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Abstract

In this paper we present a linear-time Fine Granularity Clustering
(FGC) algorithm to reduce the size of large scale placement prob-
lems. FGC absorbs as many nets as possible into Fine Clusters. The
absorbed nets are expected to be short in any good placement;
therefore the clustering process does not affect the quality of
results. We compare FGC with a connectivity-based clustering
algorithm proposed in [1] and simulated-annealing-based algorithm
in TimberWolf [2], both of which also reduce the number of exter-
nal nets between clusters. The experimental results show that our
algorithm achieves better net absorption than the previous
approaches while using much less CPU time for large scale prob-
lems. With our FGC algorithm, we propose a Fast Placer Imple-
mentation (FPI) framework, which combines our FGC-based size
reduction with traditional placement techniques to handle large-
scale placement problems. We compared FPI placement results
with a public-domain fast standard cell placer Capo[4] on large
scale benchmarks. The results show that FPI can reduce CPU time
for large scale placement by a factor of 3~5x while obtaining place-
ment results of comparable or better quality.

Categories and Subject Descriptors
J.6 Computer-Aided Engineering - Computer-aided Design (CAD)

General Terms
Algorithms.

Keywords

Placement, Clustering.

1. Introduction

The rapid advance of modern VLSI technology makes possible a
billion-transistor integration in a single chip. To handle such design
complexity, a hierarchical approach, which has already been well
accepted in tool development of Electric Design Automation
(EDA) industry, is deemed essential, especially for the success of
future nanometer-scale chip design. It is a tradition that standard
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cell placement exploits the merits of hierarchical approach for bet-
ter quality and fast CPU time. But as for the future billions-of-tran-
sistors chip, it is still a tremendous challenge for a modern standard
cell placer to deliver a good-quality placement in terms of perfor-
mance, timing, power, and congestion in a reasonable time, espe-
cially when the time-to-market requirement is stringent.

Due to the deep sub-micron effects like crosstalk, IR drop, etc., the
timing is not known until the physical design is finished. The reli-
ance on physical data to evaluate whether the design meets higher
level specification requires that the physical design tool be able to
provide a good solution as fast as possible. Especially because of
the uncertainty caused by those deep sub-micron effects, the chip
design may iterate several times between logic synthesis and physi-
cal design. These iterations also require efficient physical layout
tool implementation, particularly in the case of large designs.

Among various techniques to improve placement quality and
decrease the CPU time, clustering is one of the most frequently
researched, having attracted academic and industrial attention con-
sistently for years. A number of clustering techniques [1], [2], [5],
[61, [71, [81, [9], [10], [11], [12], [14], [15] etc. have been proposed
in the past decades. Most of these techniques share common char-
acteristics - they proceed bottom-up and are connectivity-oriented.
It is also true that most of the previous works apply clustering tech-
niques mainly to improve partitioning.

In [15], the authors presented a clustering technique which absorbs
small-fanout nets into clusters in order to minimize the inter-cluster
communication in hierarchical FPGAs. Their results show remark-
ably improved routability. For ASIC designs, Timberwolf [2] in its
hierarchical placement mode, also absorbs into the clusters as many
small-fanout nets as possible. It applies the reasoning that the
bounding boxes (or wire lengths) of small-fanout nets are much
easier to reduce than those of large-fanout nets. The nets are mod-
eled as trees. Each net of degree & introduces k - / edges whose
weights are set to 1/(k-1). If there are m nodes of a net e in one clus-
ter ¢, then the weight contributed by the net e to the cluster ¢ is (m-
1)/(k-1). In [2] the authors proposed to maximize the total weight of
all clusters, given that the weight of each cluster is the sum of the
contributions from all nets incident to this cluster. In [1], the authors
devised a greedy connectivity-based algorithm to merge strongly
connected nodes. They used the formula in EQ1 to compute the
connectivity between nodes i and ;:

bandwidthl.j
“ij = Az’ D4j E(fanouli—bandwidthij) [(fanoutj—bundwidthij)
(EQD)
Each net of degree £ connecting i and j contributes 1/(k-1) to
bandwidthij. Similarly, each net of degree £ incident to node i

contributes //(k-1) to fanout; . A; and A; are sizes of nodes i
and j, respectively. It can be seen that this formula also captures the



small-fanout net absorption because those nets contribute a lot to
bandwidth[j by the weighting scheme //(k-1). Based on connec-

tivity computation, [1] visited all the nodes in a random order and
picked the neighbor with maximum connectivity for each un-clus-
tered node.

