
Exploiting State Encoding for Invariant Generation in Induction-based

Property Checking

Markus Wedler Dominik Stoffel Wolfgang Kunz
Department of Electrical and Computer Engineering

University of Kaiserslautern
D-67653 Kaiserslautern, Germany

wedler@eit.uni-kl.de stoffel@eit.uni-kl.de kunz@eit.uni-kl.de

Abstract— This paper focuses on checking safety

properties for sequential circuits specified on the RT-

level. We study how different state encodings can be

used to create a gate-level representation of the circuit

that facilitates the computation of effective invariants

for induction-based property checking. Our experi-

ments show the strong impact of state encoding on

the efficiency of the induction process.

I. Introduction

Checking safety properties is an unsolved problem in
design automation. Existing methods either perform
an FSM traversal [7], [3] or an induction on the prop-
erty [1] [9]. The first kind of method suffers from the state
explosion problem. The second kind of method suffers
from the fact that many properties are not strong enough
to be proven with a small induction depth. When these
methods fail proving a property the user has to strengthen
the property by inventing a lemma that is supposed to
hold in all reachable states. In [2] the authors generate
invariants for induction-based equivalence checking. In
this paper, we propose a method to generate this lemma
by using state encoding and RT-level information. For
large machines that can be independently controlled we
suggest a binary encoding and strengthen the property
by using the upper bound given by the RT-level descrip-
tion. For coupled machines the proposed method uses
structural FSM traversal [10], [11], [12], to find an over-
approximation of the set of reachable states. This is only
effective if an appropriate state encoding is chosen.

The paper is organized as follows: Section 2 gives a brief
review on induction-based property checking. Section 3
shows how state encoding can be used to strengthen prop-
erties automatically. Section 4 gives an overview over our
implementation of the ideas presented in Section 3. Sec-
tion 5 reports on experimental results.

II. Induction-based Property Checking

In this section we give a brief review of existing
induction-based methods for property checking. In [9]
and [1] the authors study the use of induction to ver-
ify safety properties. The basic model for sequential
circuits is a finite state machine M which is a 6-tuple
M = (I, S, δ, S0, O, λ) where I is the input alphabet, S is
the set of states, δ : S × I −→ S is the next-state func-

tion, S0 is a set of initial states, O is the output alphabet
and λ : S × I −→ O is the output function. Given such
a machine, we would like to check whether a condition P
holds for all reachable states. If this is the case we call the
machine P -safe. In the following, we identify P with the
set of all states s ∈ S where P holds. We now repeat some
sufficient conditions for a machine to be P -safe [9], [1].

Lemma 1. A finite state machine is P -safe if the follow-
ing conditions hold:

• P holds in all states s0 ∈ S0, i.e., S0 ⊂ P .

• If P holds in a state s ∈ S then it also holds in all
next states reachable from s, i.e., s ∈ P ⇒ ∀i ∈ I :
δ(s, i) ∈ P .

It is easy to see that this condition is not strong enough
to prove P -safeness for realistic designs. If there is an un-
reachable state s ∈ S where P holds the second condition
of Lemma 1 implies that P holds in all successors of s.

Figure 1 shows the state transition graph of a 3-bit

000

111

100 010 001

110 011 101

initial state

Fig. 1. State transition graph of a 3-bit ring counter

ring counter taken from [9]. We cannot prove that state
101 is unreachable from the initial state using Lemma 1
(P = {s ∈ S|s 6= 101}). The reason is that the second
condition of the lemma fails. The property holds in state
011, but does not in the next state 101. For this reason,
a stronger induction method has to be considered.

Lemma 2. A finite state machine M is P -safe if there
is a k ≥ 0 such that the following conditions hold:

• For all paths s0, s1, ..., sk in the state transition graph
of M with s0 ∈ S0, P holds for all si.

• If P holds in the states on some path s0, ..., sk
1 in the

state transition graph of M then it also holds in all
next states reachable from sk, i.e., ∀i ∈ I : δ(sk, i) ∈
P .

1Note that s0 does not have to be an initial state.

With Lemma 2 we can prove the unreachability of 101
with k = 2. However, this condition is still too weak to
prove safety properties for many designs of interest.

