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Abstract - Each year tens of billions of Dollars are wasted by 
the microelectronics industry because of missed deadlines and 
delayed design projects. These delays are partially due to 
design iterations many of which could have been avoided if the 
low level ramifications of high level design decisions, at the 
Architecture- and Algorithmic-level would have been known 
before the time consuming and tedious RT- and lower level 
implementation started. In this contribution we present a 
System-level design flow and respective EDA support tools for 
low power designs. We analyze the requirements for such a 
design technology, which shifts more responsibility to the 
system architect. We exemplify this approach with a design 
flow for low power systems. The architecture of an 
Algorithm-level power estimation tool will be presented 
together with some use cases based on an EDA product which 
has been commercially developed from the research results of 
several collaborative projects funded by the Commission of the 
European Community. 
 

I Introduction 
 

According to [1] 85% of all design projects finish late if 
they finish at all. The same source states that all projects are 
late by 53% of the originally estimated design time. 
Gartner/Dataquest [2] reported about the number of design 
iterations and the design time. From these data we can 
estimate the average design time for current designs to be 
some 10 months, the expected design time for next designs 
to be like 15 months. We can also estimate from this report 
that an average of 4.7 design iterations is needed to complete 
a design. Our conclusion is that NRE cost are not 
determined by the increasing mask cost, but rather by the 
design cost, secondly that the design community is 
obviously pessimistic with regard to the design efforts for 
new designs and thirdly that the design cost could be 
significantly reduced if design iterations could be avoided. 

If we assume that the average employment cost for a 
design engineer in high cost regions is some US$ 200k and 
if we further expect an additional cost of US$ 30 k for EDA 
licenses, about 1/3rd of the total design cost or some US$ 70 
k per design engineer are spent due to unexpected design 

iterations. These are typically due to late detection of design 
errors or because design problems are found at a very late 
stage of the design process. Even worse, these delays often 
cause missed market opportunities if competition is able to 
enter the market earlier and gains large market shares during 
the most profitable market window. A delay in market entry 
of six months can result in reduced revenues of up to 50%. 
In conclusion, delays and unnecessary design iterations cost 
the industry tens of billions of Dollars each year. 

The reasons for the large number of design iterations are 
manifold: less predictable semiconductor fabrication 
processes, more aspects to be considered, complexity of the 
designs. However, there is one common issue between these 
reasons: The problems are detected too late! Months of 
tedious design time had already been spent and many 
CPU-hours of verification had been used to refine the design 
and verify certain aspects. 

Here we propose a shift in the design process towards 
earlier phases. By trying to understand the design including 
non-functional properties at the earliest possible time as 
good as possible and by evaluation design alternatives as 
accurate as possible from the very beginning, it is possible to 
enter the RT- and lower levels of the design flow with a 
significantly increased level of confidence and with a much 
better architecture. Both benefits help to avoid later design 
iterations. The savings during the back end design flow and 
the eliminating of respins by far pay off the investments in 
time and EDA tools at the System-level. 

This paper in particular addresses the power aspect of 
Systems on Chip, which is becoming one of the most 
limiting factors for utilizing the opportunities offered by 
current and future semiconductor processes. Intel’s Andy 
Grove has stated the power problem to be the most pressing 
challenge and Synopsys’ Art de Geus said that 11% of 
silicon first spins did not meet the power requirements. 
These statements are not surprising when high performance 
microprocessors consume in the order of 100 Watts and high 
bandwidth 3G cellular phones demand a computation 
performance which increases faster over 1G and 2G cellular 
phones than Moore’s law of semiconductor technology. 
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II Problem Statement: Power Estimation at System-level 
 
Due to space restrictions in this article, we limit the 

discussion of power dissipation to switched capacitance 
power. This part of the total power is still the dominating 
part in technologies of 90 nm and larger for high 
performance applications. Leakage power is gaining 
importance of sub 90 nm technologies and mobile 
applications already today. Equation 1 allows calculating the 
power consumption of a switched capacitor. At the 
Transistor-level Cload includes the parasitic gate overlap and 
fringing capacitances as well as the Miller capacity. α 
models the switching probability of the transistor during a 
cycle of the clock toggling at frequency f. Vdd is the supply 
voltage.  