Motivated by these works which choose net absorption as a way to
either optimize wire length or reduce inter-cluster communication,
we focus on net absorption problem in the context of size reduction
for large-scale placement problems. We hope to substantially
reduce the time cost for large-scale placement problems while
maintaining or improving the placement quality. To achieve this,
we propose to extract Fine Cluster (small cluster containing only
several nodes) netlist such that we need only to apply a global
placement optimization on it without compromising the solution
quality.

In this paper, we present a linear-time Fine Granularity Clustering
(FGC) algorithm to reduce the size of large-scale placement prob-
lems. Fine Cluster typically contains 2~6 standard cells of average
size and has a strict upper and a lower size bound. One pass of our
algorithm consists of two phases. In phase I, we adapt the tradi-
tional Fidducia-Matheysys (FM) heuristic (FM) to partition a
netlist composed of thousands of clusters. In phase II, we apply the
Primitive Cluster Movement (PCM) to escape from the local mini-
mum achieved by phase 1. Primitive Clusters are pre-characterized
to help our net absorption objective, and are finer clusters includ-
ing only 2 or 3 cells. Unlike traditional clusters in multi-level parti-
tioner, Primitive Clusters are dynamically recognized in each PCM
pass, and different Primitive Clusters can overlap each other. We
apply several heuristics to expand the set of Primitive Clusters. As
for net absorption, we compare FGC results with simulated anneal-
ing based technique in Timberwolf [2] and the connectivity-based
greedy algorithm in [1] using large scale standard cell benchmarks.
The comparisons show that our technique achieves a better net
absorption while consuming much less CPU time. With our FGC
algorithm, we propose a Fast Placer Implementation (FPI) frame-
work, which combines our FGC-based size reduction with tradi-
tional placement techniques to handle efficiently large-scale
placement problems. We embed a public-domain standard cell
placer Capo[4] into our FPI framework and compare FPI place-
ment results with the original Capo on large-scale benchmarks.
The results show that FPI framework can reduce the CPU time for
such problems by a factor 3~5x while obtaining placement results
of comparable or better quality. Our examples indicate that a
proper placer framework can dramatically boost the performance
of an existing placer.

The paper is organized as follows. In section 2 we introduce the
terminology. In section 3 we formulate the FGC problem. In sec-
tion 4, we present the two phases of the FGC algorithm: the
Adapted FM and the Primitive Cluster Movement. Experimental
results are given in section 5, followed by conclusions in section 6.

2. Terminology

In this section, we first briefly review the terminology used exten-
sively in the literature on clustering, and then we introduce the
terms used throughout this paper.

A hypergraph G(V, E) is a graph with a node set /" and a hyperedge
set E. Each hyperedge e in E is a subset of nodes in V. We denote
this subset as N(e). A node v is incident to a hyperedge e if v is in
N(e). Similarly, a net e is said to be incident to a node v if N(e) con-
tains v. The degree of a node, denoted by D(v), is the number of
hyperedges incident to v. The degree of a hyperedge e, denoted by
D(e), is the number of nodes incident to e. Each hyperedge is
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assigned a weight, denoted by w(e). In addition, each node is asso-
ciated with an area cost, denoted by A4(v).

A cluster C is defined as a set of nodes. A hyperedge e is absorbed
into a cluster C if all the nodes in N(e) are included in C. A cluster-
ing solution S is a set of clusters, such that each node in V" appears
in one and only one cluster in S. The hyperedge which is absorbed
into a cluster is called an internal hyperedge with respect to S; oth-
erwise, it’s called an external hyperedge.

A special hypergraph G(7, E) whose each hyperedge connects only
two nodes is called a Simple Hypergraph. We denote this type of
hypergraph as SG(V, E). In a Simple Hypergraph, a hyperedge is
called a connection. The nodes incident to a connection c are ter-
minals with respect to ¢. As in a regular hypergraph, the degree of
a node v is the number of connections incident to v.

