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Abstract—The paper presents a method for translating Bool-
ean formulas to CNF by identifying gates with fanout count
of 1, and merging them with their fanout gate to generate a
single set of equivalent CNF clauses. This eliminates the
intermediate CNF variable for the output of the first gate,
and reduces the number of CNF clauses, compared to the
conventional translation to CNF, where each gate is assigned
an output variable and is represented with a separate set of
CNF clauses. Chains of nested ITE operators, where each
ITE is used only as else-argument of the next ITE, are simi-
larly merged and represented with a single set of clauses
without intermediate variables. This method was applied to
Boolean formulas from formal verification of microproces-
sors. The formulas require up to hundreds of thousands of
variables and millions of clauses, when translated to CNF
with the conventional approach. The best translation reduced
the CNF variables by up to 2×; the SAT-solver decisions by
up to 5×; the SAT-solver conflicts by up to 6×; and acceler-
ated the SAT checking by up to 7.6× for unsatisfiable formu-
las, and 136× for satisfiable ones.

I. INTRODUCTION

The speed of SAT-solvers improved by orders of magni-
tude in the last couple of years [13][29][32]—see [25][43]
for comparative studies. A hurdle to further improvements
is the operation-intensive Boolean Constraint Propagation
(BCP)—reflecting a CNF variable’s assignment on all the
clauses that contain that variable or its negation—where
SAT-solvers spend up to 90% of their execution time [29].
Furthermore, big formulas increase the L2-cache misses of
SAT-solvers [46], and require many expensive accesses to
main memory.

The most common input format of SAT-solvers is Con-
junctive Normal Form (CNF) [17]. In conventional trans-
lation of Boolean formulas to CNF [35] (see also
[24][30]), a new CNF variable is introduced for the output
of every logic gate, and a separate set of CNF clauses cor-
relates that variable with the CNF variables for the inputs
of the gate, given that gate’s function. This paper studies
translation to CNF by merging logic gates with fanout
count of 1 (i.e., whose output is used only once) with the
fanout gate that they drive, and expressing the combined
function of those gates with a single set of CNF clauses,
thus eliminating the CNF variable for the output of the
driving gate, and saving CNF clauses. The idea is similar
to that in technology mapping—an NP-complete problem
[19] that can be solved efficiently by heuristics minimiz-
ing a cost function. The heuristics used in the current
paper reduce the number of CNF variables and clauses,
and thus reduce both the required BCP and the resulting
cache misses. The heuristics were implemented in the
decision procedure EVC [42] for the logic of Equality with
Uninterpreted Functions and Memories (EUFM) [8], and
were evaluated on formulas from formal verification of
microprocessors. EVC was previously used at Motorola
[21] to formally verify a model of the M•CORE processor,
and detected bugs.
II. CONVENTIONAL TRANSLATION TO CNF

In general, the translation of Boolean formulas to CNF is
exponential. However, by introducing a new CNF variable
for the output of every logic gate, and imposing con-
straints that preserve the function of that gate (see Table I),
we get an equivalent CNF representation [35]. Both the
size of the resulting CNF and the complexity of the trans-
lation procedure are linear in the size of the original Bool-
ean formula. In Table I, the ITE operator functions like a
multiplexor, i.e., ITE(i, t, e) is equivalent to i ∧  t  ∨  ¬ i ∧  e.

Instead of translating the inverters, as shown in the last
row of Table I, we can subsume them in their fanout gates,
as done in [30] and illustrated in Table II. By replacing all
instances of the CNF variable for the inverter output with
the negated CNF variable for the inverter input, we elimi-
nate the CNF output variable and the 2 clauses for each
inverter.

TABLE I 
CONVENTIONAL TRANSLATION TO CNF

Logic Gate Equivalent Constraints CNF Clauses

o ← AND(i1, i2, ..., in) ¬ i1 ⇒ ¬o
¬ i2 ⇒ ¬o
. . .
¬ in ⇒ ¬o
i1 ∧ i2 ∧ ... ∧  in ⇒ o

(i1 ∨ ¬ o) ∧  
(i2 ∨ ¬ o) ∧
. . .
(in ∨ ¬ o) ∧  
(¬ i1 ∨ ¬ i2 ∨ ... ∨ ¬ in ∨ o)

o ← OR(i1, i2, ..., in) i1 ⇒ o
i2 ⇒ o
. . .
in ⇒ o
¬ i1 ∧ ¬ i2 ∧ ... ∧  ¬ in ⇒ ¬ o

(¬ i1 ∨ o) ∧  
(¬ i2 ∨ o) ∧
. . .
(¬ in ∨ o) ∧  
(i1 ∨ i2 ∨ ... ∨ in ∨ ¬ o)

o ← ITE(i, t, e) i ∧  t ⇒ o
i ∧  ¬ t ⇒ ¬ o
¬ i ∧  e ⇒ o
¬ i ∧  ¬ e ⇒ ¬ o

(¬ i ∨ ¬ t ∨ o) ∧  
(¬ i ∨ t ∨ ¬ o) ∧
(i ∨ ¬ e ∨ o) ∧  
(i ∨ e ∨ ¬ o)

o ← NOT(i) i ⇒ ¬ o
¬ i ⇒ o

(¬ i ∨ ¬ o) ∧  
(i ∨ o)

