
Static Pin Mapping and SOC Test Scheduling for Cores with Multiple Test Sets

Yu Huang1       Wu-Tung Cheng1       Chien-Chung Tsai1       Nilanjan Mukherjee1       Sudhakar M. Reddy2

1 Mentor Graphics Corporation, 8005 S.W. Boeckman Rd., Wilsonville, OR 97070
2 Department of Electrical & Computer Engineering, University of Iowa, Iowa City, IA 52242

Abstract
An algorithm for mapping core

terminals to System-On-a-Chip (SOC) I/O pins
and scheduling tests in order to achieve cost-
efficient concurrent test for core-based designs is
presented in this paper. In this work "static" pin
mapping and test scheduling for concurrent
testing are studied for the case of multiple test
sets for each core.  The problem is formulated as
a constrained two-dimensional bin-packing
problem.  A heuristic algorithm is then proposed
to determine a solution.  The objectives driving
this solution are geared towards reducing the
total test application time of SOC and satisfying
the test constraints such as limited number of
SOC pins and maximum peak power dissipation
specified by core integrators.  Experimental
results demonstrate the effectiveness of the
proposed method.

1 Introduction
Core-based SOC design strategy is

becoming a popular design methodology.  The
Semiconductor Industry Association’s (SIA)
Technology Roadmap [1] predicts the percentage
of reusable cores in SOC to be rising to 80% in
2006, thereby resulting in a 50% reduction of
time-to-market.  However, conflicting design
objectives such as increasing complexity and
reduced design cycle lengths have made the test
application time a major bottleneck towards
achieving aggressive marketing requirements.
Concurrent SOC testing (i.e. testing more than
one core simultaneously) is becoming an
attractive solution to reduce the total test
application time under such circumstances.  In
this paper, a solution addressing the pin mapping
and test scheduling problems in concurrent SOC
testing is presented.

The paper is organized in the following
manner.  In Section 2, related work in the SOC
test scheduling and pin mapping is reviewed.  In
Section 3, formulation of the pin mapping and
test scheduling problem is presented, and in
Section 4, a heuristic algorithm to achieve
optimized concurrent SOC test is proposed.
Experimental results are presented in Section 5,
followed by the conclusions section.

2 Review of Related Work
The complexity of a SOC makes test a

much more difficult problem.  Many new DFT
techniques have been exploited to address this
problem. The SOC composite test requires
effective test scheduling given a number of chip
level requirements such as total test time, power
dissipation, pin limitations etc.  SOC test should
be created to satisfy these scheduling constraints.
Previous research in the area is discussed in the
following paragraphs.

Chakrabarty [2] formulated the SOC
test scheduling problem as an m-processor open
shop scheduling problem, and solved it by using
a Mixed-Integer Linear Programming (MILP)
model in order to minimize the test time. This
formulation is applicable to the test bus-based
architectures, and assumes each core can only be
assigned to one bus.  Ravikumar et al. [3]
proposed a method to solve SOC test scheduling
problem under the constraint of power
consumption.  They assumed that BIST is the
only methodology for testing individual cores.

Huang et al. [4] proposed using bin-
packing to allocate test resources and schedule
test sets in order to achieve optimal concurrent
SOC test.  In [4] it was assumed that each core
has a single test set.  The objective was to
minimize the test application time for different
Test Access Mechanism under the constraint of
peak power consumption.