There is a one-to-one correspondence between a hypergraph and a
standard cell netlist. The cell in the netlist corresponds to the node
and the net corresponds to the hyperedge in the hyper-graph. In
this work, we use the terminology of cell and node, and net and
hyperedge, without distinguishing one from the other.

3. Fine Granularity Clustering (FGC)
Problem Formulation

In this section, we first discuss the cost function we use in the FGC
algorithm, and then give the formulation of the FGC problem.

In this work, we model the hyperedges with degrees larger than 2
as cliques. In this way, a given regular hypergraph can be reduced
to a simple hypergraph by replacing each hyperedge with a clique
of connections. The weight of each connection is given by EQ2:

wle

) = B -DDE

(EQ2)

In the equation above, D(e) is the degree of the hyperedge e, and
w(e) is the weight that can be used to control the absorption prior-
ity. We choose the clique model instead of a tree model of Timber-
wolf [2] for the following two reasons. First, the clique model can
distinguish more topologies and favors the “nearly” complete
absorptions. As shown in Figure 1, suppose the 4 black circles are
nodes incident to a hyperedge of degree 4. The tree model in Tim-
berwolf has the same cost for the two topologies in the figure,
while the clique model favors the second one over the first. It is
obvious that the second topology has a better chance to absorb this
hyperedge completely. Second, by using the clique model, a regu-
lar hyper-graph can be reduced to a simple hyper-graph, which
makes our FGC algorithm much more efficient.

Fig. 1: comparison between tree model and clique model

Before discussing the FGC cost function, we define our terminol-
ogy.

Definition 1: A Fine Cluster is a small cluster with upper and
lower size bounds (U, L). In general, (U, L) are defined such that
the Fine Cluster contains only several nodes of an average size in
the hyper-graph. We denote a Fine Cluster /' with the bound con-
straints (U, L) as f{U,L), and a set of Fine Clusters with bound con-



straints (U, L) as F(U, L). A clustering solution S, which consists
of only Fine Clusters, is called the Fine Cluster Solution (FCS).
Like previous clustering algorithms, Fine Clusters in F'CS cannot
overlap with each other.

Definition 2: The cost of each Fine Cluster £, denoted by C(f), is a
summation of the weights w(c) for all connections which are com-
pletely absorbed into fas stated in EQ3.

c\) = Z w(c)
cof
Definition 3: The cost of a Fine Cluster Solution FCS, denoted by

C(FCS), is the sum of the costs of all Fine Clusters in FCS as
expressed by EQ4.

C(FCs) = 5 C()
I

(EQ3)

(EQ4)

Based on the definitions of Fine Clusters and their costs, we for-
mulate the Fine Granularity Clustering (FGC) problem.

FGC formulation: Given a simple hypergraph SG(7, E), find a Fine
Cluster Solution FCS, which consists of a set of Fine Clusters
F(U,L) and C(FCS) is maximized.

By maximizing C(FGC), we can push as many heavy weight con-
nections as possible into Fine Clusters. If the original hypergraph
consists of only hyperedges of degree 2, maximizing EQ4 is equiv-
alent to maximizing the number of internal hyper-edges. Our FGC
formulation is similar to that of [2] except that (1) we choose a
clique model instead of a tree model for the multi-fanout nets; (2)
FGC targets Fine Clusters, which are on the average much smaller
than those in [2].

There are several reasons that we do not make a Fine Cluster
larger:

(1) Our objective is to reduce the placement problem size. Fine
Clusters actually behave more like hard constraints once we make
a decision to create them. After clustering, the placer searches only
a global solution space of the clustered netlist. When the global
placement is completed, the refinement for Fine Clusters is limited
to a local region. So it is not desirable to form bigger clusters
because the global solution quality might be compromised. Tradi-
tionally, in multi-level clustering for partitioning purpose, bad
clustering decisions are more tolerable because they can, to some
extent, be recovered at the cost of CPU time as partitioning pro-
ceeds. In contrast, including nodes into a Fine Cluster implies that
we are going to place these nodes in close proximity. In this way
we reduce the placement problem size and thus boost the placer
performance. To achieve the same or even better placement qual-
ity, Fine Clusters have to be carefully generated.