Suppose we add an enable signal to the ring counter
of Figure 1. If the enable signal is set the new machine
has the same behavior as the ring counter otherwise the
machine stays in the current state. With this extension
the property P = {s ∈ S|s 6= 101} is still valid. However,
Lemma 2 is not strong enough to prove it. Again the
second condition fails. In state 011 P holds and for all
k ≥ 0 there is the path s0, ..., sk in the state transition
graph with si = 011. In the next state 101 P does not
hold anymore.

This problem is created by the cycles in the set of un-
reachable states. We can exclude these cycles by extend-
ing the second condition of Lemma 2:

Lemma 3. A finite state machine M is P -safe if there
is a k ≥ 0 such that the following conditions hold:

• For all paths s0, s1, ..., sk in the state transition graph
of M with s0 ∈ S0, P holds in all si.

• If P holds in the states on some path s0, ..., sk in the
state transition graph of M , with pairwise different
si then it also holds in all next states reachable from
sk, i.e., ∀i ∈ I : δ(sk , i) ∈ P .

Using Lemma 3 we can also prove the unreachability
of 101 in the extended machine with k = 2. However
for practical use of induction-based methods, we can af-
ford only small values of k. An algorithm that is based
on Lemma 3 has to unroll the transition relation k + 2
times and solve two satisfiability problems on the result-
ing structure. If k is unknown, as is the case in most
applications, the algorithm has to perform a search for a
sufficiently large k. This implies that the algorithm has
to solve 2 ∗ (k + 2) SAT problems.

In the next section we are going to analyze conditions
that help to minimize k in Lemma 3. Before we continue
on this topic it should be mentioned that a method based
on Lemma 3 is complete.

Lemma 4. If a finite state machine M is P -safe there is
a k ≥ 0 such that the conditions of Lemma 3 hold.

III. State Encodings

Standard property checking tools start from an RT-level
design specification in VHDL or Verilog that is augmented
by some property to be verified. From this specification
the front-end of the property checker generates a gate level
description of the design and the property. This descrip-
tion is the basis for applying standard boolean proving
techniques like SAT solving.

Several degrees of freedom exist when generating the
gate level model from the RTL specification. It should
be noted that the choice of an appropriate state encoding
can help significantly to reduce the proving complexity.
For example, in the context of symbolic FSM traversal it
was shown in [4] that retiming can have a strong impact

on the BDD sizes. In this paper, we demonstrate that this
freedom can also be used to reduce the induction length
k of a prover based on Lemma 3.

We will analyze the induction length k needed to prove
that a machine is P -safe. We will present a method
to strengthen the property with information from the
RT-level and with state space information derived from
synthesis for state space representability and a structural
FSM traversal [10], [11], [12].

An algorithm based on Lemma 3, applied on a machine
that is not P -safe, will increase k, until a path of length
k + 1 from an initial state to an unsafe state is found. In
the worst case, k + 1 will be the diameter of the machine.
If the algorithm is applied on a machine that is P -safe,
the induction length k needed does not depend on the set
of reachable states. The following theorem gives an exact
answer to the question, what is the minimum induction
length k needed.

Theorem 1. Let M be a P -safe finite state machine.
Let p1, ..., pt be a longest path in the transition graph of
M such that the following conditions hold:

• pi 6= pj, for i 6= j

• pi ∈ P , for i ∈ {1...t}

• pt has a next state pt+1 = δ(i, pt) with pt+1 /∈ P .

Then k = t is the smallest k such that the conditions of
Lemma 3 hold.

Proof: First we show that the conditions of Lemma
3 hold for k. The first condition is clear because M is
P -safe. Suppose the second condition is wrong. Then
there is a loop-free path s0, ..., st such that P holds for
all si and there is a next state st+1 = δ(st, i) /∈ P . Thus
p1, ..., pt is not the longest path with the above conditions.
Therefore, the second condition of Lemma 3 must hold.
Next we will show that there is no smaller k′ < k that
fulfills the conditions of Lemma 3. This results from the
fact that pk−k′ , ..., pt is a counterexample for the second
condition of Lemma 3. �

Theorem 1 states that the induction length k is deter-
mined by the longest loop-free path along P -safe states
to a non P -safe state. If the property we want to check
is weak, in the sense that there are a lot of unreachable
states that have this property, this path and, hence, the
induction length can be very large. Therefore, we look
for information from the RT-level that can strengthen the
property. We can exploit the fact that the front-end of the
property checker is free in the choice of a state-encoding.
We make the assumption that for all state machines the
set of reachable states is a strongly connected component
of the state transition graph. This is, e.g., the case if the
machine has a synchronous reset input. We first analyze
how these facts can be exploited if the design is restricted
to a single finite state machine. After that we will look at
designs with multiple finite state machines.

A. Binary Encoding

We first assume that the front-end of our property
checker has synthesized the RT-level description using a
binary state encoding. Each state variable in the design
is synthesized into an array of registers R[0...m] and the
states are binary numbered from 0 up to n − 1. The in-
formation about the number of states n is available from
the RTL description of the design. Instead of proving the
property P we prove

P ′ = P ∧ (n >
m∑

i=0

2iR[i]). (1)

This can easily be done by adding a binary comparator
to the property. If we have a single finite state machine
P ′ can only be valid in the set of reachable states unless
the designer has produced unreachable states in his RTL
description. However, those unreachable states that re-
sult from the fact that state machines do not always have
a number of states being a power of 2 will not fulfill the
property P ′. So in many practically relevant cases The-
orem 1 will give us k = 0 as induction length unless the
designer has created unreachable states in his description
himself. Even if this has happened Equation (1) may still
reduce the induction length substantially. We now an-
alyze what happens if a design contains more than one
state machine. Figure 2 shows two coupled machines. x1

and x2 are sets of independent inputs and X is a set of
common inputs. Formally, the partially coupled machine
is defined as follows.

Definition 1. Let A, B be two finite state machines with

• A = (X2 × X, SA, δA, SA0
, OA, λA) and

• B = (X1 × X, SB , δB , SB0
, OB , λB).

The partially coupled machine M = (I, S, δ, S0, O, λ) of A
and B is defined as follows:

• I = X1 × X2 × X,

• S = SA × SB,

• δ((sA, sB), (x1, x2, x))
= (δA((x2, x), sA), δB((x1, x), sB))

• S0 = SA0
× SB0

• O = OA × OB

• λ((sA, sB), (x1, x2, x))
= (λA((x2, x), sA), λB((x1, x), sB))

Note that this definition covers the following two ex-
treme situations. If X is empty the machines are indepen-
dent. In this case the set of reachable states Reach(M)
of M is just the product of the sets of reachable states
of A and B, i.e., Reach(M) = Reach(A) × Reach(B).
Therefore, strengthening the property with all the upper
bounds for the state variables like in Equation (1) is help-
ful in this case.

2

1

2

1

22

1

1

y

t

t

z

y

z

y

x

B

A

x

s

s

x

xx

Fig. 2. Coupled machines with two independent inputs

The other extreme is that X1 and X2 are empty. This
is a product machine of the type occurring in sequential
equivalence checking. Whereas in equivalence checking
the two machines have a lot of similarities that can be ex-
ploited to reduce the proof complexity, we cannot expect
this to be true for property checking. But as we will see
later, our control over the choice of the state encoding can
help us here.

For now we simply state that in all cases where the
machines are not independent we only have Reach(M) ⊂
Reach(A) × Reach(B). Therefore, strengthening the
property with all the upper bounds for the state variables
like in Equation (1) is not strong enough to obtain small
values for the induction length.

Outputs of one machine can also be used as inputs for
another machine. This leads to a more general notion of
combined machines. Of course, one has to make sure that
no cycles in the combinational logic are created by this
combination. For more details see standard textbooks
like [6].

B. One-hot Encoding

Especially in telecommunication applications, large
state machines are created by combination of many small
machines. In this case it is affordable that the prop-
erty checker chooses a one-hot encoding for the small ma-
chines. Also, designers frequently use “flags” in RTL code
to store certain information about the current state of the
designed system. Note that such flags can be interpreted
as 2-state machines and the one-hot encoding is just the
flag itself.

