Synthesis and Placement Flow for Gain-Based
Programmable Regular Fabrics

Bo Hu, Hailin Jiang, Qinghua Liu
Department of Electrical and Computer Engineering
Univ. of California, Santa Barbara, CA 93106, USA

1-805-893-5678
{hb, hailinj, ginghual}@ece.ucsb.edu

Abstract

In this paper we present the Gain-based Logic Block Array (GLA),
a new via-programmable regular fabric. GLA is an array of Gain-
based Logic Blocks (GLBs). The GLB is a semi-universal logic
block designed based on logical effort theory[12]. Customization of
the GLBs is provided by programmable vias. To achieve the best
performance, appropriate fabric has to be selected from a family of
GLAs with different performance-area trade-offs. We describe a
synthesis and placement flow which, for a given design to be imple-
mented, allows us to select the best GLA from the candidate family.

Categories and Subject Descriptors
J.6 Computer-Aided Engineering - Computer-aided Design (CAD)

General Terms
Algorithms.

Keywords

Regular fabric, Programmable, Gain.

1. Introduction

Gigascale VLSI technology poses new challenges for traditional
design methodologies. First, the non-recurring engineering cost
(NRE) of the chip design has increased dramatically, and continues
to do so as technology scales down. In today’s technology, the cost
of a single mask set and probe card reaches $1 million, an amount
that is expected to increase rapidly as technology scales into deeper
sub-micron regimes. Thus, the cost of masks will play a more
intimidating factor for design starts. Second, the verification cost
for a modern complex system-on-chip (SOC) begins to dominate
the total design budget. For complex chips of gigascale size, verifi-
cation is a necessary step to guarantee the correct implementation
of the specified system behavior. Third, as technology advances
forward, deep sub-micron effects such as crosstalk, IR drop, and
process variations make performance prediction during the front-
end design unreliable. As a result, timing closure becomes harder
and harder to achieve. This situation is further worsened by the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

ISPD'03, April 6-9, 2003, Monterey, California, USA.

Copyright 2003 ACM 1-58113-650-1/03/0004...$5.00.

197

Malgorzata Marek-Sadowska
Department of Electrical & Computer Engineering
Univ. of California, Santa Barbara, CA 93106, USA
1-805-893-2721
mms@ece.ucsb.edu

more stringent time-to-market requirements. Yet another big chal-
lenge in nanometer technologies comes from the design-manufac-
turing interface [1][8]. Decreasing feature size makes it harder than
ever for optical lithography to achieve desirable layout patterns. To
overcome this problem, modern lithography must apply compensa-
tion schemes such as optical proximity correction (OPC). The com-
plexities of those compensation schemes largely depend on the
number of layout patterns which, unfortunately, are remarkably
large for the chips designed conventionally. To reduce the layout
patterns in the designs and to improve the OPC efficiency, new
design methodologies based on regular fabrics have been under
intense investigation in recent years [9][10]. For those regular fab-
rics, programmability is an essential characteristic since it is a via-
ble solution for increasing NRE cost, time-to-market pressure, and
verification cost.

In this paper, we present a new via-programmable regular fabric,
the Gain-based Logic Block Array (GLA). The GLA consists of an
array of Gain-based Logic Blocks (GLBs). The GLB is a semi-uni-
versal logic block [7] whose gates are sized to meet the target gain,
based on logical effort theory [12]. The gain associated with a GLB
denotes the GLB’s capability to drive capacitive loads. A GLB with
larger gain has more driving capability than does one with a smaller
gain. Customization of the GLBs is provided through programma-
ble vias. A set of GLAs with the same architecture, but different
performance-area trade-offs, (in other words, different gains), are
provided for implementing designs. The motivation for having sev-
eral GLAs with various gains is based on theoretical results and
experimental observations. In [12] the authors state that the gains
along critical paths must be balanced in designs achieving the best
performance. Our own experimental results indicate that different
designs usually require different gains, balanced along the critical
paths, to achieve the best timing. For the new fabrics, we propose a
synthesis and placement flow which selects the best GLA from the
candidate GLAs for a design to be implemented.

The rest of the paper is organized as follows. In section 2 we
describe the logic structure, and in section 3 we describe the design
of a GLB. In section 4 we present the architecture of a GLA. In sec-
tion 5 we discuss the design flow for GLAs. We present experimen-
tal results in section 6. We state our conclusions and discuss future
work in section 7.

