
Predictable Design of Low Power Systems by Pre-Implementation
Estimation and Optimization

Abstract - Each year tens of billions of Dollars are wasted by
the microelectronics industry because of missed deadlines and
delayed design projects. These delays are partially due to
design iterations many of which could have been avoided if the
low level ramifications of high level design decisions, at the
Architecture- and Algorithmic-level would have been known
before the time consuming and tedious RT- and lower level
implementation started. In this contribution we present a
System-level design flow and respective EDA support tools for
low power designs. We analyze the requirements for such a
design technology, which shifts more responsibility to the
system architect. We exemplify this approach with a design
flow for low power systems. The architecture of an
Algorithm-level power estimation tool will be presented
together with some use cases based on an EDA product which
has been commercially developed from the research results of
several collaborative projects funded by the Commission of the
European Community.

I Introduction

According to [1] 85% of all design projects finish late if
they finish at all. The same source states that all projects are
late by 53% of the originally estimated design time.
Gartner/Dataquest [2] reported about the number of design
iterations and the design time. From these data we can
estimate the average design time for current designs to be
some 10 months, the expected design time for next designs
to be like 15 months. We can also estimate from this report
that an average of 4.7 design iterations is needed to complete
a design. Our conclusion is that NRE cost are not
determined by the increasing mask cost, but rather by the
design cost, secondly that the design community is
obviously pessimistic with regard to the design efforts for
new designs and thirdly that the design cost could be
significantly reduced if design iterations could be avoided.

If we assume that the average employment cost for a
design engineer in high cost regions is some US$ 200k and
if we further expect an additional cost of US$ 30 k for EDA
licenses, about 1/3rd of the total design cost or some US$ 70
k per design engineer are spent due to unexpected design

iterations. These are typically due to late detection of design
errors or because design problems are found at a very late
stage of the design process. Even worse, these delays often
cause missed market opportunities if competition is able to
enter the market earlier and gains large market shares during
the most profitable market window. A delay in market entry
of six months can result in reduced revenues of up to 50%.
In conclusion, delays and unnecessary design iterations cost
the industry tens of billions of Dollars each year.

The reasons for the large number of design iterations are
manifold: less predictable semiconductor fabrication
processes, more aspects to be considered, complexity of the
designs. However, there is one common issue between these
reasons: The problems are detected too late! Months of
tedious design time had already been spent and many
CPU-hours of verification had been used to refine the design
and verify certain aspects.

Here we propose a shift in the design process towards
earlier phases. By trying to understand the design including
non-functional properties at the earliest possible time as
good as possible and by evaluation design alternatives as
accurate as possible from the very beginning, it is possible to
enter the RT- and lower levels of the design flow with a
significantly increased level of confidence and with a much
better architecture. Both benefits help to avoid later design
iterations. The savings during the back end design flow and
the eliminating of respins by far pay off the investments in
time and EDA tools at the System-level.

This paper in particular addresses the power aspect of
Systems on Chip, which is becoming one of the most
limiting factors for utilizing the opportunities offered by
current and future semiconductor processes. Intel’s Andy
Grove has stated the power problem to be the most pressing
challenge and Synopsys’ Art de Geus said that 11% of
silicon first spins did not meet the power requirements.
These statements are not surprising when high performance
microprocessors consume in the order of 100 Watts and high
bandwidth 3G cellular phones demand a computation
performance which increases faster over 1G and 2G cellular
phones than Moore’s law of semiconductor technology.

Wolfgang Nebel

Oldenburg University and
OFFIS

D-26121 Oldenburg
Tel : +49-441-9722-280
Fax : +49-441-9722-282
e-mail : nebel@offis.de

II Problem Statement: Power Estimation at System-level

Due to space restrictions in this article, we limit the

discussion of power dissipation to switched capacitance
power. This part of the total power is still the dominating
part in technologies of 90 nm and larger for high
performance applications. Leakage power is gaining
importance of sub 90 nm technologies and mobile
applications already today. Equation 1 allows calculating the
power consumption of a switched capacitor. At the
Transistor-level Cload includes the parasitic gate overlap and
fringing capacitances as well as the Miller capacity. α
models the switching probability of the transistor during a
cycle of the clock toggling at frequency f. Vdd is the supply
voltage.

