, o, p} is a 
floor cone but not a saturated floor cone because x is a successor 
of n and the floor tipped at x is a k-feasible floor cone.  A 
saturated floor cone Cv is said to be a critical floor cone if it 
cannot be covered with any other feasible cones. For example, in 
Figure 3.a Cv including the vertex v is a critical floor cone. 
However, in Figure 3.a, the floor cone including the set of the 
vertices {x, m, n, o, p} is a saturated floor cone but not a critical 
floor cone. 

Theorem 2: If there exists a critical floor cone in GB, it can be 
selected to be in the optimal mapping solution.  

Proof: This is a corollary of Theorem 1. Assume Cr is a critical 
floor cone. According to Theorem 1, there exist an optimal 
mapping solution that has a cone, Cs, covering Cr. Since no 
feasible floor cone is larger than the critical floor cone, Cs = Cr.■ 

According to Theorem 2, the critical floor cone Cv in Figure 
3.a can be selected to be in the optimal mapping solution. On the 
other hand, if there are no critical floor cones, we must find 
another kind of cone that can be selected to be in the mapping 
solution.  A vertex is called a leading vertex if 1) each fan-in 
vertex is either the tip of a saturated floor cone or a primary input 
vertex, and 2) at least one fan-in vertex is the tip of a saturated 
floor cone.  For example, in Figure 3.b the vertex c is a leading 
vertex. 

Lemma 3: There must exist a leading vertex in GB. 

Proof: As shown in Figure 5, let u be a fan-out vertex of a 
saturated floor cone Cw and Ui be the set of fan-in vertices of u. It 
is to be shown that if every floor cone tipped at a vertex in Ui is 
feasible, u is a leading vertex. Otherwise, there must exist a 
leading vertex that is a predecessor of u. 
Consider the case that every floor cone tipped at a vertex in Ui is 
feasible. Let v∈Ui, v ≠ w, and Cv be a feasible floor cone tipped at 
v.  There are two sub-cases: 1) v is not a multiplicity vertex and 
2) v is a multiplicity vertex.  In the first sub-case, the successor 
of w is also the successor of v.  Since Cw is a saturated floor cone, 
the floor cone tipped at a successor of v is not feasible. Hence, Cv 
is a saturated floor cone. Consider the second sub-case. Assume 
Cv is not a saturated floor cone and there exists a saturated floor 
cone, Cx, tipped at a successor of v.  Obviously, Cx must cover u 
and Cw. However, it is a contradiction to the hypothesis that Cw is 
a saturated floor cone and it cannot be covered with any other 
saturated floor cones.  Therefore, Cv is a saturated floor cone and 
u is a leading vertex.  
Next we have to consider the case that at least one floor cone 
tipped at a vertex in Ui is infeasible. Let v∈Ui and Cv be an 
infeasible floor cone covering v and all its predecessors. If u is not 
a leading vertex, there must in GB exist an infeasible floor cone Cv. 
Since Cv is a floor cone and any floor cone tipped at a successor 
of v is not feasible, there are saturated floor cones in Cv.  The 
case is shown in Figure 6. Let 'u  be a fan-out vertex of a 
saturated floor cone in Cv.  According to the previous discussion 

in GB, if 'u  is not an out-reach vertex, there must in Cv exist an 
infeasible floor cone '

vC .  Let ''u  be a fan-out vertex of a 

saturated floor cone in '
vC . If ''u  is not an out-reach vertex, 

there is an infeasible floor cone ''
vC  in '

vC . Recursively, a 
leading vertex whose every fan-in vertex is the tip of a feasible 
floor cone can be found.      ■ 
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Fig. 5. Every floor cone tipped at a vertex in Ui is feasible.  

Fig. 6. There exists a floor cone tipped at a vertex in Ui is 
infeasible.  

Let Sv be a set of saturated floor cones whose fan-out vertex is 
a leading vertex v. A cone Ci ∈ Sv is called the prime cone if 
Input(Ci) is the largest in Sv. A prime cone is said to be critical 
if there exist no feasible cone covering the prime cone and other 
saturated floor cones. For example, in Figure 3.b, the vertex c is a 
leading vertex and the floor cone tipped at x is the critical prime 
cone.  