(2) By using Fine Clusters, the design cost such as total wire length
can be estimated more accurately. Since Fine Clusters contain only
several nodes of average size, we are able to get a reasonable esti-
mate even when we assume that all the nodes in the cluster overlap
with each other.

(3) Since Fine Clusters consist of only a few nodes of average size,
a good quality clustering solution can be possibly achieved by
exploring only the local structure of the netlist.

4. Fine Granularity Clustering Algorithm

In this section, we describe the Fine Granularity Clustering algo-
rithm (FGC). In sub-section 4.1 we explain the algorithm in gen-
eral terms. In sub-section 4.2 the overall algorithm is described.
Details of the algorithm are explained in the subsequent sub-sec-
tions.
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4.1 FGC Algorithm Overview

The main loop of our FGC algorithm consists of two phases. The
phase I is an adoption of the classical FM [3] gain update strategy
for thousands of clusters. Since the gain is usually a real number,
we have to discretize it in order to build a gain bucket. We devise
an efficient data structure to make a gain update very quickly. In
phase II, we perform Primitive Cluster Movement (PCM). Primi-
tive Clusters are pre-characterized before the PCM algorithm
begins and can be exchanged between Fine Clusters. Figure 2
gives the pseudo code of FGC.

FGC()
Input: Hypergraph SG(V, E), Constraints (U, L)
Output: a Fine Cluster Solution FCS
{ N=0;
PreCharacterizePrimitiveClusters(SG(V, E));
InitializeFineClusters(SG(V, E));
while(improvement & N < max_iterations) {
Phasel:AdaptedFM();
Phasell:PrimitiveClusterMovement();
N++;

9

}
Output solution FCS;

Fig. 2: The FGC algorithm

4.2 Initial Cluster Generation

We use a greedy algorithm to generate the initial set of Fine Clus-
ters. Initially, each un-clustered node forms a trivial one-node clus-
ter. We maintain an array of such trivial clusters. Then we visit
trivial clusters in a random order. We select one trivial cluster and
check to see whether it has been already included into some Fine
Cluster. If so, we continue to visit the next trivial cluster; other-
wise, we make the current trivial cluster a seed of a new Fine Clus-
ter and start attracting the un-clustered neighbors into the newly
created Fine Cluster, until the size constraint (U + L)/2 is reached.
The neighbors are attracted in a greedy fashion such that the one
with the maximum connection to the Fine Cluster is selected first.

This process is order-dependent and has a very limited grasp of the
local structure. For example, (1) when a Fine Cluster is created, it
has no ability to judge whether it is worthwhile to attract a new
node into itself. (2) Once an un-clustered node is attracted into
some Fine Cluster, it is not allowed to move again.

4.3 FGC algorithm Phase I: the Adapted
Fiduccia-Mattheyses Heuristic (AFM)

In this section, we describe the adaptation of the classical FM heu-
ristic[3] for our FGC problem.

For each node in a Fine Cluster, we maintain an array of move des-
tinations with the corresponding gains. Move destimations of a
node are those Fine Clusters which have direct connections with
this node. The gain is a difference of cost function if we move the
node to a destination. In general, the gain is not an integer number.
We have to discretize the gains so that a gain bucket can be built. A
gain bucket is a set of gain entries. Each entry represents a range of
gain (Ig, ug). Given a gain upper bound UG, a lower bound LG and



the number of entries in the bucket N, we build the gain bucket by
evenly dividing the full gain range (LG, UG), and we index the
gain entries from 0 to N - 1. Gain unit is defined as the difference
between the upper limit ug and lower limit Ig of a gain range. With
gain unit, the bucket entry can be obtained in a constant time for
any gain within the range (LG, UG).

After we compute the gains for each node, we choose the best
move for each node to initialize the gain bucket.

