

1

Area-Minimal Algorithm for LUT-Based FPGA Technology Mapping
with Duplication-free Restriction

Chi-Chou Kao Yen-Tai Lai
Department of Information Technology Department of Electrical Engineering
National Pingtung Institute of Commerce National Cheng Kung University

Pingtung, Taiwan Tainan, Taiwan

Abstract - Minimum area is one of the important objectives in
technology mapping for lookup table-based FPGAs. It has been
proven that the problem is NP-complete. This paper presents a
polynomial time algorithm which can run in O(n3) time to
generate an efficient solution where n is the total number of gates
in the circuit. The proposed algorithm partitions the graph
representing the given circuit into subgraphs such that the
solution can be obtained by merging the subgraph solutions. The
greedy technique is then used to find the solution for each
subgraph. It is shown that except for some cases the greedy
method can find an optimal solution of a given problem. We
have tested our algorithm on a set of benchmark examples. The
experimental results demonstrate the effectiveness of our
algorithm.

I. Introduction

The merits of low cost and short turnaround time have made
field programmable gate arrays (FPGAs) an important technology
in VLSI designs. In an FPGA device, a configurable logic block
(CLB) contains a k-input lookup table (LUT) and can implement
any Boolean function whose input number must not exceed k, k
being a function of the CLB hardware constraints on the number
of inputs.

The technology mapping problem for LUT-based FPGA is to
produce an equivalent circuit for a given circuit using gates that
can be implemented with LUTs. The optimization objectives of
this problem can be area [1-2], performance [3-5], routability
[7-8], and etc. For performance optimization, the algorithm
proposed in FlowMap [5] is sophisticated. It assumes that the
path delay is directly proportional to the number of logic levels
and ensures the optimal solution can be found in polynomial
times.

In an area mapping solution, duplication of gates in the given
circuit is usually allowed. However, using a two-stage design
process, it is possible to find a solution without duplication first,
and then find the part that can be duplicated to reduce the total
number of LUTs. Thus in this paper, we focus on the first stage
of the process in which gates are implemented by one and only
one LUT and present an efficient algorithm for finding the
area-minimum solution. This proposed algorithm first uses a
partitioning algorithm that divides the given circuit system into
subsystems such that one subsystem has only one output and the
union of the solutions for these subsystem is the solution of the
whole system.

Unlike performance optimal mapping, the technology
mapping problem for minimizing area cannot be found an optimal
mapping solution. It is shown that the problem of area-optimal
mapping is NP-complete [9-10]. A greedy approach is used to
find the mapping solution for each subsystem. Two kinds of
subgraphs of the graph representing a subsystem are selected, one

at a time, in the procedure of the greedy method. It is shown
that except for some cases this method can find the optimal
mapping of the subsystem. The time complexity of this
algorithm is bounded by O(n3), where n is the total number of
gates in the given circuit. The experimental results on a number
of MCNC benchmarks demonstrate the efficiency of this
algorithm.

The remainder of this paper is organized as follows. Section
II describes the terminology and problem formulation. The
area-optimal algorithm for duplication-free mapping solution is
presented in Section III. Experimental results are shown in
Section IV. Finally, in Section V we present concluding
remarks.

II. Terminology and Problem Formulation

A combinational logic circuit can be represented by a directed
acyclic graph (DAG), G = (Vg∪Vio, E). A vertex in Vg represents
a logic gate, while a vertex in Vio represents a pseudo gate that is
either a primary input or a primary output. A directed edge <i, j>
exists in E if the output of gate i is the input of gate j. Notice that
a primary input vertex has no in-coming edge and a primary
output vertex has no out-going edge. Figure 1.b shows the
corresponding DAG of the combinational circuit illustrated in
Figure 1.a. A vertex in Vio is represented by a square box and a
vertex in Vg by a circle in Figure 1.b.