2. Logic structure of GLB
2.1 GLB logic design

All the n-input Boolean functions can be classified into NPN-equiv-
alence classes [7]. Any two functions in the same NPN-equivalence
class can be transformed into each other by negating (N) or permut-
ing (P) some of the inputs, or negating (N) the output. For example,
for n=3, there are 256 different Boolean functions, which can be
classified into 14 classes. Based on technology mapping experi-

ments, it has been observed [7] that most of the functions (97%)
into which table look-up blocks are configured, can be imple-
mented by the logic structure shown in Fig. 1 with input or output
phase negation, and constant signal assignment (logic 0 or 1) to
some inputs. In fact, the structure in Fig. 1 can realize ten out of 14
classes of 3-input functions [7]. In addition, the other functions
covered by the remaining 4 classes rarely appear and can be real-
ized by two such structures. The logic structure in Fig. 1 is one of

=D
FAEN
5

Fig. 1: GLB logic design

X2
X3

the semi-universal logic blocks proposed in [7].

2.2 GLB structure

We developed a programmable version of the GLB logic block of
Fig. 1, which is depicted in Fig 2. It consists of three NOR gates
(N1, N2 and N3), and one AND gate AN. To improve the utiliza-
tion, we add three more outputs and one more input to the block.
As shown in Fig. 2, each GLB communicates with other GLBs
through nine I/O ports. These are five input ports A, B, C, D, E and
four output ports X, Y, Z, W. The input and output ports are associ-
ated with appropriate connection boxes. The input connection box
is used to optionally negate (through programmable vias) the phase
of the input signals to the current GLB. For example, the inputs of
the NOR gates can choose either a positive or a negative phase of
input signals. Because of this property, we can use a NOR gate
with a better performance for N3 instead of an OR gate as shown in
Fig 1. In Fig 2, the negative- and positive-phase input signals are
provided through one inverter and two back-to-back inverters,
respectively. The output connection box is used to provide either
unbuffered or buffered outputs. The buffered outputs are provided
to drive large load capacitances.

All the freedoms, such as the input signal phase selection and the
output configuration, are supported by a set of programmable vias
present in each GLB. Programmable vias enable the designer to
customize a GLB to realize various logic functions. Vias are pro-
grammed by custom-designing one via layer. So to program the
logic of the whole array, one customized via mask is needed for
fabrication. Programmable vias present inside the logic block serve
two purposes. The vias present in the input/output connection
boxes are used to select the input signal phase or the output config-
uration. The vias present at inputs of some logic gates (v1, v2, v3,
v4 and v5) shield unnecessary capacitive loads from unused gates.
For example, if we want to use the negative phase of an input sig-
nal, we should just place two vias at the top part of the input con-
nection box into the programmable via layer. For another example,

suppose that we want to implement the function , = 4 + cde -

It is a S-input function which does not use the N2 gate. We place
only v3 and v4 vias into the via mask.

The inputs to the gates NI, N2, N3 and AN, also have programma-
ble vias (not shown in Fig.2) to optionally tie them to VDD or

198

GND depending on user’s choice. This is to avoid floating, not uti-
lized inputs in the final implementation.

Input Connection Box Output Connection Box

i

A N1 X
—

B Y
v3

¢ 4
A%

D AN z

E » v

v1
V2| bl W
N2

I:l Output Connection Box @ IO ports
@)

X Programmable Via

Input Connection Box ~ w connection

Fig. 2: GLB physical structure

3. The GLB Family

In this section, we first discuss the gate sizing of the GLB based on
the logical effort theory [12]. Then we show how we construct the
GLB family.

3.1 The GLB design

In [12], the concept of logical effort has been proposed to model
the load-independent gate delay.

d=elg+p (EQ1)
In this model, the gate delay has been divided into two parts. Part
(1) is the load dependent effort delay, e [in EQ1. The logical

effort e is related only to the gate topology and is independent of
the load capacitance. The gain g is defined by the EQ2 below,

where C,,, is the output load, and C;, is the gate input capaci-

tance. Part (2) of the delay model is the load-independent parasitic
delay p caused primarily by the gate’s parasitic capacitance.