To efficiently update the gain bucket after each move, we devise a
data structure as shown in Figure 3. Each node is associated with a

0 O
T
=t et T=H T

class node {

bnode* ptr;

0o =] ]

Fig. 3: Data structure in Adapted FM algorithm

bnode data structure which is double-linked in the bucket entries.
Double pointers ensure that move insertion and removal will
require only a couple of pointer updates. Furthermore, we allocate
bnode data structure only once throughout FGC algorithm and thus
avoid overhead of memory allocation and release.

If a move is taken, we have to update the gains for all the affected
nodes (in this case, all neighbors of the moved node). The neigh-
bors of a node v are those nodes directly connected to v. We follow
the similar update strategy used in FM heuristic. In the following,
we briefly describe this strategy with our terminology.

Definition 4: A connection is called Visible when the two terminal
nodes are in the different clusters; otherwise, it is Invisible.

Definition 5: Visibility Transition is the change of a connection ¢’s
visibility due to a move involving one of ¢’s terminal nodes. If a
node v is moved out of its current cluster, the connections incident
to v may have the following Visibility Transitions:

(1) (I, V): from Invisible to Visible;
(2) (V, V): Visibility doesn’t change;
(3) (V, D): from Visible to Invisible.

It is clear that Visibility Transition corresponds exactly to the gain
of a move. (I, V) transition occurs when an invisible connection is
exposed by the move, thus incurring a negative gain. Similarly, (V,
I) transition hides one connection and achieves positive gain. The
gain is zero if (V, V) transition occurs. The gain of a move can be
computed by looking at the Visibility Transitions of all connec-
tions incident to the moved node. Similarly, the update of a gain
can be obtained by checking if there are any changes of Visibility
Transitions for some connections.

To update a neighbor’s b gains caused by a move of v, it is suffi-
cient to look at Visibility Transition of the connection between b
and v, because it is the only connection which might have visibility
change due to the movement of v. Figure 4 gives a code segment
which computes the Visibility Transition for one affected neighbor
of a moved node. In Fig 4, Parent(b) and Parent(v) are the initial
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if (Parent(b)!= Parent(v))
if (DC(b)!= Parent(v))
VTbefore = (V,V);
else
VTbefore = (V, I);
else
VTbefore = (I, V);

if (Parent(b)!= DC(v))
if (DC(b)!=DC(v))
VTafter = (V, V);
else
VTafter = (V, I);
else
VTafter = (I, V);
lookupGainChange(b, DC(b), VTbefore, VTafter);

Fig. 4: gain update for a neighbor b after move v to DC(v)

clusters b and v belong to. DC(b) and DC(v) denote the destination
cluster of b and v. By looking at the Visibility Transition before
moving v to DC(v), VTbefore; and Visibility Transition after the
move, VTafter; we can compute the gain update for moving b from
its current cluster Parent(b) to DC(b).

As shown in Fig. 4, it takes only 4 comparisons to determine the
Visibility Transition. The new gain can be found from a table-look-
up in a constant time. Since the number of neighbors is bounded
for any node in the hypergraph, especially in our case, we ignore
all the hyperedges with degrees exceeding a threshold; therefore,
the gain update for a move takes constant time O(1).

Each AFM pass visits all the nodes following their positions in the
gain bucket. The move with the highest gain is popped out of the
gain bucket for a feasibility check. If size constraint is not violated
by this move, the move is taken and the gains are updated for all
the affected neighbors. The pass ends when the bucket is empty.
The best solution during the movement is recorded and will be
used as the starting point for the next pass. The time for each AFM
pass is O(n), where n is a number of nodes in the hypergraph.

4.4 FGC algorithm Phase II - Primitive
Cluster Movement (PCM)

Motivated by the successful application of multi-level clustering in
traditional partitioning algorithms, we introduce a higher level rep-
resentation of the initial hypergraph. To this end we introduce
Primitive Clusters defined as follows:

Definition 6. Primitive Cluster (PC) is the finest cluster which con-
sists of only 2 or 3 nodes in the original hypergraph. A Primitive
Cluster consisting of nodes a and b is denoted by pc{a, b}.