TABLE II 
TRANSLATION TO CNF BY SUBSUMING INVERTERS

Example Logic Gate Equivalent Constraints CNF Clauses

o ← AND(NOT(i1),      
                   i2, ..., in)

i1 ⇒ ¬ o
¬ i2 ⇒ ¬o
. . .
¬ in ⇒ ¬o
¬ i1 ∧ i2 ∧ ... ∧  in ⇒ o

(¬ i1 ∨ ¬ o) ∧  
(i2 ∨ ¬ o) ∧
. . .
(in ∨ ¬ o) ∧  
(i1 ∨ ¬ i2 ∨ ... ∨ ¬ in ∨ o)

o ← OR(NOT(i1),     
                i2, ..., in)

¬ i1 ⇒ o
i2 ⇒ o
. . .
in ⇒ o
i1 ∧ ¬ i2 ∧ ... ∧  ¬ in ⇒ ¬ o

(i1 ∨ o) ∧  
(¬ i2 ∨ o) ∧
. . .
(¬ in ∨ o) ∧  
(¬ i1 ∨ i2 ∨ ... ∨ in ∨ ¬ o)

o ← ITE(NOT(i), t, 
                NOT(e))

¬ i ∧  t ⇒ o
¬ i ∧  ¬ t ⇒ ¬ o
i ∧  ¬ e ⇒ o
i ∧  e ⇒ ¬ o

(i ∨ ¬ t ∨ o) ∧  
(i ∨ t ∨ ¬ o) ∧
(¬ i ∨ e ∨ o) ∧  
(¬ i ∨ ¬ e ∨ ¬ o)



III. FROM EUFM TO PROPOSITIONAL LOGIC

The syntax of EUFM [8] includes terms and formulas.
Terms are used to abstract word-level values of data, regis-
ter identifiers, memory addresses, and the entire states of
memory arrays. A term can be an Uninterpreted Function
(UF) applied to a list of argument terms, a term variable,
or an ITE operator selecting between two argument terms
based on a controlling formula, such that ITE(formula,
term1, term2) will evaluate to term1 if formula = true, and
to term2 if formula = false. The syntax for terms can be
extended to model memories by means of the interpreted
functions read and write [8][41] that satisfy the forward-
ing property of the memory semantics—that a read gets
the data written by the most recent write to an address
term equal to the address of the read, or the value from the
initial memory state otherwise. Formulas are used to
model the control path of a microprocessor, and to express
the correctness condition. A formula can be an Uninter-
preted Predicate (UP) applied to a list of argument terms, a
Boolean variable, an ITE operator selecting between two
argument formulas based on a controlling formula, or an
equation (equality comparison) of two terms. Formulas
can be negated and combined by Boolean connectives. We
will refer to both terms and formulas as expressions. UFs
and UPs are used to abstract the implementation details of
functional units by replacing them with “black boxes” that
satisfy only the property of functional consistency—that
equal inputs to the UF (UP) produce equal output values.

Restrictions on the style for describing high-level pro-
cessors [37][38] reduced the number of terms that appear
in both positive and negated equations—and are so called
g-terms (for general terms)—and increased the number of
terms that appear only in positive equations—and are so
called p-terms (for positive terms). The property of Posi-
tive Equality [37][38] allows us to treat syntactically dif-
ferent p-terms as not equal when evaluating the validity of
an EUFM formula, thus achieving significant simplifica-
tions and orders of magnitude speedup (see [6] for a cor-
rectness proof). However, equations between g-term
variables can evaluate to either true or false, and can be
encoded with Boolean variables [12][31][44], by account-
ing for the property of transitivity of equality [7].

In the decision procedure EVC [42], applications of the
same UF or UP are eliminated with nested ITEs [38]. For
example, if p(a1, b1), p(a2, b2), and p(a3, b3) are three
applications of UP p, where a1, b1, a2, b2, a3, and b3 are
terms, then the first application will be eliminated with a
new Boolean variable c1, the second with ITE((a2 =
a1)∧ (b2 = b1), c1, c2), where c2 is a new Boolean variable,
and the third with ITE((a3 = a1)∧ (b3 = b1), c1, ITE((a3 =
a2)∧ (b3 = b2), c2, c3)), where c3 is a new Boolean variable.
That is, the second, third, and any subsequent applications
of the UP are eliminated with ITE-chains that enforce
functional consistency. The same method for enforcing
functional consistency is used in [22][23][33]. Alterna-
tively, functional consistency can be enforced with Acker-
mann constraints [1]—the three applications of the UP
will be replaced with the new Boolean variables c1, c2, and
c3; then, the functional consistency of the second applica-
tion of the UP with respect to the first will be enforced by
extending the resulting formula with the constraint (a2 =
a1) ∧  (b2 = b1)  ⇒ (c2 = c1), with such constraints added
for each pair of applications of that UP. This method for
enforcing functional consistency is used in [3][31][36],
but does not result in ITE-chains, and so will benefit less
from the CNF translation described in the next section.

In spite of the tremendous improvements in SAT-solv-
ers, the formal verification of complex pipelined proces-
sors does not complete in 24 hours without Positive
Equality, but takes a few seconds or a few minutes with
the property [43].
IV. TRANSLATION TO CNF BY MERGING GATES

A primary CNF variable represents the value of a primary
input, i.e., corresponds to a Boolean variable in the origi-
nal Boolean formula. An auxiliary CNF variable repre-
sents the value of a gate output. A literal is an occurrence
of a CNF variable or its negation in a clause.

In EVC, the final Boolean formula consists of AND,
OR, NOT, and ITE gates. A hashing scheme [38] ensures
that: there are no duplicate gates; represents cases of an
AND gate driving another AND gate with a single AND
gate that has all the inputs of the two gates, except for the
output of the driving gate; and similarly represents cases
of an OR gate driving another OR gate with a single OR
gate. That is, the final Boolean formula has neither AND
gates that directly drive other AND gates, nor OR gates
that directly drive other OR gates. The hashing scheme
also eliminates duplicate inputs to AND and OR gates, and
replaces an AND or an OR with a constant if the gate has
complemented inputs.