 (1)

This formula, however, can not be applied at the System-

level directly, because the design objects at this level are not
capacitors. We are rather allocating CPUs, memories, busses,
custom parts, analogue subsystems etc. The design decisions
are not related to low level design objects, but first to choose
between algorithms, to optimize them, to partition between
HW and SW, and finally to map functions to processors or to
ASIC-style circuits.

Selecting the most power efficient algorithm out of a
repertoire of available and functionally equivalent ones
requires an estimate of the to-be-expected power
consumption of an implementation of the different
algorithms. Of course the comparison must be based on
power efficient realizations of these algorithms without the
need to really implement them.

Once an algorithm has been chosen, it can be optimized
for low power. First the control flow can be optimized to
reduce the number of control statements, e.g. by different
kinds of loop unrolling strategies. Additionally these
transformations extend the scope of local statement
reordering and pave the way to local memory access
optimizations [3].

Implementing an algorithm or its computational kernel by
application specific hardware can significantly reduce the
power consumption and relieve the processor from
computation intensive tasks. This may allow a significant
downgrading of the processor to a cheaper and less power
consuming one.

The data of the algorithms is typically specified in terms
of floating-point variables and arrays. For a hardware
implementation a more efficient data representation is
possible, e.g. fixed-point data types of adequate precision for
the intended application. Algorithmic-level power estimation
is applied to evaluate the impact of the mentioned
algorithmic transformations and design decisions [4].

In order to enable the paradigm of efficiently and reliably
exploring the design space at System-level, these steps need
to be supported by EDA tools. The problem of power
estimation at this level is that the target hardware is not
designed yet. The building blocks of that hardware are not

yet allocated; the control and data communication between
these components is yet to be defined. Hence, before being
able to predict the power consumption, it is necessary to
estimate the global target architecture and its activity.

Once that is done, Equation 1 can be replaced by a more
abstract interpretation as shown in Equation 2 [5]:

(2)

Na is the number of activations of the respective module

per computation iteration, Cavg. is the average switched
capacitance of the module per activation, V the supply
voltage of the component, and fcomp is the iteration
(sampling) frequency of the algorithm. The number of
modules and their activation strongly depends on the
scheduling, allocation and binding, which have not yet been
performed at the Algorithmic-level. To evaluate Equation 2,
assumptions about the scheduling, the allocation and binding
as well as the interconnect and storage architecture have to
be made.

Additionally, power models for the components must be
available. In case of standard components these models can
be generated by simulation and power characterization based
on lower level power analysis tools [6] and appropriate
power models [7], [8]. Hence Algorithmic-level power
analysis includes the following steps: Architecture
estimation (scheduling, allocation, binding of operations and
memory accesses, communication architecture estimation
including wire length prediction), activation estimation, and
power model evaluation. A generic power analysis and
estimation flow is depicted in Figure 1.

Fig. 1: Generic Power Analysis and Estimation Flow

III Algorithmic-level Power Estimation

We have identified four necessary components of an
Algorithmic-Level power estimation flow:
• Architecture estimator,
• Activity estimatior,
• Library of power models for macro modules,
• Power estimation kernel,
which will be described in more detail in the following
sections.

fVCP ddloadswcap ⋅⋅⋅= 2

2
1

α

Testbench Pre-implementation
specification

Activity
estimator

Architecture and/or
floorplan estimator

Architecture
and floorplan

Power calculator
Activity

calculator

Component
power models

Constraints

Power reports

compavgadynamic fVCNP ⋅⋅⋅= 2
.

A. Architecture Estimation
The main challenge of Algorithmic-level power

estimation for hardware implementations is the difficulty to
predict the structural and physical properties of a yet to be
designed power optimized circuit. Existing approaches to
solve this problem rely on a power optimizing architectural
synthesis of the design before power analysis.