 
 (1) 

 
This formula, however, can not be applied at the System- 

level directly, because the design objects at this level are not 
capacitors. We are rather allocating CPUs, memories, busses, 
custom parts, analogue subsystems etc. The design decisions 
are not related to low level design objects, but first to choose 
between algorithms, to optimize them, to partition between 
HW and SW, and finally to map functions to processors or to 
ASIC-style circuits.  

Selecting the most power efficient algorithm out of a 
repertoire of available and functionally equivalent ones 
requires an estimate of the to-be-expected power 
consumption of an implementation of the different 
algorithms. Of course the comparison must be based on 
power efficient realizations of these algorithms without the 
need to really implement them.  

Once an algorithm has been chosen, it can be optimized 
for low power. First the control flow can be optimized to 
reduce the number of control statements, e.g. by different 
kinds of loop unrolling strategies. Additionally these 
transformations extend the scope of local statement 
reordering and pave the way to local memory access 
optimizations [3].  

Implementing an algorithm or its computational kernel by 
application specific hardware can significantly reduce the 
power consumption and relieve the processor from 
computation intensive tasks. This may allow a significant 
downgrading of the processor to a cheaper and less power 
consuming one. 

The data of the algorithms is typically specified in terms 
of floating-point variables and arrays. For a hardware 
implementation a more efficient data representation is 
possible, e.g. fixed-point data types of adequate precision for 
the intended application. Algorithmic-level power estimation 
is applied to evaluate the impact of the mentioned 
algorithmic transformations and design decisions [4]. 

In order to enable the paradigm of efficiently and reliably 
exploring the design space at System-level, these steps need 
to be supported by EDA tools. The problem of power 
estimation at this level is that the target hardware is not 
designed yet. The building blocks of that hardware are not 

yet allocated; the control and data communication between 
these components is yet to be defined. Hence, before being 
able to predict the power consumption, it is necessary to 
estimate the global target architecture and its activity.  

Once that is done, Equation 1 can be replaced by a more 
abstract interpretation as shown in Equation 2 [5]: 

  
(2) 

 
Na is the number of activations of the respective module 

per computation iteration, Cavg. is the average switched 
capacitance of the module per activation, V the supply 
voltage of the component, and fcomp is the iteration 
(sampling) frequency of the algorithm. The number of 
modules and their activation strongly depends on the 
scheduling, allocation and binding, which have not yet been 
performed at the Algorithmic-level. To evaluate Equation 2, 
assumptions about the scheduling, the allocation and binding 
as well as the interconnect and storage architecture have to 
be made.  

Additionally, power models for the components must be 
available. In case of standard components these models can 
be generated by simulation and power characterization based 
on lower level power analysis tools [6] and appropriate 
power models [7], [8]. Hence Algorithmic-level power 
analysis includes the following steps: Architecture 
estimation (scheduling, allocation, binding of operations and 
memory accesses, communication architecture estimation 
including wire length prediction), activation estimation, and 
power model evaluation. A generic power analysis and 
estimation flow is depicted in Figure 1. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 1: Generic Power Analysis and Estimation Flow 
 

III Algorithmic-level Power Estimation 
 

We have identified four necessary components of an 
Algorithmic-Level power estimation flow:  
• Architecture estimator, 
• Activity estimatior, 
• Library of power models for macro modules, 
• Power estimation kernel, 
which will be described in more detail in the following 
sections. 
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A. Architecture Estimation 
The main challenge of Algorithmic-level power 

estimation for hardware implementations is the difficulty to 
predict the structural and physical properties of a yet to be 
designed power optimized circuit. Existing approaches to 
solve this problem rely on a power optimizing architectural 
synthesis of the design before power analysis.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2: Target Architecture Template 
 
Generating an abstract architecture for low power 

ASIC-style implementations of computational kernels 
requires applying the usual steps of high-level synthesis, 
however, under consideration of a cost function that includes 
the expected power consumption. The computational kernel 
is typically computation intensive and hence implemented 
by a custom datapath with a respective controller as shown 
in Fig. 2. 