Binary state encoding distributes the state information
over all registers. For example, if M is a coupled ma-
chine of the two machines given by the state diagrams in
Figure 3, the state (2, 2) is not reachable from the initial
state. This creates the following dependencies between
the registers r1[i], r2[i] encoding the states:
r1[1]∧r1[0] ⇒ r2[0]∨r2[1] and r2[1]∧r2[0] ⇒ r1[0]∨r1[1].
The calculation of these dependencies is computationaly
very expensive. With one-hot encoding, certain depen-
dencies between the states in a composed machine can
be modeled by implications containing only single liter-
als. Given the registers r1[2], r2[2] encoding state 2 of the

x
1

x
1

x

x

1 2

3

initial state
x
2

x
2

x

x

1 2

3

initial state

Fig. 3. Example

above machines we have the implications r1[2] ⇒ r2[2]
and r2[2] ⇒ r1[2].

These implications can be calculated by performing a
structural FSM traversal. For coupled machines having
dependencies between two machines only this will give
us an exact representation of the set of reachable states.
Note that this guarantees an induction length k = 0.

Theorem 2. Let M be a combined machine of the one-
hot encoded machines M1, M2 and ri[1..ki](i = 1, 2) be
the registers of Mi. Then the reachable state set of M
is characterized exactly by a set I of implications between
the registers of Mi, two sets of constant registers C0, C1

and the equations
∑

l=1...k1
r1[l] = 1 =

∑
l=1...k2

r2[l].

Proof: For all states (s1, s2) ∈ (Reach(M1) ×
Reach(M2))\Reach(M), we add the implications r1 ⇒ r2

and r2 ⇒ r1 of the corresponding registers to I . For
both machines Mk and all pairs of registers (rk [1], rk[2])
of Mk we add the implication rk [1] ⇒ rk[2] to I . Let
πk be the projection on Reach(Mk). For all states
sk ∈ Reach(Mk) \πk(Reach(M)) we add the correspond-
ing register rk to C0. If πk(Reach(M)) = {sk} we add
the corresponding registers rk to C1.

It is easy to see that I, C0, C1 together with the above
equations are an exact characterization of Reach(M). A
value assignment to the registers belongs to a reachable
state iff it satisfies all implications in I , constants in
C0, C1 and the above equation. �

In the case that more than two machines are de-
pendent we obtain an over-approximation of the set of
reachable states. Our experiments show that this over-
approximation is still an invariant that can reduce the in-
duction length dramatically. It works well in cases where
the property checks dependencies between pairs of ma-
chines like bus conflicts, acknowledge requests, etc.

IV. Implementation of the property checker

In this section we give a brief overview over our im-
plementation based on the ideas in this paper. Figure 4
shows the overall flow.

The RTL-code of the design is augmented by combina-
tional logic that calculates the property. We create a gate
level representation of our designs using the front-end of
an industrial property checker. We choose one-hot encod-
ing for small machines and binary otherwise. Note again

For all binary encoded machines

− one−hot encoding for small machines
− binary encoding for large machines
Synthesize for state representation

 strengthen property with Equation 1

 Perform structural FSM traversal

 Strengthen property with implications

Prove property by induction

Augment RTL−code with property

Fig. 4. Overall flow of the proposed method

that the encoding used for verification can be chosen in
the RT-to-gate front-end of the verification tool indepen-
dently of the encoding used for the actual implementation.
The property is strengthened with Equation (1) for the
binary encoded machines and with the results of a struc-
tural FSM traversal. After this we prove the property
by induction starting with induction length 0, increasing
the induction length until a proof is found, a counterex-
ample is generated or a user-defined upperbound for the
induction length is reached.

The proofs for each induction length are translated into
SAT problems and given to the well-known SAT-solver
CHAFF [8]. During the structural FSM traversal the im-
plications are calculated using recursive learning [5].