From the definition, it is clear that a Primitive Cluster is even
smaller than a Fine Cluster. In fact, a Primitive Cluster can be
viewed as another type of movable unit other than the nodes in the
graph. These additional types of node exchange among the clusters
increase the solution space and allow to obtain a better quality
clustering result. Compared to the original nodes in the hyper-
graph, Primitive Cluster is powerful in that it makes it possible to
move more than one node simultaneously, possibly helping the



clustering to escape from a local minimum achieved by node-only
movement.

It is worthwhile to show the differences between our Primitive
Cluster Movement and the clustering in traditional multi-level par-
titioning where clusters are exchanged between partitions.

First, the Primitive Clusters are dynamically collected in each
PCM pass whenever they are available for movement. Since we
interleave the PCM and the AFM phases, two consecutive PCM
passes could have a completely different set of Primitive Clusters.
This rich set of Primitive Clusters enables us to explore a larger
solution space. In contrast, in traditional partitioning, clustering
tree is usually generated in the first place and remains unchanged
as the partitioning proceeds.

Second, Primitive Clusters do not need to be disjoint; instead, dif-
ferent Primitive Clusters can overlap with each other. For example,
Primitive Cluster pc{a, b} and pc{b, ¢} can exist simultaneously.
As shown in Fig Sa, suppose we first decide to move the Primitive
Cluster pc{a, b} from the Fine Cluster A to B according to cost
computation. After the nodes a and b settle down in B, we may
realize that b and ¢ form another Primitive Cluster pc{b, ¢}, and
then we may continue to move pc{b, c} to the Fine Cluster C as
indicated in Fig Sb, if the movement is justified by the cost. In
other words, allowing overlapping among Primitive Clusters
enables us to enjoy more flexibility of moving nodes around and
thus to achieve a better solution quality. In contrast, at each level of
a traditional multi-level clustering tree, all clusters are disjoint, and
no sharing among them is allowed.

A A

B B

Fig. 5a: move pc{a,b} to B Fig. 5b: move pc{b,c} to C

Third, the Primitive Cluster is an abstract coarsening level of an
initial hypergraph. Because it is an abstract level, we avoid the cost
overhead of building the coarser level, as is done in traditional
clustering hierarchy generation.

The Primitive Clusters are pre-characterized based on the initial
regular hypergraph before reduction. We employ the following
heuristics to create good Primitive Clusters.

(1) Heavy connection: it is straightforward to create Primitive
Clusters from those connections with large weight. Such connec-
tions are called Heavy Connections. Hiding heavy connections
inside clusters leads directly to the maximization of our cost func-
tion in EQ4.

(2) Hyperedge of degree 2: by putting two nodes of a degree 2
hyperedge into a Primitive Cluster, we instantly absorb one hyper-
edge.

(3) Hyperedge of degree 3: from a hyperedge e of degree 3, we can
create 3 2-node Primitive Clusters by enumerating any two-termi-
nal nodes of e and a three-node Primitive Cluster by including all
its three terminal nodes into a cluster.

Primitive Cluster Movement (PCM) phase is interleaved with
phase I (Adapted FM). Each PCM can have several passes. During
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each PCM pass, we randomly pick a pre-characterized Primitive
Cluster and check to see whether it is included in some Fine Clus-
ter. If so, the best destination Fine Cluster is determined for the
selected Primitive. The best destination Fine Cluster are selected
from those clusters which have direct connections with the Primi-
tive. If there is a positive gain associated with the best destination
cluster, the Primitive Cluster Movement will be taken. The
approach is very greedy, but since it is interleaved with AFM, in
most cases, it can help in escaping from the local minimum
achieved by the previous AFM phase. In PCM phase, the number
of passes is usually small. In the experiments, we observed that 3 ~
5 passes per PCM phase are enough to achieve good results.

4.5 Complexity Analysis

The movement for one Primitive Cluster is very fast and needs to
go through all connections incident to it only once. Since we
ignore the hyperedges with very large degree (>25) (traditionally,
total wire length minimization always focus on small-fanout nets),
the number of the connections incident to a node or a Primitive
Cluster is actually bounded by a small number, espeically when the
node is standard cell instance and Primitive Cluster includes only 2
or 3 nodes. Thus the time required for one Primitive Cluster Move-
ment is O(1). In the experiments, the size of the Primitive Cluster
set we create is of the order O(n), where n is a number of nodes in
the initial hypergraph. Therefore one PCM pass is of O(n) time
complexity.