Lets us assume that the algorithm under consideration is 
represented by its Control and Dataflow Graph (CDFG) [9], 
[10]. The task of high-level synthesis is to schedule the 
operations of the CDFG into control steps and to map the 
CDFG to a target architecture. This mapping requires 
allocating the necessary resources, to bind the operation 
nodes of the CDFG to these resources in a power-optimized 
way, and to develop the respective controller. In deep 
sub-micron technologies, however, the performance and 
power consumption is also dependent on the interconnect, 
which itself depends on the floorplan of the circuit.  

Due to the strong dependence between the schedule, the 
resource allocation, the resource binding and the floorplan, 
these steps should ideally be performed in a combined 
optimization step. Approaches to combine several of these 
tasks of high-level synthesis into one optimization loop have 
been proposed [11], [12], [13]. The common feature of these 
optimization flows is to apply a set of moves on a 
preliminary design, to evaluate the impact of these moves, 
and following an optimizing heuristic like, e.g. simulated 
annealing, applying further moves until a stopping criterion 
is fulfilled.  

The approach described in [13] applies moves changing 
the schedule and the binding. Before evaluating the cost 

function, they perform a floorplanning step during each 
iteration. Alternatively [11] use allocation and binding 
moves followed by a floorplanning for cost estimation, 
while [12] includes allocation, binding and floorplanning 
moves into their optimization heuristics (see Fig. 3). The 
upper part of the figure shows the outer loop of the 
optimization, during which binding and allocation moves are 
preformed. If, based on a preliminary power estimate, a 
binding/allocation move is promising, then the floorplan is 
updated and optimized by several floorplan moves in an 
inner loop, as shown in the lower part of Fig. 3. In this case 
the moves consist of resource allocation (sharing/splitting) 
and binding moves as well as floorplan related moves. The 
results show a significant improvement compared to 
interconnect unaware power optimization. 

The performance of most heuristic optimization 
algorithms depends on the quality of the initial state before 
applying any of the moves. In case of Architectural-level 
power optimization, this initial configuration includes a 
schedule, a set of allocated resources, an initial binding, and 
a floorplan. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 3 Combined Power-aware Allocation, Binding, and 

Floorplaning 
 
 During scheduling each operation node of the CDFG is 

assigned to: 
• exactly one control step or 
• in case of chaining to an execution position within one 

control step or 
• in case of pipelining to a sequence of control steps. 

The resulting schedule defines the level of parallelism in 
the datapath and hence the number of required resources. 
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The schedule determines the usage of pipelining and 
chaining. While pipelining can be a means to reduce power 
by isolating the propagation of unnecessary signal 
transitions even within one operation unit, chaining causes 
the propagation of such glitches through several operation 
units in one clock cycle and hence increases the power 
consumption.  

Power-aware scheduling avoids the allocation of resource 
compatible computations with low correlation of the 
operand values in neighboring control steps. It rather tries to 
allocate operations with highly correlated data into 
consecutive steps [14]. This strategy allows binding these 
operations to the same HW-resource, which will consume 
less power due to the low activity at its inputs.  

The allocation of resources defines which and how many 
resources are used to implement the CDFG. The binding step 
assigns exactly one operation unit to each of the operations 
of the CDFG. Several operations can be assigned to the same 
operation unit (resource sharing) if they are scheduled into 
disjoint control steps and the operation belongs to a subset of 
the operations that can be implemented by the same unit.  

