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ABSTRACT
Mind-boggling complexity of EDA tools necessitates reuse
of intellectual property in any large-scale commercial or aca-
demic operation. However, due to the nature of software,
a tool componentremains an ill-defined concept, in con-
trast to ahardware component(core) with its formally spe-
cified functions and interfaces. Furthermore, EDA tasks of-
ten evolve rapidly to fit new manufacturing contexts or new
design approaches created by circuit designers; this leads
to moving targets for CAD software developers. Yet, it is
uneconomical to write off tool reuse as simply an endemic
“software problem”. Our main message is that CAD tools
should be planned and designed in terms of reusable com-
ponents and glue code. This implies that industrial and aca-
demic research should focus on (1) formulating practical
tool components in terms of common interfaces, (2) im-
plementing such components, and (3) performing detailed
evaluations of such components. While this is reminiscent
of hardware reuse, most existing EDA tools are designed as
stand-alone programs and interface through files.

1. INTRODUCTION
The well-documenteddesign productivity gapestablishes,
through historical data, that performance of electronic de-
sign automation (EDA) tools lags behind the capabilities
of silicon. Depending on the market segment and devel-
opment strategy, this mismatch can lead to ever-growing de-
sign teams and unsatisfiable human resource demands, soar-
ing software costs and ever-steeper learning curves, slipped
tape-out schedules and missed yield/performance targets -
all contributing to loss of revenue. The design productivity
gap can be attributed to the sheer complexity of EDA tasks
with respect to both software integration and computational
effort. Thus duplication of development, testing or evalua-
tion effort carries a heavy price tag in terms of human and
financial resources. Reuse of intellectual property becomes
an absolute requirement for any large-scale operation.

A related concept in software engineering is that of asoft-
ware component, and it is natural to specialize this concept
to EDA tools. Unfortunately, the concept of atool com-
ponent is less well-defined than that of ahardware com-
ponent(core), with its formally specified functions and in-
terfaces. While this partly due to the nature of software,
writing off tool reuse as a “software problem” would be a
mistake. EDA tools must be frequently upgraded to address
new manufacturing contexts (e.g., high process variability
in subwavelength optical lithography) or new demands set
by circuit designers. Such upgrades may involve changes
to the interface and even the expectations for what the com-
ponent does. They are often driven by expert users: many
features in commercial EDA products are prototyped and/or
suggested by circuit designers during the course of learning,
configuring and monitoring EDA software. Also, the best
designers are often those who are well-versed in CAD algo-
rithms, and the best CAD engineers have designed chips.

In this paper, we focus on theinteroperability of dynam-
ically evolving CAD tools. Our main suggestion is that
interoperability should be a planning consideration, rather
than an afterthought, in the software design process. We dis-
cuss recent experiences of interoperability and design with
tool components and conclude that CAD tools should be
planned and designed in terms of reusable components and
glue code. While it is hardly possible to suggest recipes
of strict guidelines for design with components, immedi-
ate implications are that industrial and academic research
should focus on (1) formulating practical tool components
in terms of common interfaces, (2) implementing such com-
ponents, and (3) performing detailed evaluations of such
components. While this is reminiscent of hardware reuse,
most existing EDA tools have been designed as standalone
programs, and presently interface with other tools through
files. We suggest that old tools bere-factored into new tools
(via extraction of maximally generic, high-performance func-
tional components) rather thanconnected with new databases
through API layers or design exchange formats (via parsers).
Given the complexity of EDA software and the rapid evo-
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lution of design problems, there is a fundamental danger
of misinterpreting design features, overlooking hidden as-
sumptions, and hitting unexpected incompatibilities. These
pitfalls only reinforce the need for well-tested, widely used
high-performance components.

The remainder of this paper is organized as follows. In Sec-
tion 2 we discuss various levels of CAD tool interoperabil-
ity, mostly in an academic context that is distinguished by
vendor-neutrality, limited development resources and very
small average experience of circuit designers and CAD tool
developers. Section 3 then provides two illustrations from
recent experiences, namely, an example of loose interoper-
ability and a sample academic open-source project. In Sec-
tion 4 we formulate what we see as current challenges to in-
teroperability and CAD IP reuse. Conclusions and on-going
work are given in Section 5.