Let v and u be two vertices of Vg. If there is a directed path
from v to u, v is said to be a predecessor of u and u is a successor
of v. If v is connected to u by a single edge, v is said to be a
fan-in vertex of u and u is a fan-out vertex of v. Let Vs be a subset
of Vg and sV = V – Vs. A fan-in signal of Vs is a signal associated

with an edge directed from a sV vertex to a Vs vertex. A fan-out
signal of Vs is a signal associated with an edge directed from a Vs
vertex to a sV vertex. It is defined that Input(Vs) represents the
set of fan-in signals of Vs. Similarly, Output(Vs) represents the set
of fan-out signals. The output signal of a gate may feed to more
than one gate. The signal is said to have multiplicity fanout at the
gate. Equivalently, a vertex in G may have more than one
out-edge. Such a vertex is called a multiplicity vertex. The output
signal from a multiplicity vertex propagates through distinct paths
and ends at either 1) more than one primary output vertex or 2)
one-output vertex. The multiplicity vertices are called
multiple-fanout sources in the first case and reconvergent source
in the second case. For example, in Figure 1.b, s is a reconvergent
source and u and x are multiple-fanout sources. Notice that a
vertex can be a multiple-fanout source as well as a reconvergent
source.

Assume Cv is the subgraph induced by Vv. The subgraph Cv
is said to be a cone if there exists a vertex v ∈ Vv such that for
every vertex u∈ Cv there is a directed path from u to v in Cv.

2

The vertex v is called the tip of the cone. A cone, Cv, is said to be
a single output cone (SO cone) if Output(Vv)=1. A cone, Cv, is
said to be k-feasible if it is a SO cone and Input(Vv)≦k. Since
Cv is the induced subgraph of Vv, the set of fan-in signals of Cv is
exactly equal to Input(Vv). For convenience, Input(Vv) and
Input(Cv) are used simultaneously and interchangeable in the rest
of this paper. Let Cu = (Vu, Eu) and Cv = (Vv, Ev) be two cones.
Cu and Cv are said to be overlaped if Vu ∩ Vv ≠∅; Cu is said to be
covered with Cv if Vu ⊆ Vv.

(a) (b)
Fig. 1: a) A combinational circuit; b) The DAG corresponding to

the circuit in (a).

A SO cone tipped at v, Cv, is called a primary block if it
covers all SO cones tipped at v and v is either a primary output
vertex or a multiple-fanout source. For example, in Figure 1.b, the
cone, Cx, containing vertices x, n, and p is a primary block.

A network is said to be k-bounded if the in-degree of every
vertex is less than or equal to k in the network. In the rest of this
paper, it is assumed that the given DAG is transformed into a
2-input simple gate network by using the decomposition
algorithm [4]. Formally, a collection of k-feasible cones is said to
be a mapping solution of G = (Vg∪Vio, E) if each vertex in Vg is
included in one and only one cone. Therefore, the technology
mapping problem for LUT-based FPGA designs can be
formulated as a graph-covering problem as follows:

Given a 2-bounded network, find a mapping solution such that
the number of cones in the mapping is minimum.

III. Outline of the Mapping Algorithm

The divide-and-conquer approach and greedy method are two
major techniques used in the algorithm. The divide-and conquer
approach is usually used to reduce the complexity of computation.
To use this approach, we must be able to partition the given
problem into sub-problems such that each sub-problem can be
solved independently and the solutions for the sub-problems can
be combined to be the solution of the whole problem.

The proposed algorithm is divided into two steps: 1)
partitioning the graph representing the given circuit system into
primary blocks, and 2) using the greedy method to find the
solution for each primary blocks.

To use greedy method to find the optimal mapping for a
primary block GB, we must find a k-feasible cone Ct such that the
optimal solution of GB is the union of {Ct} and the optimal
solution of GB −Ct. Subgraphs are selected in the iterations of the
greedy procedure. It is shown that in an iteration the selection of a
subgraph of a special kind can always lead to an optimal solution.

However, a subgraph of this special kind may not exist in the
selection procedure. In such a case, a subgraph of the second kind
is selected. It is shown that except for some particular cases the
selection of the second kind can also lead to finding the optimal
solution.