Theorem 4: If there are no critical floor cones , then a critical 
prime cone can be selected to be in the optimal mapping solution. 

Proof: By Lemma 3, there must exist a leading vertex.  Let Cw 
be a critical prime cone tipped at w. Cw is a feasible floor cone. 
According to Theorem 1, there exists an optimal mapping 
solution MB which has a cone Cv covering Cw.  Let v be the tip of 
Cv. Since no critical floor cones exist, v≠w. Hence, there is a path 
from w to v.  Equivalently, v is a successor of w.  As in Figure 7, 
assume that the leading vertex has a fan-in signal from a feasible 
floor cone Cu and |Input(Cu)| ≤ |Input(Cw)|.  Since Cw is a critical 
prime cone, there exist no feasible cones to cover both Cu and Cw. 
In other words, Cu must be a cone in MB. Let '

vC = Cu ∪ (Cv – 

Cw). |Input( '
vC )| = |Input(Cu)| +1 ≤ |Input(Cw)| +1 = |Input(Cv)| ≤ k. 

Hence, we can obtain a new mapping solution by replacing Cv 
and Cu with Cw and '

vC . The new mapping solution will have the 
same number of cones.  Equivalently, the new mapping solution 
is also an optimal one.    ■ 

According to Theorem 2 and 4, the greedy method can be 
used to find the optimal solution. Figure 8 illustrates the 
procedure of finding an area-optimal mapping solution. We first 
find the leading vertex c and the prime cone Cx including the set 
of the vertices {x, m, n, o, p}. The cone Cx is selected to be in the 
mapping solution. A new DAG GB = GB − Cx is obtained. In the 
new iteration of recursive process, GB is set to be GB − Cx. The tip 

of Cx is considered as a primary input vertex of new GB. The 
vertex d is the leading vertex in the new GB.  The saturated floor 
cone Cc including the set of the vertices {c, a, y} is a prime cone 
and is selected to be in the mapping solution. Again set GB to be 
GB − Cc. The subgraph induced by the set of vertices {b, d} is 
selected to be in the mapping solution.  It is seen that the 
mapping solution is an optimal one including three cones.  

Fig. 7. The prime cone in the optimal mapping solution. 

Fig. 8. An example of finding an optimal mapping solution by the 
greedy method (k =5). 

If a prime is not critical, selecting it may lead to a 
non-optimal solution. For example, in Figure 9 the prime cone Cy 
including the vertex y is not critical. If we select Cy to be in the 
mapping solution, a new DAG GB = GB − Cy is obtained. In the 
new iteration of recursive process, GB is set to be GB − Cy. The tip 
of Cy is considered as a primary input vertex of new GB. The 
vertex d is the leading vertex in GB.  The saturated floor cone Cc 
tipped at c is a critical prime cone and is selected to be in the 
mapping solution. Again set GB to be GB − Cc. The subgraph 
induced by the set of vertices {b, d} is selected to be in the 
mapping solution.  It is seen that the mapping solution includes 
three cones. However, if we use the cones including the sets of 
the vertices {a, b, c, d, y} and {m, n, o, p, x} to cover GB, the 
number of the cones needed is only two. Hence, the greedy 
method can not be used to find the optimal solution in Figure 9.  
Nevertheless, it is difficult to determine whether a prime cone is 
critical or not.  Its time complexity can be exponential. In 
practice, most prime cones are critical in our experience. Even 
more, a good mapping solution can be obtained in the 
experimental results shown in Section VI if there exist no critical 
cones and we select a prime cone in the mapping solution. 

Based on the above discussion, we need an algorithm to find 
the critical floor cones and the prime cone. To find those cones, 
we must find the saturated floor cones that can be generated by 
inspecting all k-feasible floor cones.  
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Fig. 9. A feasible cone covers the leading vertex and its all 
predecessors (k =5). 