Fig. 2: Target Architecture Template

Generating an abstract architecture for low power

ASIC-style implementations of computational kernels
requires applying the usual steps of high-level synthesis,
however, under consideration of a cost function that includes
the expected power consumption. The computational kernel
is typically computation intensive and hence implemented
by a custom datapath with a respective controller as shown
in Fig. 2.

Lets us assume that the algorithm under consideration is
represented by its Control and Dataflow Graph (CDFG) [9],
[10]. The task of high-level synthesis is to schedule the
operations of the CDFG into control steps and to map the
CDFG to a target architecture. This mapping requires
allocating the necessary resources, to bind the operation
nodes of the CDFG to these resources in a power-optimized
way, and to develop the respective controller. In deep
sub-micron technologies, however, the performance and
power consumption is also dependent on the interconnect,
which itself depends on the floorplan of the circuit.

Due to the strong dependence between the schedule, the
resource allocation, the resource binding and the floorplan,
these steps should ideally be performed in a combined
optimization step. Approaches to combine several of these
tasks of high-level synthesis into one optimization loop have
been proposed [11], [12], [13]. The common feature of these
optimization flows is to apply a set of moves on a
preliminary design, to evaluate the impact of these moves,
and following an optimizing heuristic like, e.g. simulated
annealing, applying further moves until a stopping criterion
is fulfilled.

The approach described in [13] applies moves changing
the schedule and the binding. Before evaluating the cost

function, they perform a floorplanning step during each
iteration. Alternatively [11] use allocation and binding
moves followed by a floorplanning for cost estimation,
while [12] includes allocation, binding and floorplanning
moves into their optimization heuristics (see Fig. 3). The
upper part of the figure shows the outer loop of the
optimization, during which binding and allocation moves are
preformed. If, based on a preliminary power estimate, a
binding/allocation move is promising, then the floorplan is
updated and optimized by several floorplan moves in an
inner loop, as shown in the lower part of Fig. 3. In this case
the moves consist of resource allocation (sharing/splitting)
and binding moves as well as floorplan related moves. The
results show a significant improvement compared to
interconnect unaware power optimization.

The performance of most heuristic optimization
algorithms depends on the quality of the initial state before
applying any of the moves. In case of Architectural-level
power optimization, this initial configuration includes a
schedule, a set of allocated resources, an initial binding, and
a floorplan.

Fig. 3 Combined Power-aware Allocation, Binding, and

Floorplaning

 During scheduling each operation node of the CDFG is

assigned to:
• exactly one control step or
• in case of chaining to an execution position within one

control step or
• in case of pipelining to a sequence of control steps.

The resulting schedule defines the level of parallelism in
the datapath and hence the number of required resources.

Operation unit 1
(arithmetic, logic,

memory)

Operation unit n

Crossbar network

Reg
1

en Reg
2

en Reg
n

en …

…

Status

signals

Control signals

Controller Crossbar network

clk

Constructive heuristic

Execute binding move Y

Move Y
accepted?

Update floorplan

Move Y still
accepted?

Stopping
criteria met?

Undo move Y

Undo move Y and
floorplan update

N

N

N

Y

Y

Y

Execute floorplan move X
X

Move X
accepted?

Undo move X

Stopping
criteria met?

Increase
probability of X

Decrease
probability of X

Y

N

N

Y

Update floorplan

Best solution

The schedule determines the usage of pipelining and
chaining. While pipelining can be a means to reduce power
by isolating the propagation of unnecessary signal
transitions even within one operation unit, chaining causes
the propagation of such glitches through several operation
units in one clock cycle and hence increases the power
consumption.

Power-aware scheduling avoids the allocation of resource
compatible computations with low correlation of the
operand values in neighboring control steps. It rather tries to
allocate operations with highly correlated data into
consecutive steps [14]. This strategy allows binding these
operations to the same HW-resource, which will consume
less power due to the low activity at its inputs.

The allocation of resources defines which and how many
resources are used to implement the CDFG. The binding step
assigns exactly one operation unit to each of the operations
of the CDFG. Several operations can be assigned to the same
operation unit (resource sharing) if they are scheduled into
disjoint control steps and the operation belongs to a subset of
the operations that can be implemented by the same unit.