V. Experimental Results

To examine the benefits and the limitations of our ideas
we created designs that are hard to prove for induction-
based methods. A hard example with a single machine is
a modulo-2k +2k−1 counter. For this design the synthesis
with binary encoding creates k+1 registers. The property
we verified is that the state 2k+1 − 1 is never reached.
The pure induction method requires an induction length
of 2k − 1 for the design. After strengthening the property
with Equation 1 the proof was completed with induction
length 0. The results are shown in the Figure 5. P refers
to the original property, P ′ is the property strengthened
by Equation (1). The second design we created contained
two coupled modulo-2k +1 counters. One of the counters
counts from 2k +1 down to 0, the second counts from 0 up
to 2k +1. The property we verified is that the state (0, 1)
is never reached. After strengthening the property with
Equation 1 the proof was completed with induction length
2k +1, without strengthening it was 2k+1 −1. This shows

k induction length CPU-time (hh:mm:ss)
P P’ P P’

5 15 0 00:01 00:00
6 31 0 00:07 00:00
7 63 0 01:53 00:00
8 127 0 11:58:33 00:00

15 >1000 0 aborted 00:00
23 >1000 0 aborted 00:01
30 >1000 0 aborted 00:03

Fig. 5. Results for mod-2k + 2
k−1 counters

k induction length CPU-time (hh:mm:ss)
P P’ P P’

5 63 33 0:04:06 0:00:33
6 127 65 1:32:31 0:10:36
7 255 129 aborted 3:33:24

15 >1000 >1000 aborted aborted

Fig. 6. Two coupled mod-2k + 1 counters

the limitation of Equation 1 when dealing with coupled
designs.

Motivated by industrial designs that contain multiple
instances of state machines with a relatively small num-
ber of states, the third design we created contained several
state machines having the state diagram of Figure 7. This
state diagram was also motivated by a true industrial ap-
plication in telecommunication.

output

input

grant

finish

grantinput

finish

idle request

runready

Fig. 7. Example for multiple machines

Each of the machines has its own input line. When
an input occurs the machines request for a resource. An
arbiter was implemented to receive the request from the
machines and to set the grant signal when the resource is
free. It also creates a finish signal when another request
occurs while a machine is running. Many such machines
can be connected to a large controller that handles the
requests from many clients for a central resource in some
communication network.

In the following, k is the number of machines combined.

The property we prove is that two machines will never be
in the run state at the same time. So we not only check
that the arbiter works correctly, but we also check whether
each of the components reacts correctly to the arbiters sig-
nals. The models generated by the front-end contained up
to 170 registers. Tables 8 and 10 are organized as follows.
The first column is the number of clients and the sec-
ond and the fifth column report the encodings chosen for
the components ((B)inary/ (O)ne-hot). Columns three
and four and columns six and seven contain the induc-
tion length for the proof of the original property and the
property strengthened with implications. Tables 9 and 11
are organized in the same way but report the CPU times.
The time for invariant generation is included here.

k induction length
enc P P∧Impl enc P P∧Impl

2 B 14 14 O 14 0
4 B 28 20 O 28 0
8 B >40 >40 O >40 0

16 B >30 >30 O >30 0

Fig. 8. Induction length for multiple coupled machines with

binary dependencies

k CPU-time (mm:ss)
enc P P∧Impl enc P P∧Impl

2 B 00:09 0:00:11 O 00:13 00:01
4 B 40:05 0:04:53 O 41:57 00:08
8 B abort abort O abort 01:25

16 B abort abort O abort 06:56

Fig. 9. CPU-times for multiple coupled machines with binary

dependencies

k induction length
enc P P∧Impl enc P P∧Impl

4 B >32 24 O >32 3
5 B >32 26 O >32 3
6 B >32 21 O >32 3
7 B >32 >27 O >32 3

Fig. 10. Induction length for multiple coupled machines with

non-binary dependencies

k CPU-time (hh:mm:ss)
enc P P∧Impl enc P P∧Impl

4 B abort 0:56:02 O abort 0:00:57
5 B abort 2:49:22 O abort 0:01:16
6 B abort 10:09:31 O abort 0:02:15
7 B abort aborted O abort 0:05:59

Fig. 11. CPU-times for multiple coupled machines with

non-binary dependencies

Finally we report the numbers of registers and the num-
bers of gates for the models in Tables 12 and 13.

k enc # Regs enc # Regs
2 B 19 O 23
4 B 41 O 49
8 B 78 O 94

16 B 138 O 170

Fig. 12. Size of coupled machines with binary dependencies

k enc # Regs enc # Regs
4 B 47 O 63
5 B 52 O 74
6 B 63 O 92
7 B 72 O 109

Fig. 13. Size of coupled machines with non-binary dependencies

The last design we created contained the same state
machines but we supposed that we have two interchange-
able resources. Therefore we replaced the arbiter by a 2-
resource arbiter. We proved that 3 machines will never be
in the run state at the same time. Note that this property
cannot be expressed by implications between the registers
of the machine. Nevertheless, structural FSM traversal
provides an over-approximation of the state space that
helps to significantly reduce induction depths.