Compared with the above-mentioned
methods, the novelty of the method proposed in
this paper includes the considerations of the
following:
(1) There may be more than one test set for
each core.  It may include scan structural testing,
functional testing, on-chip memory testing, at-
speed testing, Logic BIST, etc. [5]. In [2], only
two sets of test (one external test set and one
BIST session ) are considered for each core.  In
this paper, however, the number of test sets is
not limited.
(2) Each test set of a core may only be
applied through a subset of the set of pins on the
core.  For example, the functional test will not
use scan pins, and a BIST session can be
controlled by a few pins such as  “Reset”, “Run”,
“Pass_Fail” signals etc. that are specific to BIST.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0-7695-1881-8/03 $17.00  2003 IEEE 



The previous work assume that each external test
set is applied through all core terminals and the
SOC pins to access BIST controllers are ignored.
This is another practical issue considered in this
paper.
(3) For the case of single test set for each
core, optimum test scheduling and mapping of
pins of cores to the pins of SOC is to minimize
the time to test all cores by mapping core pins
onto SOC pins and determining the start of the
test of each core.  For the case of multiple test
sets for cores, one needs to determine the
optimum time to start each test set while taking
into consideration that some core pins are used in
multiple test sets for the core.

3 Problem Formulation
Problem: Given N SOC pins and K
cores, for each core Ci (0<i≤K), there are Si test
sets.  A set of 4-tuples {(Mi,1

in, Mi,1
out, Ti,1, Pi,1),

(Mi,2
in, Mi,2

out, Ti,2, Pi,2)…… (Mi,Si
in, Mi,Si

out, Ti,Si,
Pi,Si)} is created.  Each 4-tuple corresponds to a
test set of Ci.  Mi,j

in is the number of inputs of Ci,

which are to be mapped to SOC pins when
applying jth test set to Ci.  Mi,j

out is the number of
outputs of Ci, which are to be mapped to SOC
pins when applying jth test set to Ci. Ti,j is the test
application time of the jth test set for Ci, Pi,j is the
power consumption when testing Ci using jth test
set.  Ω is the maximum peak power that cannot
be exceeded.

The objective is to determine a static
mapping (defined below) from I/Os of each core
Ci to SOC I/Os and a test schedule for each test
set j of core Ci.  The realization of the concurrent
SOC test needs to satisfy the following
conditions.
(1) Minimize total test application time.
(2) At any given time t, a set of cores (Ct1

Ct2
…Ctr  

) can be tested simultaneously. Let the

test set applied to core Cti
 at time t be Tti ,jt. Then

the total power consumption should satisfy the

following constraint: Ω<∑
=

 
1

,

r

i
jt tiP  .

By static mapping, it is implied, that once a pin
on a core is mapped to a SOC pin for applying a
test set, the mapping relation cannot be changed
when applying other test sets.  It is a practical
requirement from our customer based on the
consideration of reducing the number of MUXes
and routing area.
Claim: The above problem is NP-Hard.
Proof:    Restrict the above problem
such that for each core only one test set is
required.  This is the special case addressed

previously in [4], and was shown to be NP-hard
problem.  Therefore the above problem is also a
NP-hard problem.

4 Proposed Heuristic Algorithm
4.1          A core example

We first give an example to illustrate
several concepts used in our method.  Assume
that all SOC pins can be transformed to be bi-
directional.  This assumption is mostly true in an
industrial environment, as the requirement for all
SOC pins to be bi-directional adds trivial and
hence acceptable overhead to SOC design.
However, this assumption allows us to ignore the
distinction between input and output pins of
cores.  Let Mi,j

in+ Mi,j
out = Mi,j, be the total

number of pins to be mapped to SOC pins when
applying test set j to core Ci.  Each pin of core Ci

is to be mapped to a SOC pin during the
application of one or multiple test sets.  If a pin
on a core is not used for any test set, it is not
considered for mapping in this problem.  We
divide the set of pins of a core Ci into Wi disjoint
groups.  In group k there are Pi,k pins.  These pins
are used when applying a unique subset of the Si

test sets of core Ci.  For each core Ci we
construct a rectangular array Ri.  Ri has Si rows
with each row j having a height of Ti,j

corresponding to the test application time of the
jth test set to core Ci.  Ri has Wi columns.  The
width of the jth column is Pi,j , the number of
pins in the jth group of the Wi groups defined
above.  Thus each core is represented by a
rectangular array of Si rows and Wi columns
whose heights and widths, respectively, are equal
to the application time of different test sets and
the number of pins that are used in applying
unique subsets of the set of tests.