2. LEVELS OF INTEROPERABILITY
Inter-tool communication through design exchange files is
very common and has obvious advantages over other meth-
ods. It is most straightforward, can be learned by example
and supports regression testing well. One can easily cap-
ture intermediate results for sanity-checking or archival pur-
poses. File-based communication supports software mod-
ularity since communicating tools do not need to be con-
nected explicitly; in theory, they can be written in different
languages and run on different platforms. The main per-
ceived drawback of file-based communication is its speed.

Alternatives to file-based inter-tool communication rely on
in-memory data structures, often object-oriented databases.
This avoids the overhead of serializing and then parsing de-
sign information, and hence requires less runtime and disk
space. When small circuits are designed on workstations
with large and fast disks, these advantages may be negligi-
ble. At the other extreme, the savings from unified object-
oriented databases may be limited due to asymptotic com-
putational complexity. We observe that serialization and
context-insensitive parsing of VLSI design data is typically
feasible in time linear in database size (bytes). However,
most design steps automated by EDA software typically take
superlinear time in terms of database size. Therefore, if
parsers and converters are implemented well and if EDA
tools do not finish prematurely, communication through in-
memory data structures will not noticeably accelerate the
overall design process.1 We expect that such asymptotic ar-
guments are going to gain significance and overcome lesser
trends with further growth of integrated circuits.

1The cost of large and fast disks has decreased to the point
where it is negligible compared with the salaries of circuit
designers and CAD engineers - or even the support costs
of graduate students. Many important operations such as
archiving, check-pointing and error recovery require seri-
alization and parsing, thus making in-memory communica-
tion irrelevant.

Despite the above observations, our actual belief is that in-
memory communication has marked advantages over file-
based communication. Significant time-sinks and hidden
costs of file-based communication are seen in the integration
failures and various overheads that are associated with even
milder inconsistencies of design exchange formats. Given
the passage of years, thousands of users, and hundreds of
flows and companies, the flexibility of file-based commu-
nication breeds incompatible format versions, parsers and
file writers. For example, Cadence’s LEF/DEF parsers tol-
erate a stunning number of deviations from the official Ca-
dence LEF/DEF standard, e.g., (i) DEF keywords used as
names for design objects, or (ii) design object names start-
ing with digits rather than letter characters. Official format
descriptions may have ambiguities that different parsers and
file writers resolve differently (treatments of escaped names
in many formats, or the various subversions of the GDSII
Stream format, are classic examples). Indeed, it is not un-
common to see bizarre utilities such as “Verilog to Verilog
translation” in any multi-company or multi-tool design flow.
Anecdotal evidence indicates that such mismatches become
noticeable in large-scale EDA tool development and may, in
principle, lead to costly high-profile failures of the miles-
versus-kilometers variety. While in-memory communica-
tion retains many of these drawbacks, it leaves significantly
less freedom of interpretation and typically implies some
kind of executable infrastructure that can verify or at least
sanity-check the inter-tool communication process.

Importantly, in-memory communicationdoes notrequire ac-
cess to source code: it requires only that an API be docu-
mented. This requirement is comparable to having a good
description of a design exchange format, but typically offers
more to the user. API-based integration can be performed
using software libraries, either static or shared (known as.a
and.so files on Unix/Linux and.dll files on Windows).
We believe that library-based integration of EDA tools is
currently underexplored, despite the fact that linking to li-
braries has been very well-supported on all major operating
systems for many years.2 Finally, depending on the context,
a possible boon to the use of in-memory communication is
the availability of a high-quality design database that not
only serves as a repository, but also provides basic services
with respect to the design data stored in it. Such a database –
OpenAccess [16] – has been recently proposed by SI2 and is
currently endorsed by a variety of companies ranging from
Cadence to IBM. In fact, its source code is available through
http://www.si2.org/openaccess . This may be
useful if one needs to disambiguate the semantics of pub-
lished APIs or suggest changes to the developers of Open
Access.

2Of course, file-based communication does not require
explicit software integration (linking to libraries or re-
compilation) and is therefore easier. Thus, for highly ex-
perimental projects where integration with existing design
flows is known to be a non-problem, we see no reasons to
avoid simple ad-hoc file-based communication.