The goal of the following translation to CNF is to
reduce the number of CNF variables and clauses, thus to
reduce the required BCP that takes up to 90% of the SAT-
solving time [29] and generates many non-sequential
memory accesses (prone to L2-cache misses) in order to
reflect an assignment to a CNF variable on all the clauses
that contain the variable. Currently, the L2-cache miss
penalty is hundreds of cycles, and is increasing [16]. Fur-
thermore, BCP requires data-dependent branches that are
hard to predict, and so frequently incur the branch mispre-
diction penalty—at least 19 cycles, and up to 125 instruc-
tions in the Intel Pentium 4 [16]. The choice to implement
the following optimizations is based on profiling the
benchmarks to identify frequent patterns. Other optimiza-
tions can be implemented similarly.

A. Merging ITE-Chains
This translation to CNF is illustrated in row 1 of Table III,
and is applied to a chain of n nested ITEs, where the else-
expression of each ITE is another ITE with a fanout count
of 1, and the innermost ITE has an else-expression en that
is either not an ITE or has fanout count greater than 1, i.e.,
is also used elsewhere. Such ITE-chains result after elimi-
nating UPs with the nested-ITE scheme (see Section III),
and after eliminating a bit-level read from a sequence of
writes by accounting for the forwarding property of the
memory semantics.

An ITE-chain is translated to CNF by means of 2n + 2
clauses—2 for each of the n + 1 chain inputs, tj (j = 1, ..., n)
and en. For each such input, the first clause expresses the
condition that if the input is true and is selected by a corre-
sponding assignment to controlling formulas, ij, of ITE
operators that are ahead in the chain, then the chain output,
o, should be true. The second clause expresses the condi-
tion that if the input is false and selected, then the output,
o, should be false.

This CNF translation of ITE-chains can be similarly
extended for ITE-trees, where the then-expressions have
fanout counts of 1. However, the benchmarks used in this
paper contain very few or no ITE-trees.

Negations in an ITE-chain can be reflected by counting
the number of negations between the chain output, o, and
each of the chain inputs, tj (j = 1, ..., n) and en. An odd
number of negations between one of these chain inputs
and the output results in complementing the output vari-
able, o, in the 2 clauses for that input; an even number of
negations leaves the 2 clauses for the input unmodified.

From Table I, the conventional CNF translation of a
chain of n nested ITEs will introduce n variables and 4n
clauses, while the presented translation introduces 1 vari-
able and 2n + 2 clauses, thus saving n – 1 variables and
2n – 2 clauses.



  TABLE III
TRANSLATION TO CNF BY MERGING GATES

#
Group 
Name

Logic Gates
Equivalent Constraints
in the New Translation

CNF Clauses 
in the New Translation

Statistics from 
Conventional 
Translation

Statistics from 
the New Translation

1 ITE-Chain o ← ITE(i1, t1, e1)

e1 ← ITE(i2, t2, e2)

e2 ← ITE(i3, t3, e3)
. . .
en-1 ← ITE(in, tn, en)

fanout_count(e1) = 1
fanout_count(e2) = 1
. . .
fanout_count(en-1) = 1
((fanout_count(en) > 1)  ∨  
      (gate_type(en) ≠ ITE))

i1 ∧  t1 ⇒ o
i1 ∧  ¬ t1 ⇒ ¬o
¬ i1 ∧  i2 ∧  t2 ⇒ o
¬ i1 ∧  i2 ∧  ¬ t2 ⇒ ¬ o
. . .
¬ i1 ∧  ¬ i2 ∧ ... ∧  ¬ in-1 ∧  in ∧  tn ⇒ o
¬ i1 ∧  ¬ i2 ∧ ... ∧  ¬ in-1 ∧  in ∧  ¬ tn ⇒ ¬o
¬ i1 ∧  ¬ i2 ∧ ... ∧  ¬ in-1 ∧  ¬ in ∧  en ⇒ o
¬ i1 ∧  ¬ i2 ∧ ... ∧  ¬ in-1 ∧  ¬ in ∧  ¬en ⇒ ¬ o

(¬ i1 ∨¬ t1 ∨   o) ∧
(¬ i1 ∨ t1 ∨  ¬ o) ∧
(i1 ∨  ¬ i2 ∨¬ t2 ∨   o) ∧
(i1 ∨  ¬ i2 ∨ t2 ∨  ¬ o) ∧
. . .
(i1 ∨  i2 ∨ ... ∨  in-1 ∨  ¬ in ∨  ¬ tn ∨  o) ∧
(i1 ∨  i2 ∨ ... ∨  in-1 ∨  ¬ in ∨  tn ∨  ¬ o) ∧
(i1 ∨  i2 ∨ ... ∨  in-1 ∨  in ∨  ¬en ∨  o) ∧
(i1 ∨  i2 ∨ ... ∨  in-1 ∨  in ∨  en ∨  ¬ o)

new CNF variables: 
   n

new CNF clauses: 
   4n

new CNF literals: 
   12n

new CNF variables: 
   1

new CNF clauses: 
   2n + 2

new CNF literals: 
   n2 + 7n + 4

2 AND→ITE o ← ITE(i, t, e)

t ← AND(a1, ..., an)

fanout_count(t) = 1

i ∧  ¬ a1 ⇒ ¬ o
. . .
i ∧  ¬ an ⇒ ¬ o
i ∧  a1 ∧ ... ∧  an ⇒ o
¬ i ∧  e ⇒ o
¬ i ∧  ¬ e ⇒ ¬ o