For example, let C1 be a core in a SOC
with 3 test sets. (i.e. S1=3).  The 1st test set needs
2000 clock cycles and the pins used when
applying the 1st test set are in the range [1,170].
(i.e. M1,1 = 170, T1,1 =2000). The 2nd test set
needs 1000 clock cycles and the pins used when
applying the 2nd test set are in the range [1,220]
(i.e. M1,2 = 220, T1,2 =1000). The 3rd test set
needs 800 clock cycles and uses pins in the range
[1,100] AND [171,220] (i.e. M1,3 = 100+50=150,
T1,3 =800).  Therefore the total number of pins on
the core C1 is 220.  These pins are divided into 3
(W1 =3) disjoint groups.  In group 1, there are
100 pins (P1,1 = 100) that are used when applying
test sets 1, 2 and 3. In group 2, there are 70 pins
(P1,2 = 70) that are used when applying test sets 1
and 2. In group 3, there are 50 pins (P1,3 = 50)
that are used when applying test sets 2 and 3.



The rectangular array R1 corresponding to core
C1 has 3 rows (S1=3), and 3 columns (W1 = 3),
and 7 sub-rectangles as shown in Figure 1.

Figure 1: A core example

Note that:
(1) Ri is composed of an array of sub
rectangular blocks Ci j k, if the jth row kth column
is not a blank area (i.e. the pins in kth column are
used when applying the jth test set).  The above
array may contain empty or blank spaces.
(2) In concurrent scheduling and pin
mapping, the rows of sub-rectangles can be
separated since it is not necessary to apply all the
test sets consecutively.  However, tests within
each test set of a core must be applied
consecutively.
(3) The order of the test sets applied for
each core can be changed if not specified by
users.  In this paper, the proposed algorithm will
determine the optimal order.  If the user specifies
the order, it could be easily added as a constraint,
which is not considered in this paper.  However,
when the order is changed the entire row of the
sub-rectangles is to change together.
(4) The order of columns can be changed
(this depends on the pins of the core mapped to
the SOC pins) and the columns can be separated.
However, when the order is changed or separated
the entire column of the sub-rectangles is to
change or separate together because we only
consider static mapping.
(5) The order of pins inside a column is not
important.

4.2          Algorithm Explained with an SOC
example

In order to give a general introduction
on how we solve the problem and clarify the
observations made above, we use an example
illustrated in Figure 2.  In this SOC example
there are two cores with a total of 420 pins and
the SOC has a total of 400 pins.

Pre-Processing: Construct the rectangular
arrays for each core as described above.  These
are shown in the Figure 2 for the example we are
considering.  Next construct an ordered list of
sub-rectangles.  The order of the list is
determined as follows.
(1) Sort all the sub-rectangles in the
descending order of the height of the rows
containing them, keeping all sub-rectangles in
the same row in the order they appear in the
correponding rectangular array.
(2) If two or more rows have the same
height, order the sub-rectangles in the
descending order of the total width of the sub-
rectangle in the row.
(3) Order the sub-rectangles within a row in
the descending order of the width of each sub-
rectangle.

For the example with 2 cores in Figure
2, the ordered list of sub-rectangles is L={C211,
C212, C111, C112, C121, C122, C123, C131, C133, C221}.

After the above pre-processing step,
what we need to do is to pack all sub-rectangles
Ci j k in a bin with fixed width (number of SOC
pins is fixed).  It can be formulated as a two-
dimensional bin-packing problem with several
additional constraints.  The original un-
constrained “best-fit” algorithm for solving two-
dimensional bin-packing problem [4] is briefly
reviewed below.

