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Abstract—A parasitic-aware RF synthesis tool based on a non-
dominated sorting genetic algorithm (NSGA) is introduced.
The NSGA-based optimizer casts the design problem as a
multi-objective optimization problem and offers multiple
solutions along the Pareto optimal front. Monte-Carlo
simulations are then performed to efficiently assess sensitivity
at solution points with respect to process, voltage, and
temperature (PVT) variations. An example design of a 10mW
5GHz voltage-controlled oscillator (VCO) in 250nm SiGe
BiCMOS achieves a 12% tuning range with a phase noise of -
133dBc/Hz at 3MHz offset. The Figure-of-Merit (FOM) i s
188dBc/Hz and power-frequency-tuning normalized FOM
(PFTN-FOM) is -4dB.

I. Introduction

The parasitic-aware synthesis paradigm was conceived to
combat performance degradations owing to device and
package parasitics to achieve optimum performance [1]-[4].
The parasitic-aware optimization methodology depicted in
Fig. 1 comprises three major modules linked via a netlist: an
optimization core, a parasitic-aware compact model generator,
and a standard circuit simulator. The optimization core first
modifies the design variables in the netlist according to a
chosen optimization algorithm. The netlist is simultaneously
updated with information from the compact model generator.
A user-specified circuit simulator such as HSPICE or
SPECTRE then simulates the parasitic-laden netlist. After
simulation, the outputs are passed back to the optimization
core for evaluation and generation of the new netlist variables.
Without doubt, the most critical component in parasitic-aware
synthesis is the optimization core. Previously, simulated
annealing (SA) and particle swarm optimization (PSO)
algorithms have been used to implement the core optimizer
[1],[4]. Although both techniques have hill-climbing
capabilities and can avoid being trapped in local minima,
each has shortcomings. Both techniques scale a set of design
objectives into a single optimization objective (fitness or cost
function) by multiplying each design objective by a user-
defined weight [5]. Even though this weighted-sum approach
is intuitive and easy to implement, potential high sensitivity
solutions to weight variations makes the task of setting the
weight factors problematic [6]. This often results in sub-
optimum solutions. In addition, the computational efficiency
of SA is relatively low because it works with a single-point
solution rather than a population of solutions [1], [4]-[7].

In this paper, a parasitic-aware optimization technique
based on a non-dominated sorting genetic algorithm (NSGA)
is introduced. Like PSO, NSGA works with multiple points
in the solution space to achieve high computational
efficiency. But unlike the two previously described methods
where the weighted-sum cost function leads to a single
solution, a non-dominated sorting loop is introduced to
distribute the population of solutions along the Pareto
optimal front. Monte-Carlo simulations are then efficiently
run to assess sensitivity of each solution point with respect to

process, voltage, and temperature (PVT) variations [4]. The
new techniques are validated in the design and optimization
of a 5GHz voltage-controlled oscillator in a 250nm SiGe
BiCMOS technology. Section II briefly outlines the topology
and design of the VCO. A description of NSGA is presented
in Section III. Section IV shows results including Monte-
Carlo simulations with PVT variations for maximizing
circuit robustness, and Section V concludes the contribution.
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Fig. 1: The parasitic-aware synthesis paradigm for the design and
optimization of radio frequency integrated circuits.

II. Voltage-Controlled Oscillator Design

One of the key RF circuit blocks in realizing integrated
communication systems is the voltage-controlled oscillator.
In the past few years, VCO performance has improved
dramatically due to continuous research efforts aimed at
circuit innovations and process improvements. But as carrier
frequencies continue to move to higher regions of the
available frequency spectrum, VCO design is becoming
increasingly more challenging since parasitics associated with
both on-chip passive and active components and the package
have greater impact on circuit performance [1].

Figure 2 shows a schematic of a complementary cross-
coupled VCO in CMOS technology. The cross-coupled
NFET and PFET pairs form two small-signal negative
resistance generators that compensate resistive losses in the
LC tank circuit. Advantages of the complementary topology
over its NMOS- and PMOS-only counterparts include larger
output swing for the same power dissipation and better rise
and fall time symmetries [8]. Accumulation mode MOS
varactors and switched-capacitor circuits are used to achieve a
relatively linear tuning behavior and reduce VCO gain,
respectively [9]. Note that only a single switched-capacitor is
implemented in this design to reduce the number of probes
required during testing; of course, additional switched-
capacitor branches are easily added for greater control of the
VCO center frequency and gain. The product of the tank
inductance and its quality factor (Q) is maximized to
maximize output swing and minimize phase noise [10]. To



reduce flicker noise up-conversion, tail resistor RT is used for
biasing the VCO instead of an NMOS current mirror [12].
Inductor LT is inserted in series with the tail resistor RT to
provide high impedance at the second harmonic frequency.
The oscillation frequency is determined by the tank
inductance (L) and the variable plus parasitic capacitances
(Cvar-nominal and Cparasitic, respectively):
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The tuning range, which is usually expressed as a
percentage of the center frequency, is defined as:
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where fmax and fmin are maximum and minimum oscillation
frequencies, respectively. The phase noise of the VCO can be
computed using a linear time-variant equation from [8]:
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where Dw is the offset frequency from the carrier, fin D/2  is

the power spectral density of the current noise source, qmax is
the maximum charge swing, and G rms is the root-mean-square
value of the effective impulse sensitivity function.
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Fig. 2: A complementary cross-coupled CMOS LC tank voltage-
controlled oscillator with fine (varactor) and coarse (switched-
capacitor) center frequency controls.