As described in the previous sections, the complexity of the
Adapted FM pass is also O(n). Since we limit the number of AFM
and PCM passes in FGC algorithm by a constant, the overall FGC
is of linear time complexity with respect to the size of a hyper-
graph or the standard cell circuit.

5. Experiments

We implemented our FGC algorithm in C++ and conducted the
experiments on 1Ghz Pentium 4 linux machine with 1gigabyte of
memory. For experiments we used the MCNC benchmarks and the
IBM placement benchmarks available at [17]. For all benchmarks,
we eliminate the channels between standard cell rows and perform
the placement in fixed-die mode. The statistics of the circuits are
listed in the 2nd and 3rd columns in Table 1. CPU times are given
in seconds.

5.1 Net Absorption Comparison with
Connectivity based Algorithm and
TimberWolf

We first compare the net absorption results of FGC algorithm with
the connectivity based [1] and Timberwolf [2] algorithms. We use
these 3 algorithms to generate the same number of Fine Clusters
with the same lower and upper size bounds. The bounds are set
such that each Fine Cluster can have 2~6 cells of average size. For
each benchmark, after clustering has been performed, we collect
the number of the nets which were totally absorbed into the Fine
Clusters. Since our Fine Clusters are very small, the majority of the
absorbed nets are of degree 2 and 3.

In table 1, we denote connectivity based algorithm and Timberwolf
as CON and TW respectively. The net absorption results are nor-
malized with respect to that of CON and listed in columns 4, 5 and
6. It can be seen that FGC and TW can absorb many more small-
fanout nets than the greedy algorithm CON. We believe it is
because CON makes hard decisions in the clustering process, and
once two nodes are combined, they are never to be separated. In
contrast, FGC and TW both maximize a global cost function and



#Net Absorption clustering CPU(s) total wire length (m)
bench #nodes #nets CON ™ FGC CON ™ FGC CON ™ FGC
biomed 6417 5742 2695 3571 3619 1.37 22 4.2 3.15 2.71 2.68

industry2 12142 13419 4045 5234 5818 3.5 53.1 9.1 12.2 12.1 11.0
avgsmall 21854 22124 9099 10028 11087 10.4 397 21.8 4.94 4.73 4.56
avqlarge 25114 25384 10838 12410 13255 11.2 500 224 5.52 5.20 4.89
ibm01 12282 11507 3962 4814 5303 3.1 43 10.1 67.4 62.5 60.6
ibm02 19321 18429 5211 8216 8333 6.2 115 20.1 184 164 169
ibm03 22207 21621 8083 10395 10536 6.5 200 20 12.1 10.5 10.3
ibm04 26633 26163 8208 10985 11428 8.2 257 22 14.6 14.1 13.8
ibm05 29347 28446 11219 13363 14511 13.2 310 47 41.2 40.1 38.7
ibm06 32185 33354 10551 14853 15373 15.7 315 43 17.6 16.4 16.3
ibm07 45135 44394 16395 19498 20297 18 496 50 423 400 392
100% 125% 132% 4.5% 100% 11.7% 100% | 92.8% | 90.1%

TABLE 1. Net Absorption and total wire length comparison between [1], [2], and FGC algorithm

thus explore a much larger solution space. Compared to TW, FGC
achieves better net absorption results in much less CPU time. One
reason is that, although simulated annealing technique used in TW
is able to find a global optimum solution, it requires substantial
computation time. We also observed that FGC is particularly effec-
tive to handle small clusters like Fine Clusters. For clusters of this
size, it is possible to rely only on local structure to achieve good

net absorption.

Clustering CPU times are given in columns 7, 8, and 9, normalized
with respect to TW, in Table 1. As analyzed before, FGC is of lin-
ear time complexity with respect to the size of a benchmark, and it
is much faster than TW. In general, FGC only takes a tenth of the
time consumed by TW under the current annealing schedule. We
have also tried to improve the solution quality of TW by spending
more time on iterations, but the gain is small even when the CPU
time doubles.