The “best-fit” algorithm is a level-based
packing algorithm.  First, all the rectangles are
put into a list and sorted in descending order of
their heights.  Second, rectangles are picked out
of the list in the order they are arranged and
placed in a bin with fixed width one after
another.  It is like building a book shelf level by
level with minimum height to hold all the books.
The height of each level is determined by the
first rectangle placed in the level, and it is placed
left-most at this level.  Next we attempt to place
the unplaced rectangles in the existing levels at
the left-most available positions.  A new level
will be added if a rectangle cannot be placed on
any existing level.  If a rectangle can be placed
on more than one level, the rectangle will be
placed in its “best-fit” level, which means the
unoccupied width at this level is minimum if the
rectangle is placed in this level.  The process
terminates when the list of rectangles is empty.
During the packing, the peak power constraint is
satisfied at all time.

The optimal test application time
schedule for an SOC can be obtained by using
the above “best-fit” method with modifications
to accommodate the following new constraints:



(1) If two sub-rectangles of a core are in the
same row before packing, they remain in the
same row after packing.
(2) If two sub-rectangles of a core are in the
same column before packing, they remain in the
same column after packing.

These constraints are satisfied in our
method by a mechanism called Reservation.

There are two kinds of reservations:
Row Reservation and Column Reservation:
(1) Row Reservation: If a sub-rectangle is
placed in a level, then all the other sub-rectangles
in the same row of the correponding core array
Ri, have to be placed in the same level.  A level
number is reserved for them.
(2) Column Reservation: If a sub-rectangle
is placed in a column, then all the other sub-
rectangles in the same column of the
correponding core array Ri, have to be placed in
that column but on different levels.  A set of pins
of the SOC are reserved for them.

Let Rowij represents the jth row of the
rectangular array Ri and Colij represents the jth
column of Ri.  | Rowij| is the width of the row
which is the number of pins used to apply the
corresponding test set.  It  is the total width of all
the sub-rectangles in the jth row of Ri.  In the
example shown in Figure 2.

Figure 2: A SOC example.

For Core 1, there are 3 Rows:
Row11 = {C111, C112}, |Row11| = 100+70 =170;
Row12 = {C121, C122, C123},
| Row12|=100+70+50=220;
Row13 = {C131, C133}, | Row13|= 100+50 =150;

For Core 1, there are 3 Columns:
Col11 = {C111, C121, C131}, Col12 ={C112, C122},
Col13={C123, C133}.

For Core 2, there are 2 Rows:
Row21 = {C211, C212}, | Row21| = 120+80 =200;
Row22 = {C221},  | Row22| = 120;

For Core 2, there are 2 Columns: Col21

= {C211, C221},  Col22 = {C212};
The difference between the modified

“best-fit” algorithm and the orginal “best-fit”
algorithm is as follows.

(1) Each time a sub-rectangle is placed, the
unplaced sub-rectangles in the same row or the
same column have to make reservations.  The
row reservation has to be maintained.  However,
the column reservation may be cancelled on
certain levels if its position is occupied by some
other sub-rectangles on those levels.  It is based
on “ first come first served” policy.
(2) When checking whether a sub-rectangle
could be placed on a certain level, it has to
consider the width of its row rather than the
width of the sub-rectangle only.
(3) When a sub-rectangle to be placed has a
reserved row it has to be placed on that row.  The
columns chosen to hold the sub-rectangle should
lead to minimum number of pins that have been
column reserved for other sub-rectangles.
(4) When a sub-rectangle to be placed has
reserved columns it has to be placed on these
columns.  The level chosen to hold the sub-
rectangle should lead to minimum number of
unused pins at this level.
(5) If a sub-rectangle is column reserved
first and later row reserved, its position is fixed.
It has to be packed at those columns on that
level, which is called position implication (Note
that, there is NO situation where a sub-block is
row reserved first, and it is column reserved
later.  This is because in the pre-processing
stage, the order of the list of sub-rectangles
guarantees that all the sub-rectangles in the same
row will be placed before processing sub-blocks
in another row).  In this case, we need to check
whether the position implication is valid or not.
If that position has already been occupied, we
need to undo the row reservation, and undo the
placement of the sub-block which leads to the
row reservation.  Then we have to search other
levels.  A new level has to be built if it fails for
all the existing levels.
(6) The height of each level is not
determined by the left-most sub-rectangle on this
level, but it is determined by the height of the
first sub-rectangle placed on this level.  The
order of sub-rectangles being processed may not
be always according to the order in the list L due
to position implication.