The valid set of target units of the resource binding
depends on the set of operations these units can perform.
This opens further possibilities for power optimization,
because more than one type of operation unit can be chosen
as target unit, influencing the resulting power consumption.
For example an addition can be bound to a carry-look-ahead
adder, a carry-save adder or an ALU. Similarly variables and
arrays can be mapped to registers or memories. Typically
arrays will be mapped to memories while single variables
will be mapped to registers.

The resource allocation and binding affects the power
consumption of the datapath due to several effects. The
power consumption of each operation unit strongly depends
on the switching activity of its inputs. When processing real
application data, the internal data applied to the operation
units will usually not be independent, but highly correlated
over a wide range of input data. Applying consecutive input
data of high correlation to an operation unit reduces its
power consumption. An established measure for the input
switching activity is the average Hamming-Distance of a
sequence of input patterns [7]. Analyzing the input streams
of the operations allows assigning the operations to
operation units in a power optimized way by exploiting
these data correlations. Since this assignment is an
NP-complete problem, different heuristics have been
proposed. The approach in [15] uses an activity matrix to
capture this data dependency and includes control flow
information and state transition probabilities into the power
analysis, while another proposal focuses on the iterative
nature of data dominated designs [16].

By sequentially applying these techniques an initial
schedule and architecture can be generated, which, however,
is not a global optimum solution, but which can serve as a
good initial solution for the simultaneous optimization
described above.

So far only the architecture of the datapath and its
floorplan have been estimated. The power consumption of

the controller depends on its implementation, i.e. the number
of registers and their activity, the implementation of the
state-transition and output functions, and their signal
probabilities, which are known after the architecture
estimation process described above.

B. Activity Estimation

The input specification for Algorithmic-Level power
estimation is typically an executable specification in terms
of a programming or System-Level design language, e.g. C
or SystemC. It is hence straightforward to estimate the
activity of the algorithm by executing the algorithm and
sampling the activity of the variables and operations of the
algorithm.

This process can be automated by an automatic
instrumentation of the source code. This instrumentation
takes care of capturing the data streams during execution.

C. Power Models

The operation units used in the generated architecture are
pre-designed and power-characterized modules, like
multipliers, memories, adders, ALUs, comparators,
subtractors etc. In case of standard components these models
can be generated by simulation and power characterization
based on lower level power analysis tools [6] and
appropriate power models [7], [8]. These power models
should be parameterized with respect to structural aspects,
e.g. bit-width, and activity parameters. The
Hamming-Distance between consecutive input vectors has
proven to be a reliable parameter to capture the input activity
for such modules. Alternatively higher order functions of the
switching probability distribution of input signals, e.g.
momentums have been applied as parameters of high-level
power models for macro modules [17].

The interconnect power depends on the topology of
individual wires and their activity. Hence power models for
interconnect are parameterized by the wire length and the
signal activity. These models need to be calibrated with
respect to the placement and routing tools used as well as
with the process technology. Such empirical models can
include estimators for the wire topology and the number of
vias [18].

D. Power Estimator

It is the task of the power estimator to provide a
computational framework and user interface, which
integrates the techniques presented above into an EDA tool.

In particular the Power Estimator has to provide a
language front-end which allows reading algorithmic
specifications in a suitable language. C is a commonly used
language for high-level specifications. SystemC is gaining
momentum for the specification of concurrent algorithms
and system architectures. In the example tool-structure
shown in Fig. 4 the front-end includes a language parser
which extracts the CDFG of the algorithm and automatically
instruments the source code. The System-level designer can
then execute the instrumented source code with application
stimuli or other representative testbenches. During execution

the values of the variables and the input and output vectors
of operations are captured in an activity file. This activity
can be attributed to the respective resources of the datapath
and interconnect for later power calculation.