Cout
C.

m

g = (EQ2)

Based on this delay model, [12] states that the optimal delay of a
multi-level logic is achieved when the effort delay e [is bal-
anced for all the stages along the critical paths. Since different cell
types usually have different logical effort e, the optimal delay con-
dition imposes different gain g requirements for them. The larger
the logical effort, the smaller output load a cell can drive while
maintaining the same effort delay. In [4][13], the authors demon-
strate that arithmetic blocks can be designed based on this theory.

The target gain of a GLB is defined as the gain we assign to the
inverter. The gains of the other gates can be obtained by the condi-
tion that each stage has the same effort delay e (g and e is known
for all the other gates. In particular, to design a GLB for a specific
gain g, we first set the target effort delay to be e [g and then use it
to properly size all the gates except for the very first inverters in
input connection boxes, whose sizes are kept the same regardless
of gains. The sizing is performed in topological order from the
inputs to the outputs. We use the input capacitance and the gain of
the current gate to determine the input capacitance, or equivalently,
the size of the gate in the next stage. For example, suppose we
have a multi-level logic network with 4 stages as shown in Fig 3:

cl [; Cz {513

Fig. 3: A multi-level logic network

Suppose that the target gain is 2, and the input capacitance (size)

cl of the first inverter is 1. The number inside each gate denotes its

logic effort e. So for each gate we have e [g equal to 2 in our

example. Knowing the logic effort of each gate, we size the gates

in Fig 3 as follows:
c2

= =25c¢2=2

cl)

and 2y -y 4= 48
c3

The example above demonstrates how to size different logic stages
in multi-level networks, such as GLBs, to achieve the target gain.
In the present GLB version, we use inverters of the smallest size in
the input connection boxes to reduce the capacitive load at the
input of GLBs. We size the consecutive gates in a chain appropri-
ately to satisfy the target gain. In practice, a gate may have multi-
ple inputs, and each input may impose a different sizing
requirement for this gate. For example, the balanced effort delay
requirement for paths (A, N1, N3) and (C, AN, N3) require a dif-
ferent size for N3. We deal with this problem by giving priority to
certain paths. For instance, we balance the (C, AN, N3) path inside
the GLB. As a result, effort delay along some other paths, for
example (A, N1, N3), might not be strictly balanced. Additionally,
our current GLBs are sized assuming that all their gates are used. It
is possible that after mapping, some of the gates are not used, so
programmable vias allow us to disconnect them. Therefore, some
unbalanced effort delay paths may occur when actually imple-
menting designs on GLBs.

3.2 The GLB Family

Gate sizing is an essential technique for performance optimization
in chip design. In standard cell-based design methodology, differ-
ent size cells of the same functionality are available in the library
to accommodate different driving capability requirements. Based
on this observation, we design a GLB family - a set of GLBs with
different gains such that for a design to be implemented we can
pick the right GLB for the best performance.

To illustrate why we introduce GLBs with different gains, we use
the inverter chain example in Fig 4. We label each inverter by its
input capacitance (or equivalently, its size). As can be seen from
the inverter sizes, the gain of the chain C1 is 2, and the gain of C2
is 2.5. We also assume that the first inverters in both chains are the

199

same. In this way we make sure that the loads seen by the inputs to
the first inverters are the same. In addition, each chain is assumed

Clig=2 |>o_|>07

=2 3o >0

C2:g=2.5[>—DO—
I

2.5

6.25
Fig. 4: two inverter chains with different gains

to drive the same load C; .

In TABLE 1, we compare area, delay and gain of C1 and C2. The
chain C2 has larger area and larger gain than the chain C1. To com-
pare the performance of the two chains, let us first assume that p
and e in EQI are constants for all inverters in Fig 4. In general, this
assumption might not be strictly true, but the variation is very
small based on our experience with industrial standard cell library.
Without loss of generality, we set e to 1 in the following analysis.