IV. Partitioning the Given DAG into Primary Blocks

According to the algorithm [6], it can be shown that 1) the
primary blocks of a given DAG are mutual-exclusive, 2) the
union of all primary blocks includes all vertices, and 3) for a SO
cone, Ck, there is one and only one primary block, Cw, such that
Ck ⊆ Cw. Therefore, the mapping solutions for the primary
blocks can be combined to be the solution of the whole DAG.

To partition the given DAG into primary blocks, we label the
vertices in the given DAG such that the vertices in a primary
block have the same label. Starting from the primary output
vertices, a traversal of the graph in topological order can label the
vertices. A vertex is labeled with the same tag as its fan-out
vertices if all its fan-out vertices have the same label; it is labeled
with new tag otherwise. Figure 2 shows the result of labeling
vertices of the graph in Figure 1.b. It is seen that in Figure 2 the
fan-out vertices of vertex u have different labels and therefore
vertex u is labeled with a new tag.

Fig. 2. Partitioning a given DAG into primary blocks.

According the labeling rule, a vertex that is labeled with a
new tag must be a primary output vetex or a multiple fanout
source. Hence, the subgraph induced by the vertices with the
same label must be a SO cone tipped at a primary output vertex or
a multiple-fanout source. Therefore, the subgraph induced by the
vertices with the same label is a primary block. In this procedure,
every edge is traversed once. The time complexity is bounded
by O(e).

V. The Mapping Solution for a Primary Block

In this subsection, we will use the greedy method to find the
mapping solution for a primary block GB. It is discussed whether
the selection of a k-feasible cone in each iteration of the greedy
method will lead to finding the optimal mapping solution or not.

A cone is called a floor cone if all its fan-in vertices are
primary input vertices. In Figure 3.a, the cone including the
vertex r and all its predecessors is a floor cone.

Theorem 1: There exists an optimal mapping solution, MB, in GB

z y

u

v

q

h

k

s m n p

x

a b c d e f g

w

z

u
x

v w

q

h k s m n p

y

a b c d e gf

label

1 2 z

u
x

v w

q

h k s m n p

 y

a b d e gf l

3
4

4 4

3 3

3

3 3 3

3

such that every feasible floor cone is covered with a cone in MB.

Proof: Assume that Cw is a feasible floor cone tipped at w and it
is not covered with a single cone in an optimal mapping solution
MB. Let Cv be the cone in MB that covers w. There are two cases
with v and w: 1) v = w and 2) v ≠ w. Consider the first case.
Assume Cv≠ Cw. Because Cw includes all predecessors of w, Cv ⊂
Cw. Let Gv = Cw − Cv and Sv be the set of cones covering Gv in
MB. It is obvious that v

SC
GC

v

=
∈
U . If we replace Cv and all the

cones in Sv with Cw, the number of cones in the new mapping
solution decreases. This is a contradiction to the assumption
that MB is an optimal mapping solution. Therefore, if v = w, then
Cv = Cw. The second case is shown in Figure 4. Let

vww CCC ∩=' , Gu = Cw − '
wC , and ''

wvv CCC −= . Since w is

the only vertex in Cw that has fan-out signal to '
vC and

|Output(Gu)| ≥ 1, |Input('
vC)| = |Input(Cv)| − |Output(Gu)| +1 ≤

|Input(Cv)|. Therefore, '
vC is a k-feasible cone. Let SC be the

set of cones covering Gu in MB. Since |Output(Gu)| ≥ 1, |SC| ≥ 1.
Accordingly, if we replace Cv and the cone in SC with '

vC and
Cw, the total number of cones in MB does not increase. ■

 (a) (b)
Fig. 3. a) A given DAG ; b) A new DAG derived from (a) by

selecting a critical floor cone as a cone in the optimal mapping
solution (k =5).

Fig. 4. A feasible floor cone is not covered with a cone in an
optimal mapping solution in GB.