It is easy to find all k-feasible floor cones.   Let Pre(v) 
denote the predecessors of v and Fin(v) denote the set of fan-in 
vertices of v.  Let SP(v) = U

)(
)(

v Finu
uPre

∈
.  Clearly, Pre(v) = {v}∪ 

SP(v). Accordingly, starting from the tip of a primary block GB, 
all k-feasible floor cones can be found by traversing GB in 
post-order.  Assume that Cv is a floor cone induced by Pre(v). 
Recall Cv is k-feasible if and only if )( vCInput ≤ k and 

)( vCOutput =1. The procedure to find the k-feasible floor cones 
in GB is as follows: 

Algorithm Generating Floor Cones: 
 GenerateFloorCones (GB) 
    Comment: GB = (V, E) is a DAG  
 begin 
      stack ←∅ ; 
      for every vertex v in V do begin 
    timesVisited(v) ←0 
    if (v is a primary input vertex) then push v onto 

stack 
      end of for-loop 
      while stack ≠ ∅ do begin 
    vx ← pop(stack) ; 
    Pre(v) = {v}∪ SP(v) ; 
    Construct Cvx which is the induced subgraph by 

Pre(v) ; 
    if ( |Input(Cvx)| ≤ k and |Output(Cvx)| = 1) then 
     add Cvx to the list of all k-feasible floor cones 
        for every fan-out vertex of vx, vs, do begin 
          timesVisited(vs) ← timesVisited(vs) +1 ; 
          if (timesVisited(vs) = indegree of vs) do 
            push vs onto stack ; 
        end of for-loop 
  end of while-loop 
   end of GenerateAllFloorCones 

Theorem 5: The complexity of generating all k-feasible floor 
cones in GB is O(n2), where n is the total number of vertices.  

Proof: In the procedure, every edge is traversed once.  For every 
vertex v, we must check whether the union of {v} and SP(v) is a 
feasible cone or not. Therefore the complexity of generating all 
k-feasible floor cones is bounded by O(n2).■ 

Theorem 6: Given a 2-bound network, the time complexity of the 
area-optimal mapping algorithm is O(n3) where n is the number 
of vertices.  

Proof: The PrimaryBlock_Mapping algorithm must be executed 
recursively to find the cone of a mapping solution in a given 

primary block. One iterative in the recursion finds one cone. The 
maximum depth of recursion is less than or equal to n.  The time 
complexity of finding a cone is )( 2nO . Therefore, for a primary 
block, the upper bound of the complexity of the greedy method is 

)( 2nnO ⋅ .  The time complexity of partitioning the graph into 
primary blocks is O(e) where e is the total number of edges. The 
total number of edges is less than n2. Hence, the total time 
complexity of the area-optimal mapping algorithm is O(n3). ■ 

VI. Experimental Results 

The proposed algorithm was implemented in C language on a 
SUN SPARC 2. We set k to be five. Testing was accomplished by 
having the algorithm experimentally design several circuits from 
the MCNC logic synthesis benchmark set. Prior to use of these 
algorithms, a MIS-II [12] environment was used to reduce the 
complexity of the given network and produce a 2-bounded 
general Boolean network.  Table I presents the comparison of 
run-times of the proposed algorithm and the DFMap algorithm 
[6], which can generate optimal duplication-free area-mapping 
solution, i.e., gates are implemented by one and only one LUT, by 
using the dynamic programming method. It is seen that the 
proposed algorithm takes less 117% CPU time than the DFMap 
on average. Furthermore, for the special circuits such as 9symml, 
the DFMap takes more 60 times than the proposed algorithm. 

Table I. Comparison of the CPU run-time with DFMap 

CPU Time (seconds) 
Circuit ckt size Proposed algorithm DFMap 
9symml 151 0.19 12.2
C3540 956 0.20 5.5 
alu2 275 0.05 1.2 
alu4 540 0.08 1.8 

apex6 699 0.06 2.0 
C880 302 0.03 0.5 

rot 436 0.03 0.6 
i7 340 0.03 0.6 

C499 370 0.02 1.0 
duke2 181 0.03 0.3 
rd84 108 0.02 0.3 

C5315 1454 16.89 26.0 
C6288 2353 0.30 0.3 
C7552 2118 57.45 71.7 
s1196 481 0.03 0.8 
s1494 558 0.09 3.4 
s5378 1074 0.19 5.2 