C
Using EQ1, the delay of C1 is 4 + —f +3p , while that of C2 is

¢
+—+

> 6.25
C2 is close to 5+3p. It is larger than the delay of C1, which is 4 +

3p. But as C; increases, the delay of C1 increases more rapidly
than the delay of C2. As a result, when C; reaches 11.1, C1 and

C2 have the same delay of 6.78 + 3p. Beyond that point, the delay
of C2 is smaller than the delay of C1. In short, depending on the

actual value of C; , either C1 or C2 can be a good choice for per-

3p . If the load C; is sufficiently small, the delay of

formance optimization. Particularly, C2 should be applied if C; is
big while C1 is more favorable if C; is small.

Cl C2
gain 2 2.5
area 7 9.75
delay C C
L +—L 4
4+ 2 +3p 5 t2s 3p

TABLE 1. Comparison of inverter chains

We design a set of gain based GLBs in a similar way to the
inverter chains above. We have observed experimentally that dif-
ferent designs usually require different-gain GLBs for best perfor-
mance. In general, GLB with larger gain also occupies more area,
because of larger N1, N2, N3 and AN gates, and larger output
buffer sizes. Such a larger gain GLB has stronger driving capabil-
ity, which is expected to deliver more timing benefits for bigger

loads. Here, GLB(g;) denotes the GLB with gain g;.

We also provide for reducing power consumption in GLBs off crit-
ical paths. Larger gain GLBs always have larger gate sizes and
larger power consumption. To reduce power, we use via program-
mable parallel transistors. For example, Fig 5 shows our imple-

mentation of an inverter which uses 6 transistors with 4
programmable vias placed between them. In this way, by custom-
izing these vias, we can optionally size down the inverter. For
example, if we use the two vias on the left side and leave the other
two open, we have an inverter with 4 transistors which is bigger
than the one implemented by only 2 transistors, when no vias are
used. When all 4 vias are used, we implement the biggest inverter
with the largest driving capability.

VDD

IN— ——OUT

Fig. 5: parallel inverter

Similarly, we implement physical logic gates with large gains
(large sizes) in GLB using the approach described above. To
reduce power, we customize appropriately programmable vias and
size down the gates along non-critical paths.

4. GLA Architecture

Starting with the basis of the GLB family, we construct a via pro-
grammable array, GLA, as shown in Fig 6. The GLA is a 2-dimen-
sional, uniform array of GLBs. The gain of a GLA is the same as

that of its GLBs. Similarly to GLBs, GLA(g;) denotes the GLA of

gaing;. The GLA(g;) consists of only GLB(g;), and therefore it
forms a regular structure.
Since different g; suggests different driving capability of GLBs,

we have a freedom to choose a particular GLA(g;) in order to sat-
isfy the performance requirement on a design-by-design basis. For
example, for those designs with overall large interconnect loading
on critical paths, GLA with larger gain is preferred because of the
increased driving capability.

Fig. 6: GLA architecture

200

We envision that interconnects on top metal layers for GLAs can
be also regular and via programmable. We have not yet developed
such interconnect structure, but this is the topic of our current
research. Our experiments shown in this paper are conducted
assuming standard-cell-like routing.

The size of a GLA is denoted by (W, H), where W represents the
number of columns (that is, the number of GLBs in a row) and H is
the number of rows (the number of GLBs in a column). We define
a GLA family as a set of GLAs of the same (W,H) size, but of dif-
ferent gains. For a particular design, we assume that sizes of GLAs
are large enough for implementation. So in the following presenta-

tion, we focus on how to select an appropriate GLA(g;) from the
GLA family.

5. Design Flow for GLAs

We adapt the traditional synthesis and placement flow for GLAs.
The new flow begins with a traditional technology independent
optimization for area and delay. Then technology mapping is per-
formed to implement the design using the cells extracted from the
GLB. During the mapping, the proper GLA is selected such that
the best performance can be achieved. After technology mapping,
we conduct the gain-based timing-driven packing and placement.
We evaluate dynamically the selection of GLA in the previous
stages (for example, during technology mapping), and pick a better
GLA for implementation, if possible. When more information
about the loads becomes available, we refine our decisions such
that the best GLA among the possible candidates is selected for
final implementation.

Since all the GLAs from a GLA family have the same GLB organi-
zation (the number of rows and columns) and the same routing
structure, the implementation of a design feasible on one GLA can
be migrated to another GLA without any placement and/or routing
implementation overhead. In this way, we can save remarkable
design effort when switching GLAs within the family. It is this
unique feature that enables the dynamic GLA selection during
placement without incurring significant time overhead.