Let Cv be a k-feasible floor cone tipped at v. If the floor cone
tipped at any successor of v is not k-feasible, Cv is called a
saturated floor cone. In Figure 3.a, the floor cone including the
set of the vertices {x, m, n, o, p} is an example of a saturated floor

cone. The floor cone including the set of the vertices {n, o, p} is a
floor cone but not a saturated floor cone because x is a successor
of n and the floor tipped at x is a k-feasible floor cone. A
saturated floor cone Cv is said to be a critical floor cone if it
cannot be covered with any other feasible cones. For example, in
Figure 3.a Cv including the vertex v is a critical floor cone.
However, in Figure 3.a, the floor cone including the set of the
vertices {x, m, n, o, p} is a saturated floor cone but not a critical
floor cone.

Theorem 2: If there exists a critical floor cone in GB, it can be
selected to be in the optimal mapping solution.

Proof: This is a corollary of Theorem 1. Assume Cr is a critical
floor cone. According to Theorem 1, there exist an optimal
mapping solution that has a cone, Cs, covering Cr. Since no
feasible floor cone is larger than the critical floor cone, Cs = Cr.■

According to Theorem 2, the critical floor cone Cv in Figure
3.a can be selected to be in the optimal mapping solution. On the
other hand, if there are no critical floor cones, we must find
another kind of cone that can be selected to be in the mapping
solution. A vertex is called a leading vertex if 1) each fan-in
vertex is either the tip of a saturated floor cone or a primary input
vertex, and 2) at least one fan-in vertex is the tip of a saturated
floor cone. For example, in Figure 3.b the vertex c is a leading
vertex.

Lemma 3: There must exist a leading vertex in GB.

Proof: As shown in Figure 5, let u be a fan-out vertex of a
saturated floor cone Cw and Ui be the set of fan-in vertices of u. It
is to be shown that if every floor cone tipped at a vertex in Ui is
feasible, u is a leading vertex. Otherwise, there must exist a
leading vertex that is a predecessor of u.
Consider the case that every floor cone tipped at a vertex in Ui is
feasible. Let v∈Ui, v ≠ w, and Cv be a feasible floor cone tipped at
v. There are two sub-cases: 1) v is not a multiplicity vertex and
2) v is a multiplicity vertex. In the first sub-case, the successor
of w is also the successor of v. Since Cw is a saturated floor cone,
the floor cone tipped at a successor of v is not feasible. Hence, Cv
is a saturated floor cone. Consider the second sub-case. Assume
Cv is not a saturated floor cone and there exists a saturated floor
cone, Cx, tipped at a successor of v. Obviously, Cx must cover u
and Cw. However, it is a contradiction to the hypothesis that Cw is
a saturated floor cone and it cannot be covered with any other
saturated floor cones. Therefore, Cv is a saturated floor cone and
u is a leading vertex.
Next we have to consider the case that at least one floor cone
tipped at a vertex in Ui is infeasible. Let v∈Ui and Cv be an
infeasible floor cone covering v and all its predecessors. If u is not
a leading vertex, there must in GB exist an infeasible floor cone Cv.
Since Cv is a floor cone and any floor cone tipped at a successor
of v is not feasible, there are saturated floor cones in Cv. The
case is shown in Figure 6. Let 'u be a fan-out vertex of a
saturated floor cone in Cv. According to the previous discussion

in GB, if 'u is not an out-reach vertex, there must in Cv exist an
infeasible floor cone '

vC . Let ''u be a fan-out vertex of a

saturated floor cone in '
vC . If ''u is not an out-reach vertex,

there is an infeasible floor cone ''
vC in '

vC . Recursively, a
leading vertex whose every fan-in vertex is the tip of a feasible
floor cone can be found. ■

'
wC

v

w

primary input vertices

Gu

'
vC

 Cv

 Cw

z

y

x
wu

v

s
t

r

n

a
b c

d

m o

v

z

y
x

w
u

s
t

r

n

a
b c

d

m p

4

Fig. 5. Every floor cone tipped at a vertex in Ui is feasible.