The objective here is to use the new NSGA-based
optimization tool and its associated design centering
methodology to synthesize a 5GHz VCO that meets or
exceeds the following design specifications: output phase
noise < -130dBc/Hz at 3MHz offset, tuning range > 10%,
minimum VCO gain, and a maximum power dissipation of
10mW. Because the design constraints are set at a fairly
demanding level of performance, conventional manual design
methods are sufficiently inaccurate and cumbersome that an
optimum design is highly unlikely without CAD synthesis.
In particular, this challenge necessitates the use of a design
and optimization tool that includes device and package
parasitics as part of the design process from the beginning of
the design.

III. NSGA-Based Parasitic-Aware Optimization

Inspired from Darwin’s theory of evolution, the genetic
algorithm (GA) has been used extensively in various forms in
optimization tools over the last two decades. As illustrated in
Fig. 3, the GA begins by generating a population of random
solutions with each solution (individual) represented by a bit
string called chromosomes. A user-defined fitness function is
then evaluated for each individual in the population to
determine its probability of reproduction. Three operators are
applied to the current population to determine the next
population: reproduction, crossover, and mutation. The
reproduction operator places individuals from the current
population into the next based on their fitness values. A
number of methods exist for implementing the reproduction
operator. The most common ones are the roulette wheel, the
ranking method, the binary tournament method, and the
Pareto domination tournament that is chosen for this work
[5], [6], [11]. If two randomly chosen individuals are
compared, and one is superior to the other in every objective,
it is called the dominant solution; the other is referred to as
the dominated solution. On the other hand, if each is better
than the other in some objective, then the two individuals are
said to be non-dominated. Individuals with high fitness
values have a higher probability of reproducing than
individuals with low fitness values, thus guaranteeing that
bad solutions are eliminated through the evolutionary
process. The crossover operator takes two randomly chosen
individuals and swaps their chromosomes at a random
position within the bit string. The mutation operator then
randomly flips a bit in the chromosomes of one or more
randomly selected individuals based on a user-defined
mutation coefficient. The purpose of the crossover and
mutation operators is to introduce new solutions to the
population. The process continues until the desired solution
is found or the specified number of iterations is reached.

Two major drawbacks exist for conventional optimization
techniques (original GA, PSO, etc.) that combine multiple
objectives into a single cost function: sensitivity to weight
variations as mentioned in Section I, and objective conflict.
In real-world multi-objective optimization problems, optimal
solutions for each individual objective are different. A
solution that optimizes all objectives does not usually exist.
Mathematically, the most favorable solution is the one with
the least objective conflict but there is no guarantee that such
a solution will satisfy the problem requirement.

NSGA was introduced in [11] to obtain good solutions as
well as to maintain a stable sub-population by using both a
ranking method and a niche mechanism. Figure 4 shows an
NSGA flow chart. The main difference between the original
GA and NSGA is in how the reproduction operator is
handled. The crossover and mutation operators remain
unchanged. For the Pareto domination tournament method,
two candidates are randomly picked from the population.
Instead of comparing them based on their scaled fitness
values, a set of individuals randomly chosen from the
population is used for comparison. Each candidate is then
compared against every individual in the comparison set. If
one candidate is dominated by the comparison set while the
other one is not, the latter is chosen for reproduction while
the dominated solution is aborted. On the other hand, if both
members of the pair are non-dominated, a niche count is
found for each by counting the number of points in the
population within a certain distance s from that individual.
The normalized Euclidean distance dij between two solutions
i and j is calculated as
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where xk-min and xk-max are the minimum and maximum
constraints for the kth variable in each solution, and n is the
total number of variables for a solution. The candidate with
the smallest niche value is passed onto the next generation.
The niche mechanism prevents quick convergence toward a
single solution, and thus guarantees diversity in the
population. Based on the literature and extensive simulation
results, a value of s = 0.5 is chosen [5], [11].
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Fig. 3: Basic genetic algorithm flowchart.
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Fig. 4: NSGA flow chart.