5.1 Technology Mapping for GLAs

Based on the GLB structure, we first build the cell library for map-
ping. In Fig 7, we demonstrate how the library is built. For exam-
ple, we extract NOR cells from the gate N1 present in the GLB
structure. As shown in the figure, taking positive phase input sig-
nals, we can add a regular NOR gate NORXI1 to the library. The
input capacitance of NORX1 is equal to that of the first inverter in
the input connection box, while the delay model is given by EQ3:

d=rC, +p' (EQ3)

where r is the output resistance of N/ and C; is the output load N1

drives. p' in EQ3 is the internal delay including the delay of the
inverters in the input connection box and the intrinsic delay of N1.
Compared to EQ1, we observe that r is actually < , where e and
in
C;, are logic effort and input capacitance of NI, respectively.
Since output connection box can optionally add a buffer to N1, we
can also extract another NOR gate NORX2, which has the same
input capacitance but different » and p' in EQ3. Fig. 7 shows

another cell NORBX1 which is also extracted based on N1. Unlike
NORX1, NORBX1 has one input signal with negative phase.

_D.@Nl - T

NORX1
1
e S
NORX2
N1
T =
NORBX1

Fig. 7: Library cell extraction

In a similar way, we extract single-output cells based on N2, AN
and OR. We also consider the buffer options provided by the out-
put connection box and input signal phase option provided by the
input connection box. In this way we create a library consisting of
cells with appropriately modeled input capacitances and delay
characteristics.

This cell library enables us to utilize the existing standard cell
library based technology mapping algorithms. Specifically, having
built the cell library, we use timing driven technology mapping
algorithm in SIS[11]. It should be mentioned that the technology
mapping algorithm we choose is not the only one possible for
GLA-based designs. For example, it is also possible to use FPGA
table-look-up-oriented technology mapping algorithms like Flow-
map[3], since GLB can implement most of the 3-input functions.
Here our intention is to demonstrate performance of various GLAs
with different gains, so our current implementation does not con-
sider other mapping algorithms.

To select the best GLA for mapping, we run the mapping algorithm
for different GLAs and pick the best one for the placement. In fact,
because of the same structure over all members of the GLA family,
the mapping result on one GLA can be also applied on the other
members in the same family. The reason we repeat the mapping
process for different GLAs is because: (1) a better solution might
be found since a mapper may take advantage of the different librar-
ies extracted from the different GLAs; (2) the technology mapping
we use takes only a fraction of placement time. The CPU time for
several runs of mapping constitutes only a small percentage of the
flow’s overall time.

At the technology mapping stage, wire capacitances are estimated
using a wire-load model based on fanout cardinality.

5.2 Placement for GLASs

In this section, we describe the placement procedure targeting
GLAs. Especially, we focus on how the library cells are packed
into GLBs, how the GLA is dynamically selected, and how the
timing driven placement is performed.

5.2.1 GLB based Packing

All the library cells we extract are single-output, whereas the GLB
has 4 outputs. It is thus possible to pack several cells into one
GLB. For example, 2 NORX1 cells can be implemented in a single
GLB. One of them can be mapped on N1 with input ports A and B,
while another one can be implemented on N2 with input ports D

201

and E. Another example is shown in Fig 8, where we have a par-
tially mapped network composed of two library cells m and n. The
cell m is a NORXI1 type and 7 is a complex library cell with inter-
nal structure as shown. The cells m and n share two common
inputs. In this case, m and n can be implemented using only one
GLB. In Fig. 8, the shaded part of the GLB shows the result of
packing m and n into it. Output ports X and Y are used for m and n
respectively. All five input ports are used, and A and B are shared
inputs. In short, due to the multi-output feature of GLB, we have a

m

il

mo0 w >

N2

Fig. 8: GLB based packing

variety of packing opportunities which can be explored to compact
the design.

We include the packing step inside our placement procedure
because geometric relations between cells are available at that time
which allow us to make correct packing decisions. Furthermore,
we do not pack cells permanently. Instead, we move the cells
around during placement and dynamically explore the packing
options.