For the previous example given in
Figure 2, the procedure is illustrated below.
(1) Pack C211 on level = 0; mark Row-Reserved
for C212, mark Col-Reserved for C221.
(2) Pack C212 on level = 0;
(3) Pack C111 on level = 0; mark Row-Reserved
for C112, mark Col-Reserved for C121, C131.
(4) Pack C112 on level = 0; mark Col-Reserved
for C122.



(5) Next, C121 cannot be packed on level 0, Pack
C121 on level = 1, mark Row-Reserved for C122

and C123.  Perform Position-Implication: C122

has 2 marks (Col-Reserved and Row-
Reserved), so its position is fixed.  Pack C122 at
the reserved postion.
(6) Next Pack C123 on level = 1; mark Col-
Reserved for C133.
(7) Pack C131 on level = 2; mark Row-Reserved
for C133. Perform Position-Implication: C133

has 2 marks (Col-Reserved and Row-
Reserved), so its position is fixed.  Pack C133 at
the reserved postion.
(8) Pack C221 on level = 1, in the reserved area.

The final packing is illustrated in Figure 3.

Figure 3: Final Solution for the example

By packing the two cores together, we
can achieve concurrent core testing, and the total
test application time is 3000+1000+800 = 4800
cycles.  If the two cores are tested sequentially,
the test application time is 3800 + 3500 = 7300
cycles.

The reservation mechanism is used to
constrain some specific sub-rectangles to be
packed in required rows or columns.  The
proposed algorithm is called “constraint-driven
2-Dimensional Bin-Packing”.

5 Experimental Results
In order to evaluate the proposed

algorithm, we compare the test application time
for concurrent and sequential SOC test. There
are a total of 10 ITC’02 SOC benchmarks [7] at
the time this paper was written.  None of them
have multiple test sets for each core.  Therefore,
the algorithm is run on 10 hypothetical but
nontrivial SOCs. The algorithm was

implemented in C running on a SUNBlade1000
workstation.  The CPU time for each benchmark
is only in the order of seconds.  That’s why the
CPU time is not included in the tabulated results.

Table 1 shows the information on 10
cores.  We use 10 ITC’99 benchmarks as 10
hypothetical cores.  Each core has 3 test sets: full
scan structural test, functional test and BIST.
The test length and number of pins needed for
each test set are listed in Table 1.  The test length
for full scan structural test is obtained by running
a commercial ATPG tool.  The test length for
functional test was given in [6].  The BIST
application cycles are generated randomly.  Five
BIST controller pins are assumed for each core.
Table 2 shows the information on 10 SOCs.
Each of them is composed of some cores in
Table 1.  The cores may not be included in a
SOC or could be included multiple times as
indicated in Table 2. The total number of cores
in each SOC is given in the last column of Table
2. The power consumption of the cores are
unknown and hence ignored in the experiments.
However, power constraint can be
accommodated in the algorithm if known.

 The experimental results of applying
the proposed procedure are given in Table 3. We
assume that the SOC has 200 pins.  The ratio,
between the test application time when
concurrent SOC test achieved by the proposed
procedure and the test application time when
each core is tested sequentially, is given in Table
3.  From Table 3, it can be seen that the proposed
algorithm could, on average, save 78.9% SOC
test time. In order to compare with the
unconstrained 2-D bin-packing method in [4],
we make one large rectangle out of all sub-
rectangles that are on the same core, and pack
these rectangles based on the best-fit algorithm
[4].  The test cycles computed by the two
algorithms are given in Table 4.  From the
experimental results, it is obvious that we can
save 43.8% SOC test time on average compared
to the method proposed in [4].  This is because
the proposed method considers allocating test
resource and scheduling test based on individual
test set instead of all tests for a core.  The unused
test resource for one core when applying one test
set can be utilized by another core, which is not
feasible in [4].