The valid set of target units of the resource binding 
depends on the set of operations these units can perform. 
This opens further possibilities for power optimization, 
because more than one type of operation unit can be chosen 
as target unit, influencing the resulting power consumption. 
For example an addition can be bound to a carry-look-ahead 
adder, a carry-save adder or an ALU. Similarly variables and 
arrays can be mapped to registers or memories. Typically 
arrays will be mapped to memories while single variables 
will be mapped to registers. 

The resource allocation and binding affects the power 
consumption of the datapath due to several effects. The 
power consumption of each operation unit strongly depends 
on the switching activity of its inputs. When processing real 
application data, the internal data applied to the operation 
units will usually not be independent, but highly correlated 
over a wide range of input data. Applying consecutive input 
data of high correlation to an operation unit reduces its 
power consumption. An established measure for the input 
switching activity is the average Hamming-Distance of a 
sequence of input patterns [7]. Analyzing the input streams 
of the operations allows assigning the operations to 
operation units in a power optimized way by exploiting 
these data correlations. Since this assignment is an 
NP-complete problem, different heuristics have been 
proposed. The approach in [15] uses an activity matrix to 
capture this data dependency and includes control flow 
information and state transition probabilities into the power 
analysis, while another proposal focuses on the iterative 
nature of data dominated designs [16]. 

By sequentially applying these techniques an initial 
schedule and architecture can be generated, which, however, 
is not a global optimum solution, but which can serve as a 
good initial solution for the simultaneous optimization 
described above. 

So far only the architecture of the datapath and its 
floorplan have been estimated. The power consumption of 

the controller depends on its implementation, i.e. the number 
of registers and their activity, the implementation of the 
state-transition and output functions, and their signal 
probabilities, which are known after the architecture 
estimation process described above. 

 
B. Activity Estimation 

The input specification for Algorithmic-Level power 
estimation is typically an executable specification in terms 
of a programming or System-Level design language, e.g. C 
or SystemC. It is hence straightforward to estimate the 
activity of the algorithm by executing the algorithm and 
sampling the activity of the variables and operations of the 
algorithm.  

This process can be automated by an automatic 
instrumentation of the source code. This instrumentation 
takes care of capturing the data streams during execution. 

 
C. Power Models 

The operation units used in the generated architecture are 
pre-designed and power-characterized modules, like 
multipliers, memories, adders, ALUs, comparators, 
subtractors etc. In case of standard components these models 
can be generated by simulation and power characterization 
based on lower level power analysis tools [6] and 
appropriate power models [7], [8]. These power models 
should be parameterized with respect to structural aspects, 
e.g. bit-width, and activity parameters. The 
Hamming-Distance between consecutive input vectors has 
proven to be a reliable parameter to capture the input activity 
for such modules. Alternatively higher order functions of the 
switching probability distribution of input signals, e.g. 
momentums have been applied as parameters of high-level 
power models for macro modules [17]. 

The interconnect power depends on the topology of 
individual wires and their activity. Hence power models for 
interconnect are parameterized by the wire length and the 
signal activity. These models need to be calibrated with 
respect to the placement and routing tools used as well as 
with the process technology. Such empirical models can 
include estimators for the wire topology and the number of 
vias [18]. 

 
D. Power Estimator 

It is the task of the power estimator to provide a 
computational framework and user interface, which 
integrates the techniques presented above into an EDA tool.  

In particular the Power Estimator has to provide a 
language front-end which allows reading algorithmic 
specifications in a suitable language. C is a commonly used 
language for high-level specifications. SystemC is gaining 
momentum for the specification of concurrent algorithms 
and system architectures. In the example tool-structure 
shown in Fig. 4 the front-end includes a language parser 
which extracts the CDFG of the algorithm and automatically 
instruments the source code. The System-level designer can 
then execute the instrumented source code with application 
stimuli or other representative testbenches. During execution 



the values of the variables and the input and output vectors 
of operations are captured in an activity file. This activity 
can be attributed to the respective resources of the datapath 
and interconnect for later power calculation. 