5.2.2 Dynamic GLA Selection

Technology mapping described in section 5.1 implements a given
design using the library extracted from the GLB structure, and at
the same time selects the best performance GLA. But this selection
is based on the model which estimates the wire load according to
the fanout number and the average predicted interconnect length.
This model is usually not accurate compared to the estimates
obtained after placement. Thus, it is necessary to re-evaluate this
choice during the placement and to modify the selection if possi-
ble.

During placement, we periodically check to see whether the cur-
rently selected GLA gives the best performance. If it does not, we
evaluate the other GLAs and try to find a better GLA. Since all
GLAs have the same structure (with different gains), switching
from one GLA to another does not affect the validity of the current
placement. We only need to perform a static timing analysis based
on the newly selected fabric to see if it can outperform the old one.
From among those GLAs with better performance, we pick the
best one and continue the placement procedure on it.

5.2.3 Timing driven Placement

Our placer is based on a simulated annealing algorithm. During the
annealing process, we try to move cells between GLBs and always
make sure that the cells in one GLB can be packed together. We
use a timing-driven placement algorithm similar to VPR[2]. We
also perform GLB packing and dynamic GLA selection along with
the annealing process. In the following, we briefly review the
placement algorithm based on VPR[2] with some small modifica-
tions.

We first define Criticality of each source-sink pair (i,f) as follows:
_ Slack(i,j)
D

max

Criticality(i,j) = 1 (EQ4)
where Dy, is the critical path delay and Slack is the amount of
delay which can be added to a connection without increasing the
critical path delay. It can be seen from EQ4 that Criticality defines
how timing critical a source-sink connection (i,j) is. For example,
when Slack(i,j) is 0, that is, (7,j) is on the critical path, EQ4 com-
putes Criticality of (i, j) as 1. When Slack(i,j) increases, (the i-j
connection becomes less and less critical), Criticality(i,j) decreases
accordingly.

We now define the TimingCost of a connection (7,/) as follows:

TimingCost(i,j) = L(i,j) Criticality(i, j)<"=P°""" (EQS5)

In the above equation, L(i,j) is the length of a net to which connec-
tion (i,f) belongs. CriExponent is introduced to weight critical con-
nections heavily and give less weight to non-critical connections.
We perform timing analysis only once at each temperature level to
ensure that the computation time spent on timing analysis does not
increase the time complexity significantly. In other words, L(i,j) in
the above equation is always updated, whereas Criticality(i,j) may
not be.

The total TimingCost is shown below,

2

O i,jOcircuit

TimingCost = TimingCost(i, j) (EQ6)

The placement algorithm tries to minimize the sum of TimingCosts
in EQ6 and the traditional total wire length cost as shown in EQ7.

TimingCost

WL
+ —]—
PreTimingCost (1=2)

PreWlL
In the cost function, the normalizing exponent PreTimingCost is
the total TimingCost in the previous temperature and PreWL is the
total wire length in the previous temperature. A is a parameter bal-
ancing between the timing and wiring costs.

Cost = A\ (EQ7)

6. Experiments

We implemented the proposed design flow in FPI[6], and modified
the SIS package[11] for technology mapping and timing analysis.
The code was written in C++ and C. All the experiments were run
on 1.4Ghz Pentium 4 processor with 1G bytes memory and under
operating system Mandrake 9.0. The GLBs were designed based
on the parameters extracted from a commercial 0.18um standard
cell library. The benchmarks we use are from LGSynth93 circuit
suits.

6.1 Performance vs. Gain after technology
mapping

In our experiments, we show the performance-gain trade-off for
various GLAs and how that trade-off is affected by wiring capaci-

202

tance. Particularly, we investigate 4 GLAs with gains of 1.5, 2, 2.5
and 3. The normalized areas for these 4 GLAs are given in TABLE
2. As these 4 GLAs are in the same family, they have the same
number of GLBs.

g 1.5 2 25 3
1.24 1.34 1.58
TABLE 2. GLAs area

area 1

We implement the benchmarks on these 4 GLAs and compare the
performance after technology mapping. In Fig 9, we show a typical
delay vs. wire load plot for the GLAs under investigation. The
benchmark in this case is C5315. The y-axis gives the circuit’s
delay, while the numbers on the x-axis correspond to wire-loads
determined from the fanout-number-based model. For this model,
wire capacitance is given by the product of a unit capacitance,
which is shown in x-axis, and the number of fanouts. The larger

10

9.5

9

\\-\

35

I /
: oz

= —+—g=15
= v = g=20
s 7 —— =25
G %/‘ ——g=3.0
6.5
6 1/
5.5

e

v

Q 0.001 0002 0003 0004 0005 0006 0007
wire load (pf)

J

4.5

Fig. 9: Delay vs. wiring capacitance for various gains

the x value, the more capacitive load the interconnects introduce.