Fig. 6. There exists a floor cone tipped at a vertex in Ui is
infeasible.

Let Sv be a set of saturated floor cones whose fan-out vertex is
a leading vertex v. A cone Ci ∈ Sv is called the prime cone if
Input(Ci) is the largest in Sv. A prime cone is said to be critical
if there exist no feasible cone covering the prime cone and other
saturated floor cones. For example, in Figure 3.b, the vertex c is a
leading vertex and the floor cone tipped at x is the critical prime
cone.

Theorem 4: If there are no critical floor cones , then a critical
prime cone can be selected to be in the optimal mapping solution.

Proof: By Lemma 3, there must exist a leading vertex. Let Cw
be a critical prime cone tipped at w. Cw is a feasible floor cone.
According to Theorem 1, there exists an optimal mapping
solution MB which has a cone Cv covering Cw. Let v be the tip of
Cv. Since no critical floor cones exist, v≠w. Hence, there is a path
from w to v. Equivalently, v is a successor of w. As in Figure 7,
assume that the leading vertex has a fan-in signal from a feasible
floor cone Cu and |Input(Cu)| ≤ |Input(Cw)|. Since Cw is a critical
prime cone, there exist no feasible cones to cover both Cu and Cw.
In other words, Cu must be a cone in MB. Let '

vC = Cu ∪ (Cv –

Cw). |Input('
vC)| = |Input(Cu)| +1 ≤ |Input(Cw)| +1 = |Input(Cv)| ≤ k.

Hence, we can obtain a new mapping solution by replacing Cv
and Cu with Cw and '

vC . The new mapping solution will have the
same number of cones. Equivalently, the new mapping solution
is also an optimal one. ■

According to Theorem 2 and 4, the greedy method can be
used to find the optimal solution. Figure 8 illustrates the
procedure of finding an area-optimal mapping solution. We first
find the leading vertex c and the prime cone Cx including the set
of the vertices {x, m, n, o, p}. The cone Cx is selected to be in the
mapping solution. A new DAG GB = GB − Cx is obtained. In the
new iteration of recursive process, GB is set to be GB − Cx. The tip

of Cx is considered as a primary input vertex of new GB. The
vertex d is the leading vertex in the new GB. The saturated floor
cone Cc including the set of the vertices {c, a, y} is a prime cone
and is selected to be in the mapping solution. Again set GB to be
GB − Cc. The subgraph induced by the set of vertices {b, d} is
selected to be in the mapping solution. It is seen that the
mapping solution is an optimal one including three cones.

Fig. 7. The prime cone in the optimal mapping solution.

Fig. 8. An example of finding an optimal mapping solution by the
greedy method (k =5).

If a prime is not critical, selecting it may lead to a
non-optimal solution. For example, in Figure 9 the prime cone Cy
including the vertex y is not critical. If we select Cy to be in the
mapping solution, a new DAG GB = GB − Cy is obtained. In the
new iteration of recursive process, GB is set to be GB − Cy. The tip
of Cy is considered as a primary input vertex of new GB. The
vertex d is the leading vertex in GB. The saturated floor cone Cc
tipped at c is a critical prime cone and is selected to be in the
mapping solution. Again set GB to be GB − Cc. The subgraph
induced by the set of vertices {b, d} is selected to be in the
mapping solution. It is seen that the mapping solution includes
three cones. However, if we use the cones including the sets of
the vertices {a, b, c, d, y} and {m, n, o, p, x} to cover GB, the
number of the cones needed is only two. Hence, the greedy
method can not be used to find the optimal solution in Figure 9.
Nevertheless, it is difficult to determine whether a prime cone is
critical or not. Its time complexity can be exponential. In
practice, most prime cones are critical in our experience. Even
more, a good mapping solution can be obtained in the
experimental results shown in Section VI if there exist no critical
cones and we select a prime cone in the mapping solution.