(¬ i ∨ a1 ∨ ¬ o) ∧  
. . .
(¬ i ∨ an ∨ ¬ o) ∧
(¬ i ∨ ¬ a1 ∨ ... ∨ ¬ an ∨ o) ∧
(i ∨ ¬ e ∨ o) ∧  
(i ∨ e ∨ ¬ o)

new CNF variables: 
   2

new CNF clauses: 
   n + 5

new CNF literals: 
   3n + 13

new CNF variables: 
   1

new CNF clauses: 
   n + 3

new CNF literals: 
   4n + 8

3 OR→ITE o ← ITE(i, t, e)

t ← OR(a1, ..., an)

fanout_count(t) = 1

i ∧  a1 ⇒ o
. . .
i ∧  an ⇒ o
i ∧  ¬ a1 ∧ ... ∧  ¬ an ⇒ ¬ o
¬ i ∧  e ⇒ o
¬ i ∧  ¬ e ⇒ ¬ o

(¬ i ∨ ¬ a1 ∨ o) ∧  
. . .
(¬ i ∨ ¬ an ∨ o) ∧
(¬ i ∨ a1 ∨ ... ∨ an ∨ ¬ o) ∧
(i ∨ ¬ e ∨ o) ∧  
(i ∨ e ∨ ¬ o)

new CNF variables: 
   2

new CNF clauses: 
   n + 5

new CNF literals: 
   3n + 13

new CNF variables: 
   1

new CNF clauses: 
   n + 3

new CNF literals: 
   4n + 8

4 OR→AND o ← AND(a1, a2, ..., an)

a1 ← OR(b1, ..., bm)

fanout_count(a1) = 1

¬ b1 ∧ ... ∧  ¬ bm ⇒ ¬ o
¬ a2 ⇒ ¬ o
. . .
¬ an ⇒ ¬ o
b1 ∧  a2 ∧ ... ∧  an ⇒ o
b2 ∧  a2 ∧ ... ∧  an ⇒ o
. . .
bm ∧  a2 ∧ ... ∧  an ⇒ o

(b1 ∨ ... ∨  bm ∨  ¬o) ∧
(a2 ∨  ¬ o) ∧
. . .
(an ∨  ¬ o) ∧
(¬ b1 ∨  ¬ a2 ∨ ... ∨  ¬ an ∨  o) ∧
(¬ b2 ∨  ¬ a2 ∨ ... ∨  ¬ an ∨  o) ∧
. . .
(¬ bm ∨  ¬ a2 ∨ ... ∨  ¬ an ∨  o)

new CNF variables: 
   2

new CNF clauses: 
   n + m + 2

new CNF literals: 
   3n + 3m + 2

new CNF variables: 
   1

new CNF clauses: 
   n + m

new CNF literals: 
   mn + 2n + 2m ! 1

5 ITE→AND o ← AND(a1, a2, ..., an)

a1 ← ITE(i, t, e)

fanout_count(a1) = 1

i ∧  ¬ t ⇒ ¬ o
¬ i ∧  ¬ e ⇒ ¬ o
¬ a2 ⇒ ¬ o
. . .
¬ an ⇒ ¬ o
i ∧  t ∧  a2 ∧ ... ∧  an ⇒ o
¬ i ∧  e ∧  a2 ∧ ... ∧  an ⇒ o

(¬ i ∨  t ∨  ¬ o) ∧
(i ∨  e ∨  ¬ o) ∧
(a2 ∨  ¬ o) ∧
. . .
(an ∨  ¬ o) ∧
(¬ i ∨  ¬ t ∨  ¬a2 ∨ ... ∨  ¬ an ∨  o) ∧
(i ∨  ¬ e ∨  ¬ a2 ∨ ... ∨  ¬ an ∨  o)

new CNF variables: 
   2

new CNF clauses: 
   n + 5

new CNF literals:
   3n + 13

new CNF variables: 
   1

new CNF clauses: 
   n + 3

new CNF literals: 
   4n + 8

6 AND→OR o ← OR(a1, a2, ..., an)

a1 ← AND(b1, ..., bm)

fanout_count(a1) = 1

b1 ∧ ... ∧  bm ⇒ o
a2 ⇒ o
. . .
an ⇒ o
¬ b1 ∧  ¬ a2 ∧ ... ∧  ¬ an ⇒ ¬ o
¬ b2 ∧  ¬ a2 ∧ ... ∧  ¬ an ⇒ ¬ o
. . .
¬ bm ∧  ¬ a2 ∧ ... ∧  ¬ an ⇒ ¬ o

(¬ b1 ∨ ... ∨  ¬ bm ∨  o) ∧
(¬ a2 ∨  o) ∧
. . .
(¬ an ∨  o) ∧
(b1 ∨  a2 ∨ ... ∨  an ∨  ¬o) ∧
(b2 ∨  a2 ∨ ... ∨  an ∨  ¬o) ∧
. . .
(bm ∨  a2 ∨ ... ∨  an ∨  ¬ o)

new CNF variables: 
   2

new CNF clauses: 
   n + m + 2

new CNF literals: 
   3n + 3m + 2

new CNF variables: 
   1

new CNF clauses: 
   n + m

new CNF literals: 
   mn + 2n + 2m ! 1

7 ITE→OR o ← OR(a1, a2, ..., an)

a1 ← ITE(i, t, e)

fanout_count(a1) = 1

i ∧  t ⇒ o
¬ i ∧  e ⇒ o
a2 ⇒ o
. . .
an ⇒ o
i ∧  ¬ t ∧  ¬ a2 ∧ ... ∧  ¬ an ⇒ ¬ o
¬ i ∧  ¬ e ∧  ¬a2 ∧ ... ∧  ¬an ⇒ ¬ o