Similar to the inverter chains in section 3.2, we also observe two
distinct regions in Fig 9. Region I corresponds to the situation
when inter-GLB wiring capacitance is small and critical path delay
is determined by the internal GLB delay, that is p in EQ3, and the
external delay which is dominated by the input capacitances of the
sink GLBs. In this case, GLBs with larger gains usually give worse
timing results than those with smaller gains. The reason is that
GLB internal delay p increases as the gain grows. Region II corre-
sponds to the case when inter-GLB wiring capacitance dominates
the load GLBs drive. In this case, larger driving capability,
(smaller r value in EQ3) tend to deliver more timing benefits even
with larger p. In other words, when inter-GLB wiring capacitance
is relatively large, either because of shrinking technology or wiring
complexity of a design itself, (for example, larger average
fanouts), GLAs with larger gains tend to give better performance.

6.2 GLA selection during placement

As analyzed in section 5.2.2, there is a mismatch between the wire
capacitance determined from the wire load model used in technol-
ogy mapping and the estimation during placement. Therefore, it is
necessary to re-evaluate the choice of GLA to see if there exists a
better GLA for the final implementation. The GLA family used in
this experiment consists of 4 GLAs with gains 1.5, 2, 2.5, and 3.

In our experiment we consider the GLA selected from technology
mapping as a starting point for the placement. During placement,
we switch to a better GLA if possible.

In table 3, we list the GLA selection after technology mapping in
the column denoted orig GLA, and after placement in the column
denoted new GLA. We also give comparison between the timing

orig orig new new G-u | GQ2)

GLA | delay | GLA | delay
C432 3.0 1.0 2.5 0.90 1.15 1.0
C499 2.5 1.0 2.0 0.98 1.20 1.0
C880 2.0 1.0 1.5 0.92 1.18 1.0
C1355 | 2.0 1.0 2.0 0.97 1.14 1.0
C1908 | 1.5 1.0 2.0 0.96 1.20 1.0
C2670 | 2.0 1.0 1.5 0.90 1.21 1.0
C3540 | 1.5 1.0 1.5 1.00 1.22 1.0
C5315 | 2.5 1.0 2.5 1.00 1.27 1.0
C7552 | 2.0 1.0 2.5 0.65 1.24 1.0
avg 1.0 0.92 1.20

TABLE 3. GLA based placement results

results for the original GLA, which is decided by technology map-
ping and does not change in placement, and that of the new GLA,
decided by dynamic GLA selection during placement. In the table,
the new delay numbers are normalized with respect to the original
delays.

It can be seen that in 6 out of 9 cases, our placement and packing
algorithms pick a different GLA in order to achieve a better perfor-
mance. We also notice that different designs tend to choose differ-
ent GLAs for implementation. We believe that this is due to the
intrinsic interconnect complexity of the designs. For example, if a
design has, on the average, a larger load for each node to drive, it is
reasonable to choose a GLA with larger gain for good perfor-
mance.

To further verify the gain-based GLA design, we construct another
GLA, denoted GLA-u by first sizing down all the gates in
GLA(2.0) to their minimum sizes and then sizing up all the gates
until the size of the GLA-u is equal to that of the GLA(2.0). By
doing this, we want to demonstrate the advantage of the gain based
design approach over non-gain based approaches when the area
budget is fixed. We place the same benchmarks on both GLA-u
and GLA(2.0) and list the normalized timing results in the column
G-u and G(2), which represents GLA-u and GLA(2.0), respec-
tively. On the average, GLA(2.0) outperforms GLA-u by 20% in
terms of critical path delay. This performance is actually not sur-
prising, based on the theoretical discussion on optimum delay in
[12]. In practice, the gain/logical effort-based approach has already
been widely adopted for performance optimization[4][5][13]. Our
results strengthen its usefulness in VLSI design field.