Based on the above discussion, we need an algorithm to find
the critical floor cones and the prime cone. To find those cones,
we must find the saturated floor cones that can be generated by
inspecting all k-feasible floor cones.

w

Cw Cv

v

saturated floor cone u

primary input vertices

y
x

n

a
b c

d

m o p

''u

'u

'
vC

v

saturated floor cone

primary input vertices

Cv

''
vC

Cv

Cw

w u

v

Cu

5

Fig. 9. A feasible cone covers the leading vertex and its all
predecessors (k =5).

It is easy to find all k-feasible floor cones. Let Pre(v)
denote the predecessors of v and Fin(v) denote the set of fan-in
vertices of v. Let SP(v) = U

)(
)(

v Finu
uPre

∈
. Clearly, Pre(v) = {v}∪

SP(v). Accordingly, starting from the tip of a primary block GB,
all k-feasible floor cones can be found by traversing GB in
post-order. Assume that Cv is a floor cone induced by Pre(v).
Recall Cv is k-feasible if and only if)(vCInput ≤ k and

)(vCOutput =1. The procedure to find the k-feasible floor cones
in GB is as follows:

Algorithm Generating Floor Cones:
 GenerateFloorCones (GB)
 Comment: GB = (V, E) is a DAG
 begin
 stack ←∅ ;
 for every vertex v in V do begin
 timesVisited(v) ←0
 if (v is a primary input vertex) then push v onto

stack
 end of for-loop
 while stack ≠ ∅ do begin
 vx ← pop(stack) ;
 Pre(v) = {v}∪ SP(v) ;
 Construct Cvx which is the induced subgraph by

Pre(v) ;
 if (|Input(Cvx)| ≤ k and |Output(Cvx)| = 1) then
 add Cvx to the list of all k-feasible floor cones
 for every fan-out vertex of vx, vs, do begin
 timesVisited(vs) ← timesVisited(vs) +1 ;
 if (timesVisited(vs) = indegree of vs) do
 push vs onto stack ;
 end of for-loop
 end of while-loop
 end of GenerateAllFloorCones

Theorem 5: The complexity of generating all k-feasible floor
cones in GB is O(n2), where n is the total number of vertices.

Proof: In the procedure, every edge is traversed once. For every
vertex v, we must check whether the union of {v} and SP(v) is a
feasible cone or not. Therefore the complexity of generating all
k-feasible floor cones is bounded by O(n2).■

Theorem 6: Given a 2-bound network, the time complexity of the
area-optimal mapping algorithm is O(n3) where n is the number
of vertices.

Proof: The PrimaryBlock_Mapping algorithm must be executed
recursively to find the cone of a mapping solution in a given

primary block. One iterative in the recursion finds one cone. The
maximum depth of recursion is less than or equal to n. The time
complexity of finding a cone is)(2nO . Therefore, for a primary
block, the upper bound of the complexity of the greedy method is

)(2nnO ⋅ . The time complexity of partitioning the graph into
primary blocks is O(e) where e is the total number of edges. The
total number of edges is less than n2. Hence, the total time
complexity of the area-optimal mapping algorithm is O(n3). ■

VI. Experimental Results

The proposed algorithm was implemented in C language on a
SUN SPARC 2. We set k to be five. Testing was accomplished by
having the algorithm experimentally design several circuits from
the MCNC logic synthesis benchmark set. Prior to use of these
algorithms, a MIS-II [12] environment was used to reduce the
complexity of the given network and produce a 2-bounded
general Boolean network. Table I presents the comparison of
run-times of the proposed algorithm and the DFMap algorithm
[6], which can generate optimal duplication-free area-mapping
solution, i.e., gates are implemented by one and only one LUT, by
using the dynamic programming method. It is seen that the
proposed algorithm takes less 117% CPU time than the DFMap
on average. Furthermore, for the special circuits such as 9symml,
the DFMap takes more 60 times than the proposed algorithm.