(¬ i ∨  ¬ t ∨  o) ∧
(i ∨  ¬ e ∨  o) ∧
(¬ a2 ∨  o) ∧
. . .
(¬ an ∨  o) ∧
(¬ i ∨  t ∨  a2 ∨ ... ∨  an ∨  ¬o) ∧
(i ∨  e ∨  a2 ∨ ... ∨  an ∨  ¬o)

new CNF variables: 
   2

new CNF clauses: 
   n + 5

new CNF literals: 
   3n + 13

new CNF variables: 
   1

new CNF clauses: 
   n + 3

new CNF literals: 
   4n + 8



B. Merging AND→ITE and OR→ITE Groups
These cases are illustrated in rows 2 and 3 of Table III. An
AND→ITE group, where an n-input AND gate with
fanout count of 1 is used as the then-expression of an ITE,
is translated to CNF by extending each of the n + 1 clauses
from conventional translation of the AND gate (see Table
I) with the condition that the output of the AND is selected
by the ITE-controlling formula, i. The 2 clauses for the
else-expression of the ITE are the same as in conventional
translation. The translation of the OR→ITE group is simi-
lar. This translation can also be extended for ITEs where
the else-expression is either an AND or an OR, as well as
for ITEs where each of the then- and the else-expressions
is either an AND or an OR; all of these cases were imple-
mented and used for the experiments in Section V. A nega-
tion of the AND (OR) output in an AND→ITE
(OR→ITE) group is reflected by negating the ITE output,
o, in all clauses for cases where the AND (OR) output is
selected by the ITE.

The conventional CNF translation of AND→ITE and
OR→ITE groups introduces 2 variables and n + 5 clauses,
while the presented translation introduces 1 variable and
n + 3 clauses, saving 1 variable and 2 clauses per group.

C. Merging OR→AND, ITE→AND, AND→OR, and 
ITE→OR Groups

These cases are illustrated in rows 4–7 of Table III, and
also save 1 variable and 2 clauses per group, relative to
conventional translation. In every clause from conven-
tional translation of the lower gate—an OR or an ITE
(AND or an ITE) with fanout count of 1—the output vari-
able a1 is replaced with the output variable of the upper
AND (OR) gate, o, in the same polarity, and literals are
added if necessary to express the condition that the upper
gate input values will allow the output value of the lower
gate to propagate to the output of the upper gate.

These four groups are similarly translated to CNF
when another input is an OR/ITE (AND/ITE) with fanout
count of 1. If multiple inputs are candidates to be merged
with their fanout AND (OR) gate, we can choose an input
heuristically, e.g., as discussed next.

D. Using the FANIN Heuristic to Choose an Input
The FANIN heuristic [27] orders the BDD variables of a
Boolean formula by traversing the formula in depth-first
manner. For each gate, the inputs are visited in descending
topological order, such that the BDD variables are defined
in the order that they are reached. The motivation is that a
subformula with more topological levels will likely have a
BDD with more levels, so that its BDD variables will
affect more levels in the final BDD and have to be
declared before the BDD variables of subformulas with
fewer topological levels.

The motivation for using the FANIN heuristic to
choose an input gate to merge with its fanout AND/OR
gate in the configurations in Section IV.C—if there are
multiple candidate inputs—is to shorten the longest path
for BCP from a primary input to the output of the fanout
gate. Thus, if the heuristic is applied to many groups, we
could significantly shorten the longest path for BCP from
a primary input to the output of the Boolean formula. In
the experiments, the topological levels of gates were com-
puted based on the original Boolean formula.

V. RESULTS

The Boolean formulas used in the experiments are from
formal verification of safety of: ooo_engine6, an out-of-
order processor with a 6-entry reorder buffer, 6 reservation
stations, register renaming, and register-register ALU
instructions; 1dlx_c_iq40, a single-issue pipelined DLX
[16], modeled as described in [38], and extended with a
40-entry instruction queue placed between the instruction
fetch stage and the execution pipeline; 1dlx_c_iq50, a
variant with a 50-entry instruction queue;
1dlx_c_mc_ex_bp_iq40, an extension of 1dlx_c_iq40
with multicycle functional units, exceptions, and branch
prediction, modeled as in [39]; 1dlx_c_mc_ex_bp_iq50, a
variant with a 50-entry instruction queue; 9vliw_iq2, a 9-
wide VLIW processor that implements predicated execu-
tion, register remapping, and advanced loads (see [40]),
and has a 2-entry instruction queue; 9vliw_iq6, a variant
with a 6-entry instruction queue; 15pipe, a 15-wide, 5-
stage pipelined processor with in-order execution, imple-
menting register-register ALU and load instructions [43];
and 10pipe_ooo, a 10-wide, 5-stage pipelined processor
with out-of-order execution, also implementing register-
register ALU and load instructions [43].

Table IV summarizes the results. The abstraction func-
tion [8] for the verification was computed by controlled
flushing [9], where the user provides a flushing schedule
that eliminates the triggering of stalling conditions, thus
simplifying the correctness formula. Equations between g-
term variables were encoded with a unique new Boolean
variable [12] for the first seven benchmarks, since the
method from [12] outperformed the methods from
[31][44] on these models, but with a special predicate [44]
for the last two benchmarks, since that method was best on
those two models. The SAT-solver Siege_v3 [32]—one of
the winners in the SAT’03 competition [25]—was used for
the experiments. The computer was a Dell OptiPlex
GX260 with a 3.06-GHz Intel Pentium 4, having a 512-
KB on-chip L2-cache, 2 GB of memory, and running Red
Hat Linux 9.