The top right hand part of Fig. 4 shows the architecture
estimation. It is key that the estimated architecture is
optimized for low power. Hence it needs to construct a
datapath and respective controller that minimizes the
switching activity. As described above, iterative optimization
techniques have to be applied to generate a power efficient
resource allocation, schedule, binding and floorplanning.
This iterative procedure requires a feed-back from
intermediate power estimates of the temporary solutions as
indicated in Fig. 4.

Once a stable solution has been found, its power
consumption can be presented to the designer in various
views to give him a fast feed-back on the ramifications of
design decisions.

Fig. 4: Example Tool Structure of an Algorithmic-level

Power Estimator

The accuracy of the power analysis depends on how well

the assumed architecture matches the final architecture. This
final architecture is subject to many parameters, e.g. the
design style specific architecture templates, which are the
main differentiating factors in times of fabless
semiconductor vendors, or the tool chain applied at the later
phases of the design process (RT-level synthesis,
floorplanning, routing, clock tree generation). Hence an
architecture estimator should either consider the design flow
and style applied to the real design, or generate an abstract
architecture of such high quality that it can be implemented
without further global changes, however, without limiting
local optimizations. In Fig. 4 the architecture output contains
such a description of the architecture.

IV Tool Example

In this section we will explain how the System-level

designer can utilize such early estimations. Most of the
above mentioned techniques have been integrated into the

ORINOCO 1 tool suite [19], which we use here for
demonstration purpose.

The ORINOCO tool suite consists of two characterization
tools, which generate the power models in the component
library, and the power estimator ORINOCO DALE. The tool
suite implements the tool structure as depicted in Fig. 4.

Fig. 5 shows the top-level hierarchy browser of the tool
after estimating the power consumption of a Vocoder design.

Fig. 5: Design Hierarchy of Vocoder Design

After power estimation it is easy to identify the

computational kernels and hot spots of the design. The
designer can now perform an in-depth analysis of the
power breakdown of the most power consuming processes in
the design. Fig. 6 shows an example of such a detailed
power view. For each process the power is broken down
with respect to the sources of the power consumption: Clock,
Interconnect, Controller, Functional Units, Registers,
Memories.

Additional views show e.g. the schedule, the memory
accesses (Fig. 7) or the floorplan of the design. The memory
access traces are of particular help when optimizing the

1 Prototypes of the ORINOCO tools have been developed under
partial funding of the Commission of the European Union within
the fourth and fifth research framework as part of the research
projects PEOPLE and POET. ORINOCO is now available as
product from a commercial EDA vendor.

Testbench Algorithmic
Specification
(C, SystemC)

Source-code
analysis &

instrumentation

Instr. source

Program
execution

CDFG

Activity

Scheduling,
allocation,
binding,

floorplaning,
clocktree gen.

Architecture

Power reports

Power calculation

Constraints

Component
Library

Architecture
reports

memory usage and architecture of the system, which often is
the main cause of power consumption.

Fig. 6: Power Breakdown View

Fig. 7: Memory Access Traces

V Conclusions
With this contribution we have tried to motivate a shift in

design effort towards the System-level in order to avoid
unnecessary design iterations during later phases of the
design. A small investment in design resources and a shift of
responsibilities also for non-functional properties towards
this phase will significantly reduce the design time and cost
at the later design stages and in addition result in superior
system architectures.

An early analysis and optimization of the algorithms to be
implemented and an exploration of design alternatives
requires a design technology, which enables the designer to
evaluate the ramifications of high-level design decisions to
the lower levels before refining the design down to these
levels. It can be enabled by decision support and design
tools, which predict physical properties of the design to be
implemented at the earliest possible instant and give
guidelines for the architectural designer.

We have illustrated this approach with a System-level
design methodology for low power. The necessary steps for
such an early estimation have been analyzed and
requirements derived. A tool structure for an
Algorithmic-level power estimation tool has been developed
and use cases have been shown based on a commercial
implementation of such a tool, which is the product version
of a prototype having previously been developed as part of a
European collaborative research project.

A more concise introduction into System-level power
analysis and estimation can be found in [20].