Table I. Comparison of the CPU run-time with DFMap

CPU Time (seconds)
Circuit ckt size Proposed algorithm DFMap
9symml 151 0.19 12.2
C3540 956 0.20 5.5
alu2 275 0.05 1.2
alu4 540 0.08 1.8

apex6 699 0.06 2.0
C880 302 0.03 0.5

rot 436 0.03 0.6
i7 340 0.03 0.6

C499 370 0.02 1.0
duke2 181 0.03 0.3
rd84 108 0.02 0.3

C5315 1454 16.89 26.0
C6288 2353 0.30 0.3
C7552 2118 57.45 71.7
s1196 481 0.03 0.8
s1494 558 0.09 3.4
s5378 1074 0.19 5.2

des 2244 0.22 4.2
Total 78.76 170.8

Comparison 1 +117%

We compare the number of LUTs and depths generated by the
proposed algorithm with those obtained by other FPGA
technology mapping algorithms such as the DFMap [6],
Chortle-crf [2], and FlowMap [5]. Among the algorithms, the
proposed algorithm and the DFMap are duplication-free mapping
and Chortle-crf and FlowMap allow duplication of gates. Table II
presents the experimental results. The results show that the
number of LUTs generated by the proposed algorithm is close to
the optimal area-mapping solution found by the DFMap and
reduces 23% LUTs number compared with FlowMap. Because
the Chortle-crf allows duplication of gates, our algorithm
generates 20% more LUTs number than the Chortle-crf.

y
x

n

a
b c

d

m o p

6

Table II. Comparison of the number of LUTs (A) and depths (D)
with DFMap, Chortle-crf, and FlowMap

Proposed
algorithm DFMap Chortle-crf FlowMap Mapper

Circuit A (Ln) D A D A D A D

9symml 73 9 69 7 60 9 77 5
C3540 425 18 399 21 319 16 549 10
alu2 125 14 120 16 111 19 171 9
alu4 230 14 220 18 196 21 300 10

apex6 229 14 220 18 193 18 300 10
C880 117 9 117 12 94 14 161 7

rot 202 9 201 12 203 14 266 7
i7 146 4 146 4 107 2 139 2

C499 66 5 66 5 70 6 74 4
duke2 131 8 129 9 116 8 190 4
rd84 46 7 44 7 40 7 44 4

C5315 473 12 448 11 439 12 690 8
C6288 1425 90 1425 90 494 29 760 22
C7552 676 11 645 10 644 10 741 7
s1196 204 12 200 12 166 10 211 5
s1494 230 7 219 6 188 8 260 4
s5378 483 8 473 8 420 9 527 5

des 1081 10 1068 10 950 11 1552 5
Total 9231 274 9111 288 7365 232 11398 155

Comparison 1 1 -1% +5% -20% -15% +23% -43%

Among the algorithms in Table II, our algorithm is aimed
primarily at minimum number of LUTs, while CutMap and
FlowMap focus on minimizing the depth of the mapping solution.
The experimental results show that CutMap and FlowMap
generate better solution than our algorithm in depth. These
comparisons show that a good mapping algorithm that should
first consider the primary objective and then preferably allow
controllable trade-off among all objectives. Otherwise, the
mapping results will be of low quality for the primary objective.

To demonstrate the effectiveness of our algorithm, Table III
presents the number of critical floor cones and prime cones of
every benchmark. According to the above discussions in Section
II and III, a selection of a prime cone whose fan-out vertex is not
a critical leading vertex can lead to non-optimal solution. In
Table III, we find the number of the prime cones whose leading
vertex is non-critical does not exceed 6% of the total LUTs
number. Even more, the circuits C880, i7, rot, and C499 generate
optimal solutions. Therefore, we believe that good mapping
solutions can be obtained by using our algorithm.

 References

[1] J. Francis, J. Rose, and K. Chungm “Chortle: A Technology
Mapping Program for Lookup Table-Based Field
programmable Gate Arrays,” Proc, 27th ACM/IEEE Design
Automation Conference, pp. 613-619, June 1990.