As Table IV shows, the formulas had between 335 and
21,330 Boolean variables before translation to CNF. With
the conventional translation, the CNF variables were
between 47,440 and 416,535; the CNF clauses between
551,775 and 10,117,902; Siege_v3 made between
0.89×106 and 1,454.97×106 decisions, resolved between
0.31×106 and 52.88×106 conflicts, and took between
1,553 and 141,857 seconds to prove the CNF formulas
unsatisfiable.

Five other strategies were also explored: Strategy 1,
subsuming the inverters (see Table II); Strategy 2, also
merging ITE-chains (see Section IV.A); Strategy 3, also
merging AND→ITE and OR→ITE groups (see Section
IV.B); Strategy 4, also merging OR→AND, ITE→AND,
AND→OR and ITE→OR groups (see Section IV.C), by
choosing the first input that is an OR (AND) with fanout
count of 1 and has fewer inputs than a parameter
INPUT_LIMIT, such that if no such input is found, then
choosing the first input that is an ITE with fanout count of
1; and Strategy 5 that differs from Strategy 4 in choosing
the input that is an OR (AND) with fanout count of 1 and
has fewer inputs than parameter INPUT_LIMIT, or an
input that is an ITE with fanout count of 1, such that the
chosen input has the highest topological level, as in the
FANIN heuristic (see Section IV.D), and if multiple candi-
date inputs have the same topological level, then ties are
broken by choosing an ITE, or otherwise a gate with fewer
inputs, or otherwise the first found input. Parameter
INPUT_LIMIT was experimentally determined to be 4,
i.e., the input OR (AND) gate could have either 2 or 3
inputs. With each of these strategies, the time for transla-
tion to CNF was almost identical to that with conventional
translation.

From Table IV, Strategy 3 had the best performance on
5 of the 9 benchmarks (1dlx_c_iq50,
1dlx_c_mc_ex_bp_iq50, 9vliw_iq2, 9vliw_iq6, and
15pipe), and was within 1% of the best strategy for 2 other
benchmarks (ooo_engine6, and 10pipe_ooo). Strategy 5



  

TABLE IV
RESULTS FROM UNSATISFIABLE FORMULAS

Boolean Formula
(Boolean Variables)

Strategy for Translation from Propositional Logic to CNF

CNF SAT-solver Siege_v3

Speedupa

a. Speedup is the SAT time with conventional translation, divided by the new SAT time

Variables Clauses Literals
Average

 Literals/Clause
Decisions Conflicts

Time 
[sec]

ooo_engine6
(335)

Strategy 0: conventional translation 47,440 614,098 1,760,646 2.867 0.89×106 0.71×106 1,553 –——
Strategy 1: subsume inverters 45,414 610,046 1,752,542 2.873 0.65×106 0.51×106 924 1.68×
Strategy 2: Strategy 1 + merge ITE-chains 42,277 603,772 1,752,996 2.903 0.68×106 0.53×106 896 1.73×
Strategy 3: Strategy 2 + AND/OR→ITE 40,239 599,696 1,762,097 2.938 0.62×106 0.49×106 810 1.92×
Strategy 4: Strategy 3 + OR/ITE→AND & AND/ITE→OR 38,713 596,644 1,794,470 3.008 0.61×106 0.47×106 805 1.93×
Strategy 5: Strategy 3 + FANIN for OR/ITE→AND & AND/ITE→OR 38,713 596,644 1,799,855 3.017 0.61×106 0.47×106 845 1.84×

1dlx_c_iq40
(2,669)

Strategy 0: conventional translation 237,715 3,177,190 9,167,000 2.885 13.87×106 0.31×106 2,265 –——
Strategy 1: subsume inverters 230,305 3,162,370 9,137,360 2.889 13.43×106 0.29×106 1,977 1.15×
Strategy 2: Strategy 1 + merge ITE-chains 187,267 3,076,294 9,865,892 3.207 9.18×106 0.29×106 1,098 2.06×
Strategy 3: Strategy 2 + AND/OR→ITE 180,800 3,063,360 9,901,796 3.232 8.38×106 0.29×106 1,115 2.03×
Strategy 4: Strategy 3 + OR/ITE→AND & AND/ITE→OR 177,781 3,057,322 9,978,682 3.264 8.25×106 0.29×106 1,131 2.00×
Strategy 5: Strategy 3 + FANIN for OR/ITE→AND & AND/ITE→OR 177,781 3,057,322 9,973,811 3.262 7.39×106 0.27×106 934 2.43×

1dlx_c_iq50
(3,819)

Strategy 0: conventional translation 416,535 5,914,135 17,114,365 2.894 36.05×106 0.72×106 8,240 –——
Strategy 1: subsume inverters 405,540 5,892,145 17,070,385 2.897 37.22×106 0.54×106 6,867 1.20×
Strategy 2: Strategy 1 + merge ITE-chains 321,742 5,724,549 18,909,047 3.303 24.38×106 0.68×106 4,165 1.98×
Strategy 3: Strategy 2 + AND/OR→ITE 311,910 5,704,885 18,969,171 3.325 21.74×106 0.60×106 3,829 2.15×
Strategy 4: Strategy 3 + OR/ITE→AND & AND/ITE→OR 307,396 5,695,857 19,109,532 3.355 22.91×106 0.69×106 4,299 1.92×
Strategy 5: Strategy 3 + FANIN for OR/ITE→AND & AND/ITE→OR 307,396 5,695,857 19,102,201 3.354 22.24×106 0.69×106 4,961 1.66×