des 2244 0.22 4.2 
Total 78.76 170.8 

Comparison 1 +117% 

We compare the number of LUTs and depths generated by the 
proposed algorithm with those obtained by other FPGA 
technology mapping algorithms such as the DFMap [6], 
Chortle-crf [2], and FlowMap [5]. Among the algorithms, the 
proposed algorithm and the DFMap are duplication-free mapping 
and Chortle-crf and FlowMap allow duplication of gates. Table II 
presents the experimental results. The results show that the 
number of LUTs generated by the proposed algorithm is close to 
the optimal area-mapping solution found by the DFMap and 
reduces 23% LUTs number compared with FlowMap. Because 
the Chortle-crf allows duplication of gates, our algorithm 
generates 20% more LUTs number than the Chortle-crf.  
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Table II. Comparison of the number of LUTs (A) and depths (D) 
with DFMap, Chortle-crf, and FlowMap  

Proposed 
algorithm DFMap Chortle-crf FlowMap       Mapper    

     
Circuit A (Ln) D A D A D A D

9symml 73 9 69 7 60 9 77 5
C3540 425 18 399 21 319 16 549 10
alu2 125 14 120 16 111 19 171 9
alu4 230 14 220 18 196 21 300 10

apex6 229 14 220 18 193 18 300 10
C880 117 9 117 12 94 14 161 7

rot  202 9 201 12 203 14 266 7
i7  146 4 146 4 107 2 139 2

C499 66 5 66 5 70 6 74 4
duke2 131 8 129 9 116 8 190 4
rd84 46 7 44 7 40 7 44 4

C5315 473 12 448 11 439 12 690 8
C6288 1425 90 1425 90 494 29 760 22
C7552 676 11 645 10 644 10 741 7
s1196 204 12 200 12 166 10 211 5
s1494 230 7 219 6 188 8 260 4
s5378 483 8 473 8 420 9 527 5

des 1081 10 1068 10 950 11 1552 5
Total 9231 274 9111 288 7365 232 11398 155

Comparison 1 1 -1% +5% -20% -15% +23% -43%

Among the algorithms in Table II, our algorithm is aimed 
primarily at minimum number of LUTs, while CutMap and 
FlowMap focus on minimizing the depth of the mapping solution. 
The experimental results show that CutMap and FlowMap 
generate better solution than our algorithm in depth. These 
comparisons show that a good mapping algorithm that should 
first consider the primary objective and then preferably allow 
controllable trade-off among all objectives. Otherwise, the 
mapping results will be of low quality for the primary objective. 

To demonstrate the effectiveness of our algorithm, Table III 
presents the number of critical floor cones and prime cones of 
every benchmark. According to the above discussions in Section 
II and III, a selection of a prime cone whose fan-out vertex is not 
a critical leading vertex can lead to non-optimal solution.  In 
Table III, we find the number of the prime cones whose leading 
vertex is non-critical does not exceed 6% of the total LUTs 
number. Even more, the circuits C880, i7, rot, and C499 generate 
optimal solutions.  Therefore, we believe that good mapping 
solutions can be obtained by using our algorithm. 
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Table III. Circuit optimization using the greedy method 

critical floor cones 
prime cones whose 

leading vertex is 
critical 

prime cones whose 
leading vertex is 

non-critical 
Circuit

A (CN)
Ratio 
(

N

N

L
C ) A (PCN) 

Ratio 
(

N

CN

L
P ) A (PNCN)

Ratio 
(

N

NCN

L
P )

9symml 60 82% 9 12% 4 5% 
C3540 182 43% 27 6% 26 6% 
alu2 65 52% 11 9% 5 4% 
alu4 114 50% 22 10% 10 4% 

apex6 112 49% 24 10% 9 4% 
C880 57 49% 17 15% 0 0% 

rot 61 30% 21 10% 1 0% 
i7 102 70% 30 21% 0 0% 

C499 8 12% 8 12% 0 0% 
duke2 42 32% 8 6% 2 2% 
rd84 24 52% 2 4% 2 4% 

C5315 257 54% 15 3% 25 5% 
C6288 0 0% 0 0% 0 0% 
C7552 315 47% 4 1% 31 5% 
s1196 90 44% 12 6% 4 2% 
s1494 153 67% 35 15% 11 5% 
s5378 178 37% 32 7% 10 2% 

des 497 46% 172 16% 13 1% 
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