References
[1] Jones, H., H., “Analysis of the Relationship between EDA
Expenditures and Competitive Positioning of IC Vendors,” IDS,
2002.
[2] Smith, G., “ASIC Design Times Spiral out of Control”, Gartner
Dataquest, 2002.
[3] Sarker, B., Nebel, W., and Schulte, M., Low Power
Optimization Techniques in Overlap Add Algorithmus, in Proc. Int.
Conf. on Computer, Communication and Control Technologies:
CCCT´03, Orlando, July, August, 2003.
[4] Stammermann, A., Kruse, L., Nebel, W., Pratsch, A., Schmidt,
E., Schulte, M., and Schulz, A., System Level Optimization and
Design Space Exploration for Low Power, in Proc. Int. Symposium
on System Synthesis, Montreal, September, 2001.
[5] Mehra, R., and Rabaey, J., Behavioral Level Power Estimation
and Exploration, in Proc. First Int. Workshop on Low Power
Design, Napa Valley, April, 1994.
[6] http://www.bulldast.com/powerchecker.html.
[7] Von Cölln, G., Kruse, L., Schmidt, E., Stammermann, A., and
Nebel, W., Power Macro-Modelling for Firm-Macros, in Proc.
PATMOS, Göttingen, September, 2000.
[8] Schmidt, E., von Cölln, G., Kruse, L., Theeuwen, F., and Nebel,
W., Automatic Nonlinear Memory Power Modelling, in Proc.
Design, Automation and Test in Europe (DATE), Munich, March,
2001.
[9] Girczyc, E.F., and Knight, J.P., An ADA to Standard Cell
Hardware Compiler Based on Graph Grammers and Scheduling, in
Proc. IEEE Int. Conf. on Computer Design, October, 1984.
[10] Raghunathan, A., and Jha, N.K., Behavioral Synthesis for Low
Power, in Proc. IEEE Int. Conf. on Computer Design, October,
1994.
[11] Zhong, L., and Jha, N.K., Interconnect-aware High-level
Synthesis for Low Power, in Proc. Conference on Computer Aided
Design, San Jose, November, 2002.
[12] Stammermann, A., Helms, D., Schulte, M., Schulz, A., and
Nebel, W., Binding, Allocation and Floorplanning in Low Power
High-Level Synthesis, in Proc. ACM/IEEE Int. Conference on
Computer Aided Design, San Jose, November 2003.
[13] Prabhakaran, P, Banerjee, P., Crenshaw, J., and Sarrafzadeh,
M., Simultaneous Scheduling, Binding and Floorplanning for
Interconnect Power Optimization, in Proc. VLSI Design, Goa,
January, 1999.
[14] Musoll, E. and Cortadella, J., Scheduling and Resource
Binding for Low Power, in Proc. Int. Symposium on System
Synthesis, Cannes, September, 1995.
[15] Khouri, K.S., Lakshminarayana, G., and Jha, N.K., Fast
High-level Power Estimation for Control-flow Intensive Designs,
in Proc. International Symposium on Low Power Electronics and
Design, Monterey, August, 1998.
[16] Kruse, L., Schmidt, E., Jochens, G., Stammermann, A., Schulz,
A., Macii, E., and Nebel, W., Estimation of Lower and Upper
Bounds on the Power Consumption from Scheduled Data Flow
Graphs, IEEE Trans. On Very Large Scale Integration (VLSI)
Systems, Vol. 9, No. 1, February, 2001.
[17] GarciaOrtiz, A., Kabulepa, L., Murgan, T., Glesner, M.,
Moment Based Power Estimation in Very Deep Submicron
Technologies, in Proc. ACM/IEEE Int. Conf Conference on
Computer Aided Design, San Jose, November 2003.
[18] Stammermann, A., Helms, D., Schulte, M., and Nebel, W.,
Interconnect Driven Low Power High-Level Synthesis, in Proc.
PATMOS, Torino, September, 2003.
[19] www.chipvision.com
[20] Nebel, W., Helms, D., High-Level Power Estimation and
Analysis, to appear in Christian Piguet (ed.), Low Power
Electronics Design, CRC-Press, 2004

	Main
	ASP-DAC04
	Front Matter
	Table of Contents
	Author Index