1dlx_c_mc_ex_bp_iq40
(6,826)

Strategy 0: conventional translation 267,452 3,850,072 11,145,336 2.895 18.71×106 0.76×106 5,223 –——
Strategy 1: subsume inverters 258,846 3,832,860 11,110,912 2.899 19.15×106 0.82×106 5,623 0.93×
Strategy 2: Strategy 1 + merge ITE-chains 214,311 3,743,790 11,873,260 3.171 16.00×106 0.84×106 3,637 1.44×
Strategy 3: Strategy 2 + AND/OR→ITE 199,710 3,714,588 11,943,448 3.215 14.82×106 0.92×106 3,539 1.48×
Strategy 4: Strategy 3 + OR/ITE→AND & AND/ITE→OR 196,768 3,708,704 12,028,254 3.243 15.33×106 0.90×106 3,664 1.43×
Strategy 5: Strategy 3 + FANIN for OR/ITE→AND & AND/ITE→OR 196,768 3,708,704 12,023,546 3.242 14.21×106 0.71×106 3,058 1.71×

1dlx_c_mc_ex_bp_iq50
(9,996)

Strategy 0: conventional translation 459,482 7,089,897 20,583,601 2.903 54.31×106 2.27×106 22,174 –——
Strategy 1: subsume inverters 447,031 7,064,995 20,533,797 2.906 48.24×106 1.62×106 15,885 1.40×
Strategy 2: Strategy 1 + merge ITE-chains 361,121 6,893,175 22,433,747 3.254 42.59×106 1.92×106 12,823 1.73×
Strategy 3: Strategy 2 + AND/OR→ITE 339,145 6,849,223 22,559,963 3.294 38.32×106 1.64×106 10,668 2.08×
Strategy 4: Strategy 3 + OR/ITE→AND & AND/ITE→OR 334,738 6,840,409 22,712,165 3.320 40.12×106 1.90×106 11,614 1.91×
Strategy 5: Strategy 3 + FANIN for OR/ITE→AND & AND/ITE→OR 334,738 6,840,409 22,705,056 3.319 44.12×106 2.16×106 13,358 1.66×

9vliw_iq2
(6,402)

Strategy 0: conventional translation 48,856 551,775 1,573,303 2.851 27.25×106 4.72×106 3,195 –——
Strategy 1: subsume inverters 44,095 542,253 1,554,259 2.866 12.96×106 1.35×106 823 3.88×
Strategy 2: Strategy 1 + merge ITE-chains 43,968 541,999 1,554,029 2.867 17.17×106 2.23×106 1,373 2.33×
Strategy 3: Strategy 2 + AND/OR→ITE 42,755 539,573 1,561,013 2.893 9.68×106 0.99×106 579 5.52×
Strategy 4: Strategy 3 + OR/ITE→AND & AND/ITE→OR 40,172 534,407 1,560,525 2.920 14.06×106 1.50×106 916 3.49×
Strategy 5: Strategy 3 + FANIN for OR/ITE→AND & AND/ITE→OR 40,172 534,407 1,560,482 2.920 11.79×106 1.25×106 747 4.28×

9vliw_iq6
(21,330)

Strategy 0: conventional translation 223,729 3,662,687 10,603,981 2.895 1,454.97×106 52.88×106 141,857 –——
Strategy 1: subsume inverters 209,724 3,634,677 10,547,961 2.902 1,123.27×106 43.12×106 107,923 1.31×
Strategy 2: Strategy 1 + merge ITE-chains 209,211 3,633,651 10,547,775 2.903 847.19×106 37.46×106 76,321 1.86×
Strategy 3: Strategy 2 + AND/OR→ITE 199,340 3,613,909 10,595,485 2.932 286.45×106 8.74×106 18,480 7.68×
Strategy 4: Strategy 3 + OR/ITE→AND & AND/ITE→OR 194,433 3,604,095 10,616,107 2.946 361.71×106 9.88×106 21,684 6.54×
Strategy 5: Strategy 3 + FANIN for OR/ITE→AND & AND/ITE→OR 194,433 3,604,095 10,616,095 2.946 475.23×106 12.83×106 28,825 4.92×

15pipe
(5,775)

Strategy 0: conventional translation 284,965 10,117,902 30,083,190 2.973 75.21×106 5.07×106 16,149 –——
Strategy 1: subsume inverters 277,976 10,103,924 30,055,234 2.975 75.03×106 3.92×106 13,127 1.23×
Strategy 2: Strategy 1 + merge ITE-chains 140,870 9,829,712 41,846,616 4.257 76.32×106 2.82×106 7,296 2.21×
Strategy 3: Strategy 2 + AND/OR→ITE 140,610 9,829,192 41,864,998 4.259 59.09×106 2.40×106 6,018 2.68×
Strategy 4: Strategy 3 + OR/ITE→AND & AND/ITE→OR 139,660 9,827,292 41,958,714 4.270 77.18×106 2.91×106 7,910 2.04×
Strategy 5: Strategy 3 + FANIN for OR/ITE→AND & AND/ITE→OR 139,660 9,827,292 41,950,733 4.269 76.12×106 2.76×106 7,747 2.08×

10pipe_ooo
(2,735)