7. Conclusions and Future Work

We have proposed a new via-programmable regular fabric, the
Gain based Logic gate Array (GLA). Also, we have developed a
logic synthesis and placement flow for GLAs. The regularity and
programmability provided by GLAs make them a good solution
for various challenges imposed by deep sub-micron technology.
The gain-based GLA family can accommodate different perfor-

203

mance demands. Furthermore, the proposed flow, although spe-
cialized for the new fabrics, is built from the existing tools. It
allows us to select the best GLA for a design to be implemented.

In the future, we will explore several areas related to GLAs. (1) We
will study comparisons with other design styles, like standard
cells, FPGAs and other newly proposed regular fabrics. (2) We
will develop regular routing structures. (3) We will study power
saving techniques. (4) We will develop a sequential versions of
GLAs.

8. Acknowledgments

This work was supported in part by MARCO/DARPA Gigascale
Silicon Research Center (GSRC) and in part by NSF through grant
#CCRO0098069.

References

[1] R. Bryant, K-T. Cheng, A. Kahng, K. Keutzer, W. Maly, R.
Newton, L. Pileggi, J. Rabaey, A. Sangiovanni-Vincentelli,
“Limitations and Challenges of Computer-Aided Design Tech-
nology for CMOS VLSI”, Proc. IEEE, vol. 89, issue 3, Mar
2001, pp. 341-365.

[2] V. Betz, J. Rose “VPR: A New Packing, Placement and Rout-
ing tool for FPGA research”, Proc. Seventh FPLA, pp. 213-
222,1997.

[3] J. Cong, Y. Ding, “FlowMap: an optimal technology mapping
algorithm for delay optimization in lookup-table based FPGA
designs”, IEEE trans. on Computer-Aided Design of Integrated
Circuits and Systems, Vol. 13 Issue 1, Jan 1994, pp. 1-12.

[4] H. Dao, V.G. Oklobdzija, “Application of Logical Effort Tech-
niques for Speed Optimization and Analysis of Representative
Adders”, Conference Record of the Thirty-Fifth Asilomar Con-
ference on Signals, Systems and Computers, vol 2, 2001, pp:
1666-1669.

[5]1J. Grodstein, E. Lehman, H. Harkness, B. Grundmann, Y.
Watanabe, “A Delay Model for Logic Synthesis of Continu-
ously-Sized Networks”, in Proc. ICCAD, pp. 458-462, 1995.

[6] B. Hu, M. Marek-Sadowska, “Fine-granularity clustering for
large-scale placement problems”, Intl. Symp. on Physical
Design, Apr 2003.

[7] C.C. Lin, M. Marek-Sadowska, D. Gatlin, “On designing uni-
versal logic blocks and their application to FPGA design”,
IEEE trans. Computer-Aided Design of Integrated Circuits and
Systems, vol. 16, issue 5, May 1997, pp. 519-527.

[8] W. Maly, “IC Design in High-Cost Nanometer-Technologies
Era”, Proc. DAC 2001, June 10-22, 2001, pp. 9-14.

[9] F. Mo, R.K. Brayton, “Regular Fabrics in Deep Sub-Micron
Integrated-Circuit Design”, Intl. Workshop on Logic and Syn-
thesis, Jun 2002.

[10]JF. Mo, R.K. Brayton, “Whirlpool PLAs: a Regular Logic
Structure and Their Synthesis”, Intl. Conf. Computer-Aided
Design, Nov. 2002.

[11]E. Sentovich, K. Singh, C. Moon, H. Savoj, R. Brayton, and A.
Sangiovanni-Vincentelli, “Sequential circuit design using syn-
thesis and optimization”, in IEEE Int. Conf. Comput. Design,
1992

[12]1. Sutherland, R. Sproull, “The theory of logical effort: design-
ing for speed on the back of an envelope”, Advanced Research
in VLSI, 1991

[13]X.Y. Yu, V.G. Oklobdzija, W.W. Walker, “Application of Logi-
cal Effort on Design of Arithmetic Blocks”, Conference
Record of the Thirty-Fifth Asilomar Conference on Signals,
Systems and Computers, vol 1, 2001, pp: 872-874

	Main Page
	ISPD'03
	Front Matter
	Table of Contents
	Author Index