IV. Optimization Results

The design of the VCO is carried out using 250nm SiGe
BiCMOS process parameters. The optimizer interfaces with
the Cadence Design Systems SPECTRE-RF simulator so
phase noise is readily computed. The widths and lengths of
the PMOS and NMOS devices, the number of fingers in the
layout of the MOS varactors, and the size of the switched-
capacitors constitute the set of design variables. The coarse-
tuning NMOS switches are sized so their on-resistances do
not significantly load the LC tank. Initially, the inductor
value is fixed in a simulation run due to the unavailability of
compact models for the parasitic components versus
continuous inductance values. Multiple simulations were run
with different discrete inductance values to yield an
oscillation frequency of 5GHz. The power dissipation is set
to the maximum specified value of 10mW throughout the
optimization process. The number of individuals in the
population is 32, and the maximum number of iterations is
50. The number of bits in the bit string representing the
design variables is determined by the minimum and
maximum constraints placed on the variables. In our
simulations, each design variable is represented by a nine-bit
word. Convergence for NSGA is achieved when the optimizer
stops introducing new solutions along the Pareto optimal
front. The simulation times for the GA, PSO, and NSGA are
compared in Table 1. Due to the insertion of the non-
dominated selection loop, NSGA consumes about 20% more
simulation time compared to GA and PSO. All simulations
are carried out on Sun Fire V480 servers with 900MHz
UltraSparc-III processors. Figure 5 compares the solutions in
the final objective space between ordinary GA, PSO, and
NSGA. Both conventional GA and PSO yield only a single-
point solution along the Pareto optimal front for a single
optimization run while NSGA provides 12 solutions in this
example among the continuum of design variable trade-offs.

Table 1. Efficiency comparison of GA, PSO and NSGA.

GA PSO NSGA

Simulation time 40 hours 38 hours 46 hours
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Fig. 5: Objective space comparison between GA and NSGA.

In order to assess the sensitivity of the solutions to PVT
variations, post optimization PVT analysis using Monte-
Carlo simulations was performed at each solution point
assuming Gaussian distributions with s = 20% standard
deviations in all passive device values and the power supply
voltage, s = 1% deviations in all active device geometries,



and s = 10% deviations in the threshold voltages. The
operating temperature is randomly varied from 0 to 75°C.
Figure 6 shows the average tuning range versus the average
phase noise for 250 Monte-Carlo simulations at each solution
point. As expected, it is in close agreement with Fig. 5.
Figure 7 shows the standard deviation of the tuning range
versus that of the phase noise for each solution point. Based
on the resulting statistics, design points 8 and 12 represent
the most robust and manufacturable designs because they
exhibit the lowest sensitivity characteristics. A yield analysis
using the obtained statistical information is performed for
each solution point based on the 10% tuning range
requirement and the -130dBc/Hz@3MHz offset phase noise
specification. The yield distribution is assumed to be
Gaussian and the results are shown in Table 2. Clearly,
design point 8, which is chosen to be the final design, meets
the design specifications and offers excellent yield
performance.   
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Fig. 6: Post optimization PVT analysis results: average of tuning
range versus average of phase noise for 250 Monte-Carlo
simulations per point.

Figures 8 and 9 show the nominal phase noise and tuning
plots of design point 8, respectively. The post optimization
PVT simulation plot is shown in Fig. 10. The design
specification and the achieved results are summarized in Table
3. The VCO Figure-of-Merit (FOM) and Power-Frequency-
Tuning-Normalized Figure of Merit (PFTN-FOM), two
frequently-used parameters to compare performances of VCOs
at different frequencies, are defined in (5) and (6),
respectively:
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where w 0 is the center frequency, P is the power dissipation
in Watts, k is the Boltzmann’s constant, T is the absolute
temperature in degrees Kelvin, w tune is the tuning frequency,
and Dw  and L{Dw} are the offset frequency with respect to
the carrier and its associated phase noise [8]. Simulation of
the final design achieves a FOM of 188dBc/Hz and a PFTN-
FOM of -4dB.
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Fig. 7: Post optimization PVT analysis results: standard
deviation of tuning range versus standard deviation of phase
noise for 250 Monte-Carlo simulations per point.

Table 2. Yield analysis based on Gaussian distribution.

Design
point

Yield based on
10% tuning

spec  (%)

Yield base on -
130dBc/Hz @3MHz

phase noise spec

1 19.00 99.99

2 0.07 97.64

3 10.00 99.99

4 53.00 99.95

5 52.00 99.75

6 60.00 99.95

7 69.00 95.63

8 99.32 99.9

9 93.00 93.92

10 86.00 89.17

11 99.90 77.06

12 99.81 0
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Fig. 8: VCO phase noise plot.
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Fig. 10: Post PVT optimization of the final design.

Table 3. VCO Performance summary.

Desired
spec.

Achieved spec.

w 0 5GHz 5.6GHz
Tuning 10% 12%

VCO Gain Minimize 130MHz/V
Phase noise Minimize -133dBc/Hz@3MHz

Power 10mW 10mW
FOM / 188dBc/Hz

PFTN-FOM / -4dB

V. Conclusions

In this paper, a parasitic-aware optimization tool based on a
non-dominated sorting genetic algorithm (NSGA) is
presented. The tool is applied to the design and optimization
of a 5GHz VCO in a 250nm SiGe BiCMOS process. The
optimized results include a 5.6GHz center frequency,             
-133dBc/Hz phase noise at 3MHz offset, and a 12% tuning
range with 10mW of power dissipation. The FOM and the
PFTN-FOM achieved are 188dBc/Hz and -4dB, respectively.
The NSGA-based parasitic-aware optimization methodology
shows promising potential for future mixed-signal and RF

applications due to its capability to generate multiple
solutions along the Pareto optimal front as well as its
efficiency in parallel execution.
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