The top right hand part of Fig. 4 shows the architecture 
estimation. It is key that the estimated architecture is 
optimized for low power. Hence it needs to construct a 
datapath and respective controller that minimizes the 
switching activity. As described above, iterative optimization 
techniques have to be applied to generate a power efficient 
resource allocation, schedule, binding and floorplanning. 
This iterative procedure requires a feed-back from 
intermediate power estimates of the temporary solutions as 
indicated in Fig. 4. 

Once a stable solution has been found, its power 
consumption can be presented to the designer in various 
views to give him a fast feed-back on the ramifications of 
design decisions.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 4: Example Tool Structure of an Algorithmic-level 

Power Estimator 
 
The accuracy of the power analysis depends on how well 

the assumed architecture matches the final architecture. This 
final architecture is subject to many parameters, e.g. the 
design style specific architecture templates, which are the 
main differentiating factors in times of fabless 
semiconductor vendors, or the tool chain applied at the later 
phases of the design process (RT-level synthesis, 
floorplanning, routing, clock tree generation). Hence an 
architecture estimator should either consider the design flow 
and style applied to the real design, or generate an abstract 
architecture of such high quality that it can be implemented 
without further global changes, however, without limiting 
local optimizations. In Fig. 4 the architecture output contains 
such a description of the architecture. 

 
IV Tool Example 

 
In this section we will explain how the System-level 

designer can utilize such early estimations. Most of the 
above mentioned techniques have been integrated into the 

ORINOCO 1  tool suite [19], which we use here for 
demonstration purpose. 

The ORINOCO tool suite consists of two characterization 
tools, which generate the power models in the component 
library, and the power estimator ORINOCO DALE. The tool 
suite implements the tool structure as depicted in Fig. 4. 

Fig. 5 shows the top-level hierarchy browser of the tool 
after estimating the power consumption of a Vocoder design. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5: Design Hierarchy of Vocoder Design 
 
After power estimation it is easy to identify the 

computational kernels and hot spots of the design. The 
designer can now perform an in-depth analysis of  the 
power breakdown of the most power consuming processes in 
the design. Fig. 6 shows an example of such a detailed 
power view. For each process the power is broken down 
with respect to the sources of the power consumption: Clock, 
Interconnect, Controller, Functional Units, Registers, 
Memories. 

Additional views show e.g. the schedule, the memory 
accesses (Fig. 7) or the floorplan of the design. The memory 
access traces are of particular help when optimizing the 
                                                        
1 Prototypes of the ORINOCO tools have been developed under 
partial funding of the Commission of the European Union within 
the fourth and fifth research framework as part of the research 
projects PEOPLE and POET. ORINOCO is now available as 
product from a commercial EDA vendor. 
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memory usage and architecture of the system, which often is 
the main cause of power consumption. 

 
 
 
 
 
 
 
 
 

 
Fig. 6: Power Breakdown View 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7: Memory Access Traces 
 

V Conclusions 
With this contribution we have tried to motivate a shift in 

design effort towards the System-level in order to avoid 
unnecessary design iterations during later phases of the 
design. A small investment in design resources and a shift of 
responsibilities also for non-functional properties towards 
this phase will significantly reduce the design time and cost 
at the later design stages and in addition result in superior 
system architectures. 

An early analysis and optimization of the algorithms to be 
implemented and an exploration of design alternatives 
requires a design technology, which enables the designer to 
evaluate the ramifications of high-level design decisions to 
the lower levels before refining the design down to these 
levels. It can be enabled by decision support and design 
tools, which predict physical properties of the design to be 
implemented at the earliest possible instant and give 
guidelines for the architectural designer. 

We have illustrated this approach with a System-level 
design methodology for low power. The necessary steps for 
such an early estimation have been analyzed and 
requirements derived. A tool structure for an 
Algorithmic-level power estimation tool has been developed 
and use cases have been shown based on a commercial 
implementation of such a tool, which is the product version 
of a prototype having previously been developed as part of a 
European collaborative research project.  

A more concise introduction into System-level power 
analysis and estimation can be found in [20]. 
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