3. RECENT EXPERIENCES
Proposed approaches to interoperability must, to be viable,
acknowledge recent related practices. We now review recent
experiences with (i) loose integration between tools devel-
oped in many different research groups, and (ii) tighter in-
memory integration in an academic open-source project.

3.1 Loose Interoperability:
The GSRC Bookshelf

The MARCO Gigascale Silicon Research Center (GSRC)
[13] has for several years sought to enable CAD-IP reuse via
the GSRC Bookshelf of Fundamental CAD Algorithms [9]
(http://www.gigascale.org/bookshelf/ ). 3

The Bookshelf’s original motivation was the “designtech-
nologyproductivity gap” – the lack of reusable components
that enable rapid development and deployment new EDA
capability – which contributes to the well-known “design
productivity gap” cited above. Other motivations included
recent experiences from such areas as electronic publish-
ing, software repositories, algorithm evaluation methodolo-
gies [3, 5, 6], benchmarking [4, 1, 10], software engineer-
ing, combinatorial optimization [19], and open-source and
free-software movements [18]. Original aims of the project
included (i) establishment of a newelectronic mediumori-
ented toward implementations of fundamental VLSI CAD
algorithms and their evaluation, (ii) common open standards
for data representations and evaluation methodologies, and
even (iii) community-wide culture change that credits leading-
edge empirical results on par with theoretical results.

Today, the Bookshelf embodies a “publication medium” for
CAD-IP that is focused on algorithm implementations, eval-
uation and related information. This medium is akin to an
electronic publication, but also enjoys features of a software
repository. In particular, its structure and processes connote
“high-quality, reviewed, archival, citable and relatively hard
to change once published”, in concert with a “preview” (or

3Caldwell et al. [9] note the following components of CAD-
IP. (i) Data models that provide consistent semantics and
structuring of data along different steps of design flows (ide-
ally with an accompanying canonical API). (ii) Mathemat-
ical problem formulations for optimization and constraint
satisfaction that isolate the fundamental difficulties in par-
ticular design tasks, and that encourage reuse of solvers.
(iii) Use models and context descriptions for problem for-
mulations. (iv) Testcases with corresponding high-quality
solutions – both for individual problem formulations and
integrated tool flows. (v) Algorithm descriptions and theo-
retical analyses. (vi) Executable implementations, not only
for solvers (algorithms) but also for parsers and convert-
ers of interchange formats, legality checkers and cost func-
tion evaluators of solutions, etc. (vii) Leading-edge perfor-
mance results, as well as standard comparison and evalu-
ation methodologies for algorithms. These are needed to
ensure that newly proposed methods are indeed improve-
ments over previous methods. (viii) Software design and
implementation methodologies. (ix) Source code of public-
domain implementations.

“contrib”) section where new contributions can be made vis-
ible by authors at any time and stay visible regardless of
editorial decisions. The Bookshelf stresses the value of ad-
vances in implementations, not just the value of underlying
theoretical innovations.

As the Bookshelf has become more established, several im-
pacts have emerged. Specifically, it is: (i) a means of col-
lecting and disseminating leading-edge knowledge on opti-
mization algorithms; (ii) a usage-centric “community mem-
ory”; (iii) an infrastructure for reuse of CAD-IP that en-
courages uniform look-and-feel of contributions within each
type of CAD-IP as well as interfaces, documentation and
common testing/evaluation methods; (iv) a means of lower-
ing barriers to entry (for all users, whether in academia or
startups) caused by implementation complexity in mature
CAD domains such as placement or logic synthesis; and (v)
a means of accelerating the evolution and maturation of par-
ticular CAD domains.

In brief, the Bookshelf structure is as follows.Slotsin the
Bookshelf represent individual areas of VLSI CAD, such
as graph coloring, Boolean satisfiability, technology map-
ping, hypergraph partitioning, block shaping and packing,
global routing, scheduling, etc. Individual submissions are
represented byentriesembedded in slots. The main types
of entries by function are:

� generic problems (standard file formats, standard in-
memory representations (classes) to be passed to opti-
mization engines, integrated I/O including parsers of
standard formats, standard benchmark instances, and
reasonably good or interesting solutions),

� reference solver implementations (usable in success-
ful applications, comparable to best-known solvers,
and supportive of modifications and performance anal-
ysis),

� independent evaluators, and

� heuristic evaluation and comparison methodologies (de-
scriptions of testing procedures and best known re-
sults, precepts for experimental evaluation of meta-
heuristics, and references to relevant optimizers and
benchmarks).