[2] J. Francis, J. Rose, and Z. Vranesic, “Chortle-crf: Fast
Technology Mapping for Lookup Table-Based FPGAs,”
Proc, 28th ACM/IEEE Design Automation Conference, pp.
248-251, June 1991.

[3] R. J. Francis, J. Rose, and Z. Vranesic, “Technology
Mapping for Lookup Table-Based FPGAs for
performance,” Proc. IEEE International Conf. Computer
Aided Design, pp. 568-571, Nov. 1991.

[4] J. Cong, Y. Ding, A. Kahug, and P. Trajmar, “An Improved
Graph-Based FPGA Technology Mapping Algorithm for
Delay Optimization,” Proc. ICCD, pp. 154-158, Oct.1992.

[5] J. Cong, Y. Ding, “FlowMap: An optimal technology
mapping algorithm for delay optimization in lookup-table
based FPGA designs,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and System,
pp. 1-11 Vol.13 No. 1, January 1994.

[6] J. Cong. And Y. Ding, “On area/depth trade-off in
LUT-Based FPGA technology mapping,” IEEE
Transactions on VLSI Systems, pp. 137-148 Vol.2 No. 2,
June 1994.

[7] N. B. Bhat, and D. D. Hill, “Routable Technology Mapping
for LUT FPGAs,” Proc. ICCD, pp. 95-98, Oct. 1992.

[8] M. Schlag, J. Kong, and Pak K. Chan, “Routability-Driven
Technology Mapping for Lookup Table-Based FPGAs”,
IEEE Transactions on Computer-Aided Design of
Integrated Circuits and System, pp.13-26 Vol.13 No. 1,
January 1994.

[9] H. Farrahi and M. Sarrafzadeh, “Complexity of the
Lookup-Table Minimization Problem for FPGA
Technology Mapping,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and System
pp.1319-1332 Vol.13 No. 11, November 1994.

[10] S. Zhang, D. Michael Miller, and J. C. Muzio, “Notes on
Complexity of the Lookup-Table Minimization Problem for
FPGA Technology Mapping,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and System
pp.1588-1590 Vol.15 No. 12, December 1996.

[11] R.Murgai, N. Shenoy, R. K. Brayton, and A.
Sangiovanni-Vincentelli, “Improved Logic Synthesis
Algorithms for Table Look Up Architectures,” Proc. IEEE
International Conf. Computer-aided Design, pp. 564-567,
Nov.1991.

[12] R. K. Brayton, R. Rudell, and A. L.
Sangiovanni-Vincentelli, “MIS: A Multiple-level Logic
Optimization,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and System pp.1062-1081,
Nov. 1987.

Table III. Circuit optimization using the greedy method

critical floor cones
prime cones whose

leading vertex is
critical

prime cones whose
leading vertex is

non-critical
Circuit

A (CN)
Ratio
(

N

N

L
C) A (PCN)

Ratio
(

N

CN

L
P) A (PNCN)

Ratio
(

N

NCN

L
P)

9symml 60 82% 9 12% 4 5%
C3540 182 43% 27 6% 26 6%
alu2 65 52% 11 9% 5 4%
alu4 114 50% 22 10% 10 4%

apex6 112 49% 24 10% 9 4%
C880 57 49% 17 15% 0 0%

rot 61 30% 21 10% 1 0%
i7 102 70% 30 21% 0 0%

C499 8 12% 8 12% 0 0%
duke2 42 32% 8 6% 2 2%
rd84 24 52% 2 4% 2 4%

C5315 257 54% 15 3% 25 5%
C6288 0 0% 0 0% 0 0%
C7552 315 47% 4 1% 31 5%
s1196 90 44% 12 6% 4 2%
s1494 153 67% 35 15% 11 5%
s5378 178 37% 32 7% 10 2%

des 497 46% 172 16% 13 1%

	Main
	ASP-DAC04
	Front Matter
	Table of Contents
	Author Index