The results show that structural FSM traversal can gen-
erate powerful invariants in the case of one-hot encoding.
Sometimes it also reduces induction length in the case of
binary encoding. But this reduction is not as powerful as
in the case of a one-hot encoding. Instead of minutes it
takes hours to finish the proof.

VI. Conclusion

In this paper we exploit that the choice of state en-
coding during verification is independent from the state
encoding of the actual implementation. We show that this
can be used to reduce the complexity of induction-based
property checking. In particular, we introduce invariants
for binary encodings and demonstrate that one-hot encod-
ing together with structural FSM traversal creates useful
invariants for many applications.

References

[1] Pasosh Aziz Abdulla, Per Bjesse, and Niklas E’en.
Symbolic reachability analysis based on sat solvers.
In Proc. Sixth International Conference on Tools and
Algorithms for the Construction and Analysis of Sys-
tems (TACAS-00), pages 411–425, March 2000.

[2] Per Bjesse and Koen Claessen. SAT-based verifica-
tion without state space traversal. In Formal Methods
in Computer-Aided Design, pages 372–389, 2000.

[3] J. R. Burch, E. M. Clarke, D. E. Long, K. L. McMil-
lan, and D. L. Dill. Symbolic model checking for
sequential circuit verification. IEEE Transactions on
Computer-Aided Design, 13(4):401–424, April 1994.

[4] Andreas Kühlmann and Jason Baumgartner.
Transformation-based verification using generalized
retiming. In Proc.Intl. Conf. Computer Aided
Verification(CAV-01), pages 104–117, July 2001.

[5] Wolfgang Kunz and Dhiraj Pradhan. Recursive
learning: A new implication technique for efficient so-
lutions to CAD problems: Test, verification and op-
timization. IEEE Transactions on Computer-Aided
Design, 13:1143–1158, Sep. 1994.

[6] R. P. Kurshan. Computer-Aided Verification of Co-
ordinating Processes — The Automata-Theoretic Ap-
proach. Princeton University Press, Princeton, New
Jersey, 1994.

[7] K.L. McMillan. Symbolic Model Checking. Kluwer
Academic Publishers, Boston, 1993.

[8] M.W. Moskewicz, C.F. Madigan, Y. Zhao, L. Zhang,
and S. Malik. Chaff: Engineering an efficient sat
solver. In Proc. Intl. Design Automation Conference
(DAC-01), pages 530–535, June 2001.

[9] Mary Sheeran, Satnam Singh, and Gunnar Stal-
marck. Checking safety properties using induction
and a sat solver. In Proc. Intl. Conf.Formal Methods
in Computer-Aided Design(FMCAD 2000), volume
1954 of Lecture Notes in Computer Science. Springer,
November 2000.

[10] Dominik Stoffel and Wolfgang Kunz. Record &
play: A structural fixed point iteration for sequen-
tial circuit verification. In Proc. Intl. Conference
on Computer-Aided Design (ICCAD-97), pages 394–
399, Nov 1997.

[11] C.A.J. van Eijk. Sequential equivalence checking
without state space traversal. In Proc. Conference
on Design, Automation and Test in Europe (DATE-
98), pages 618–623, Paris, France, March 1998.

[12] Markus Wedler, Dominik Stoffel, and Wolfgang
Kunz. Improving structural fsm-traversal by
constraint-satisfying simulation. In Proc. IEEE
Computer Society Annual Symposium on VLSI 2002
(ISVLSI 2002), pages 151–158, April 2002.

	Main
	ASP-DAC04
	Front Matter
	Table of Contents
	Author Index