3.2 An Academic Open-Source Project
We now give an overview of a sample subject of EDA in-
tegration – an open-source academic project focused on cir-
cuit partitioning and layout: UCLA Physical Design Tools
(PDTools) [17]. Most of the original PDTools development
work was done by Andrew Caldwell and Igor Markov at
UCLA, under the guidance of Professor Andrew Kahng.
The publicly available software distribution, now maintained
at the University of Michigan in Professor Markov’s group,
includes such tools as the MLPart circuit partitioner and the



large-scale circuit placer Capo [8]. The internal architec-
ture of PDTools is highly modular; it is based on funda-
mental data structures and a number of interoperable solvers
that operate on those data structures. While this develop-
ment style at times requires additional programming effort,
it simplifies debugging and performance optimization in the
long run: bottleneck analysis is especially improved since
the software architecture allows quick zooming in on buggy
components and performance bottlenecks.

UCLA PDTools are distributed under the MIT open-source
license, which requires neither fee nor author notification
for any uses of the software, but stipulates only that the li-
cense be redistributed with all derivatives. The tools have
LEF/DEF interface and run on Linux, Solaris and Windows.
Historically, a serious effort was made to provide robust in-
stallation scripts, support revision control and ensure code
clarity, but recent improvements and ongoing maintenance
mostly focus on the quality of results. UCLA PD tools
are available online from the MARCO GSRC Bookshelf gi-
gascale.org, openeda.org, opencollector.org, etc. Academic
users of PD Tools work at CMU, Georgia Tech, UCLA,
UCSD, UCSB, UCSD, UMinn, UMich, etc. Known indus-
trial users come from IBM, Intel, Cadence, Philips, Synplic-
ity, AmmoCore and other companies.

To “guess-timate” potential needs for integration, we pro-
vide additional details on typical uses known to us. Some
academic users work on competing tools and are interested
in performance comparisons [15, 21, 20] In particular, home-
grown sub-solvers can be plugged in place of existing soft-
ware components and evaluated in a broader context. A re-
lated use model seeks improvement through pre- and post-
processing [14]. For more comprehensive and realistic eval-
uation, individual tools are often embedded into larger de-
sign flows [2]. Some academic researchers modified UCLA
PD Tools to work in contexts not originally considered by
authors, notably 2.5-dimensional integration on chip [11].

Use models in the industry are somewhat different. It is
typical to use source code for prototyping commercial tools
(e.g., Cadence) and for educating industrial developers in
new algorithms (IBM, Intel, Synplicity). Modularity greatly
helps in this context because it simplifies performance eval-
uations and improves the understanding of source code. More
research-like uses include experiments with novel Physical
Design flows such as RTL-based placement before synthesis
to increase the accuracy of wireload estimates. Executables
are often used to benchmark and validate internal tools (In-
tel, IBM) and sometimes as back-up options in commercial
design flows (IBM, Synplicity).

While the integration of UCLA PD tools with other soft-
ware is not a solved problem, we would also like to mention
several other lessons we learned from this project. First, we
confirmed through our experience that incorporating modu-

larity and interoperability into EDA software by design pays
off: it leads to more robust and higher-quality software that
is easier to tune, retarget, optimize and integrate with other
tools. Second, modular and interoperable software improves
user learning curve and, in fact, can be used as an aid in
teaching sophisticated EDA algorithms. Third, modular and
interoperable software is convenient in terms of distributed
development because it encourages new components to be
created and tested independently, followed by an integration
step. Component-based development gives authors a sense
of accomplishment. It also makes it easier for management
to plan and evaluate accomplishments. Finally, we note that
while these suggestions are fairly obvious, a typical devel-
opment approach for a new tool exclusively focuses on a
working prototype by all costs, and attempts to re-factor the
prototype into a functional EDA tool. We suggest that this
mentality be changed.