Table 1: Information on cores
Structural Test Functional Test BISTBenchmarks

Test cycles # of pins used Test cycles # of pins used Test cycles # of pins used
B01 92 10 152 6 128 5
B02 66 8 42 4 64 5
B03 432 18 246 10 256 5
B04 1035 39 52 21 1024 5
B06 138 14 74 10 128 5
B07 609 29 168 11 512 5
B08 336 29 310 15 512 5
B09 177 24 236 4 256 5
B10 237 37 159 19 256 5
B11 636 145 542 131 1024 5

Table 2: Information on Randomly Created SOCs
Composition

of SOC
B01 B02 B03 B04 B06 B07 B08 B09 B10 B11 # of

cores
S1 0 0 1 1 1 0 1 0 1 0 5
S2 1 2 0 3 1 1 0 1 1 0 10
S3 3 1 2 0 2 2 1 3 0 1 15
S4 3 1 2 2 0 3 2 1 4 2 20
S5 2 1 4 3 4 3 2 1 5 0 25
S6 3 4 2 4 2 0 3 4 3 5 30
S7 5 2 4 3 5 4 1 2 4 5 35
S8 0 6 4 7 5 6 3 5 2 2 40
S9 6 5 3 3 4 5 6 1 4 8 45

S10 2 5 4 3 8 4 5 6 7 6 50

Table 3: Comparison of Concurrent SOC and Sequential SOC test.
SOC S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 Avg.

Ratio(%) 42.46 20.52 20.31 20.46 11.63 22.86 19.45 13.22 21.75 18.26 21.09

Table 4: Comparison of the Proposed SOC Scheduling and the Method in  [4].
SOC S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 Avg.

Test Cycles by
Proposed Alg. 2369 2236 2933 4857 3007 7616 7732 6204 11442 9448 5784
Test Cycles by

Alg. In [4] 2111 2763 4873 8215 5433 13305 14332 12673 20852 18344 10290

6 Conclusions
In this paper, an algorithm to schedule tests and map pins efficiently for achieving concurrent

SOC test under specific test constraints is presented.  The objective is to minimize the total test application
time for SOC, and consider multiple test sets for each core.  A heuristic algorithm is proposed to solve the
problem based on the constraint-driven 2-Dimensional Bin-Packing algorithm.  Experimental results show
that the proposed method is effective in reducing the total test application time for core-based design and is
better than a previous method in this field.

References
[1] Semiconductor Industry Association, The National Technology Roadmap for Semiconductors, Sematech, Inc. 1997.
[2] K. Chakrabarty, “Test Scheduling for Core-Based Systems Using Mixed-Integer Linear Programming,” pp.1163-
1174, IEEE TCAD, Vol. 19, Oct., 2000.
[3] C. P. Ravikumar, G. Chandra, and A. Verma, “Simultaneous Module Selection and Scheduling for Power-
Constrained Testing of Core Based Systems,” VLSI Design 2000.
[4] Y. Huang, W.-T. Cheng, C.-C. Tsai, N. Mukherjee, O. Samman, Z. Yahya, and S. M. Reddy, “Resource Allocation
and Test Scheduling for Concurrent Test of Core-Based SOC Design,” pp.265-270, ATS 2001.
[5] P. Harrod, “Test Reusable IP-A Case Study,” pp.493-498, ITC’99.
[6] F.Ferrandi, G. Ferrara, D. Sciuto, A. Fin and F. Fummi, “Functional Test Generation for Behaviorally Sequential
Models,” pp.403-410, DATE2001.
[7] http://www.extra.research.philips.com/itc02socbenchm


	Main Page
	ISQED'03
	Front Matter
	Table of Contents
	Author Index