Strategy 0: conventional translation 85,292 2,087,475 6,163,839 2.953 66.09×106 20.65×106 40,749 –——
Strategy 1: subsume inverters 81,932 2,080,755 6,150,399 2.956 59.43×106 18.23×106 35,723 1.14×
Strategy 2: Strategy 1 + merge ITE-chains 51,670 2,020,231 7,194,429 3.561 54.18×106 16.96×106 26,448 1.54×
Strategy 3: Strategy 2 + AND/OR→ITE 51,500 2,019,891 7,197,291 3.563 52.57×106 16.03×106 25,213 1.62×
Strategy 4: Strategy 3 + OR/ITE→AND & AND/ITE→OR 51,000 2,018,891 7,226,317 3.579 49.80×106 15.92×106 27,212 1.50×
Strategy 5: Strategy 3 + FANIN for OR/ITE→AND & AND/ITE→OR 51,000 2,018,891 7,220,565 3.577 49.43×106 16.20×106 24,980 1.63×
was best on 3 of the 9 benchmarks (1dlx_c_iq40,
1dlx_c_mc_ex_bp_iq40, and 10pipe_ooo). However,
Strategy 3 was better than Strategy 5 on 1dlx_c_iq50 and
1dlx_c_mc_ex_bp_iq50, the more complex variants of
1dlx_c_iq40 and 1dlx_c_mc_ex_bp_iq40, respectively,
and significantly better on the most complex formula,
9vliw_iq6, reducing the SAT-solver decisions for that
benchmark from 1,454.97×106 (with conventional transla-
tion) to 286.45×106 (i.e., 5.08×), reducing the SAT-solver
conflicts from 52.88×106 to 8.74×106 (i.e., 6.05×), and
speeding up the SAT-checking by 7.68×.

As Table IV indicates, the number of CNF variables,
clauses, and literals is not proportional to the SAT time.
For example, 15pipe has more CNF variables, and approx-
imately 3× more CNF clauses and literals than 9vliw_iq6
with conventional translation, but was proved unsatisfi-
able 8.78× faster. The greatest reduction in CNF variables
was for 15pipe, where Strategies 2–5 more than halved the
CNF variables. The reduction in CNF clauses was signifi-
cantly smaller for all of the benchmarks—between 1.6%
and 3.85%. Note that Strategies 4 and 5 result in the same
number of CNF variables and clauses, but depending on
the benchmark, require different number of CNF literals,
and produce different clauses.

Strategies 3 and 5 also had best performance on satisfi-
able CNFs from 10 buggy implementations of 9vliw_iq6.
Strategy 3 was faster than Strategy 0 in 6 cases, with max-
imum speedup of 136×; Strategy 5 was faster than Strat-
egy 0 in 7 cases, with maximum speedup of 17.8×.
However, Strategy 3 was faster than Strategy 5 on only 5
(half) of the cases, i.e., those strategies had comparable
performance. If Strategies 3 and 5 were run in parallel,
stopping as soon as one of them finds a solution, they were
faster than Strategy 0 in 8 cases.

ITEs model conditional advances of instructions in the
pipelines, when stalling conditions are false. Additionally,
EVC uses ITE-chains to eliminate UPs that control the
flow of instructions. Hence, faster BCP for ITE-chains, as
well as for AND→ITE and OR→ITE groups, as achieved
with Strategy 3, means faster processing of case-splitting
conditions, and results in significant speedup. Merging
OR→AND and AND→OR groups, as in Strategies 4 and
5, usually increases the CNF literals, thus slowing the
BCP for some formulas.

Strategies 1–5 resulted in similar speedups, for both
satisfiable and unsatisfiable formulas, with another effi-
cient SAT-solver, BerkMin621 [14], a new version of
BerkMin62 [13].

VI. RELATED WORK

To reduce the cost of Boolean Constraint Propagation,
Bingham and Hu [4] compiled Boolean formulas to pro-
grams, and simulated the resulting code with random



unexplored vectors. Additional code was generated to
identify input patterns that will produce the same output
value as the current input pattern, thus pruning the solution
space. Kuehlmann et al. [20] converted Boolean formulas
to a representation with only 2-input AND gates and
inverters, then transformed groups of 3 connected AND
gates—one driven by the other two—into a canonical form
by accounting for inverters at gate inputs. Circuit-based
SAT-solvers exploit the circuit structure to identify points
with identical or complemented values, as well as to prune
the solution space [11][15][20][26]. Algebraic simplifica-
tions [5][28], as well as methods for CNF variable order-
ing by minimizing the cut-width [2][10][45], required long
processing time, and did not accelerate the SAT checking
[43]. Using multiple parallel runs of a SAT-solver with
either different decision heuristics [34], or with different
translations from EUFM to propositional logic [43], and
stopping as soon as one of the runs finds an answer,
reduced the SAT time. Translation of Boolean formulas to
tableau is explored in [18].

VII. CONCLUSIONS

The paper studied translation of Boolean formulas to CNF
by merging adjacent gates, and representing them with a
single set of CNF clauses, thus eliminating CNF variables
and clauses, and speeding up the BCP and the SAT-solv-
ing. Best was Strategy 3—subsuming inverters, merging
ITE-chains, and merging AND→ITE and OR→ITE
groups—resulting in 7.68× speedup for the most complex
unsatisfiable formula, and 136× speedup for one of the sat-
isfiable formulas from buggy implementations. Second
was Strategy 5, additionally merging OR→AND,
ITE→AND, AND→OR, and ITE→OR groups, where the
input gate to be merged was chosen by a variant of the
FANIN heuristic for BDD variable ordering. ITEs play a
critical role in controlling the instruction flow, thus merg-
ing ITEs with adjacent gates results in significant speedup.
Future work will fine-tune the presented heuristics.
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