4. CURRENT CHALLENGES
With many academic research groups working today on com-
petitive EDA tools, evaluation methodologies and embed-
dings into design flows become more important, leading to
interoperability concerns. We note that file-based communi-
cation between EDA tools is acceptable in a typical research
environment because the circuits designed are smaller and
researchers do not typically race to meet stringent tape-out
requirements. Researchers can also factor I/O time out of
their experimental evaluation. Moreover, having human-
readable snapshots from tool flows is convenient for de-
bugging as well as for sanity-checking of individual tools
and tool flows. Nevertheless, there are also strong argu-
ments for in-memory integration of academic tools. They
revolve around the benefits provided by high-quality open
databases backed by the industry, such as OpenAccess v2.0
whose source code is publicly available as of January 2003
[16]. The promise of such databases, bundled with vari-
ous parsers, is to provide a standard design repository with
standard semantics and basic services. This could reduce
start-up costs for tool developers, make tool comparisons
more straightforward, and dramatically simplify the adop-
tion of academic research outputs in industry. The main
challenge to the adoption of standard design repositories
such as OpenAccess 2.0 is the cost-benefit analysis.Wide
adoption can only be successful if users can offset learning
curves by benefits such as the availability of realistic design
examples and, most importantly, up-to-date industrial de-
sign flows.In other words, new design repositories should
come with detailed illustrations of best practices such that
researchers can insert their point tools into known-good de-
sign flows and evaluate the overall performance on represen-
tative benchmarks. Studies based on “best practices” would
leverage interoperability provided by new design reposito-
ries and associated services.

Regardless of the type of integration, serious design technol-
ogy bottlenecks may be associated with glue code such as



file converters, API translation layers, control code, PERL
scripts, etc. We believe that these bottlenecks can be ad-
dressed with additional degrees of automation that, unlike
a typical PERL script, would support high-level integration
concepts like “run until no improvement”. Such automa-
tion would require an abstract and system-independent rep-
resentation of design flows to ensure portability. An infras-
tructure for integration could automate software installation
from source code, scheduling and launching of tool runs,
followed by reporting of vital statistics in automatically for-
matted tables. As an end result, design flow prototyping and
evaluation would be considerably simplified by leveraging
interoperability of plug-and-play tool components.

Another challenge must be addressed simultaneously with
the ones described above is the development of component-
based algorithms and design frameworks, both in general
terms and implemented in terms of common infrastructure.
Such contributions should accelerate fundamental research
in EDA algorithms and help its adoption in the industry. To
this end, [7] proposes a component-based interpretation of
the 20-year old Fiduccia-Mattheyses algorithm and shows
that detailed experiments enabled by it expose serious im-
plementation pitfalls. Importantly, the implementation of
the Fiduccia-Mattheyses heuristic reported in [7] and avail-
able in the UCLA PDtools [17] is among the strongest re-
ported to date. In terms of frameworks, a recent paper from
IBM [12] proposes to view, implement and evaluate algo-
rithms for placement and synthesis as transformations that
can be chained in various ways. We point out that such
a framework, besides looking “clean” and “right” from an
academic viewpoint, would be very convenient to imple-
ment and evaluate as it would leverage common databases
and other infrastructure. It should also be easy to parallelize
the implementation of such a framework among multiple de-
velopers.

5. CONCLUSIONS
In this work we discussed interoperability requirements for
EDA software from an academic point of view. In particular,
we identified important drivers behind the push for interop-
erability as well as key obstacles. We argued that while spe-
cific, highly experimental research projects may, in princi-
ple, not need interoperability with existing tools, more near-
term academic research would greatly benefit from such in-
teroperability. A survey of recent experiences with inte-
gration and distributed development shows that so far inter-
operability has been achieved through file-based interfaces.
However, such interfaces are both limited and error-prone.
Among the main challenges for future interoperability is to
develop and ensure wide adoption of common infrastruc-
tures enabling tighter integration. Importantly, such soft-
ware engineering efforts must be supported by the develop-
ment of new component-based algorithms as well as the re-
interpretation of old algorithms in modular terms. Finally,
we believe that the EDA development process must undergo

a culture change and adopt component-based approaches to
design, implementation, evaluation, maintenance, integra-
tion and evolution of EDA tools. In particular, it is impor-
tant to develop and catalogize high-quality open-source tool
components that can be used in education and research.
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