The results indicate that FGC algorithm is very powerful in han-
dling Fine Clusters and can absorb a substantial number of small-
fanout nets into clusters, thus the inter-cluster communications are
dramatically reduced.

5.2 Placement Evaluation

To show the effect of net absorption on placement, we used the
public-domain standard cell placer Capo[4] and performed a glo-
bal placement on Fine Clustered netlist generated by CON, TW
and FGC. The global placement was conducted in fixed-die mode
and followed by a simple overlap removal procedure that detail-
placed cells inside the Fine Clusters. In the last three columns of
Table 1 we list the placement results for all three algorithms.

Generally, FGC achieves a better total wire length result than CON
and TW, because it hides more small-fanout nets inside the Fine
Clusters. This behavior corresponds to that of a good placer. CON
gives the worst result on net absorption due to its greedy nature.
Similarly, the placement quality in terms of wire length by CON is
worse than both FGC and TW. The reason is that, as described in
the earlier section, we treat Fine Clusters more like hard con-
straints than we would in a traditional clustering process. Wrong
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decisions about these hard constraints will compromise the global
placer’s search for a good solution. As observed in [16], the lower
level routing layers like M1 and M2 are usually not congested.
Thus, absorbing more small-fanout nets into Fine Clusters is likely
not to cause congestion problem at M1 and M2 layers. At the same
time, since the number of inter-cluster (global) nets has been
reduced, it is expected that the congestion at top routing layers will
be improved.

5.3 Placement Improvement by Fast Placer
Implementation (FPI)

In this experiment, we investigate the feasibility of net absorption-
based size reduction for large-scale placement problems. By feasi-
bility we mean if the quality of placement can be maintained while
CPU time is being dramatically reduced. Especially, we propose
the following hierarchical framework of a Fast Placer Implementa-
tion (FPI) as shown in figure 5.

In figure 5, our Fast Placer Implementation (FPI) consists of 3
stages. In Stage 1, we reduce the size of initial large scale netlist by
the Fine Granularity Clustering (FGC) procedure. The motivation
is that time-consuming global optimization might not need to go
all the way down to the initial netlist. Based on the local structure
of the netlist and the behavior of a good placer, it is possible to
apply global optimization only on a Fine Cluster netlist. In stage 2,
global placement optimization can be applied on the reduced
netlist. Any existing global placement method like that of [4], [18]
can be used at this stage. Since placement is not a linear-time pro-
cedure, size reduction by only 2x at the previous stage will pro-
duce more than 2x global optimization speedup. After stage 2, we
de-cluster Fine Clusters and apply local refinement. It can be seen
that Stage 1 is crucial in FPI framework because, if many bad deci-
sions are made at this stage, either they cannot be recovered by
local refinement or extensive effort is required, which might over-
whelm the speedup achieved at Stage 2.

To experiment with our FPI, we choose FGC at Stage 1. For Stage
2, we use public-domain fixed-die placer Capo[4]. Capo placement



is based on recursive partitioning and falls into the category of
polynomial-time placers. Thus it is expected that by embedding
Capo into our FPI framework, the time complexity for large scale
placement can be greatly reduced. At the last stage, we apply a fast
low-temperature annealing procedure and placement legalization
to remove overlapping. Stage 2 of the FPI, that is the Fine Cluster
Placement, still dominates the placement time for large-scale
netlists.

v

S1 FGC based Size Reduction
reduced netlist
y
S2 Fine Cluster Placement
S3 Local Placement Refinement

Fig. 5: Fast Placer Implementation (FPI) framework

In the experiment, we compare the total wire lengths and CPU
time between Capo[4] and our FPI framework. We use Capo fast-
mode by setting branching factor to be 1. Several large-scale
benchmarks from IBM-place suits are selected to evaluate the per-
formance of FPI framework. The number of cells for those bench-
marks ranges from 50,977 to 182,137. Table 2 gives the CPU time
and total wire length (Bounding Box) experimental results from
Capo and FPI. Wire lengths are given in meters, and CPU times are
reported in seconds. The last row in Table 2 normalizes the data
with respect to Capo.

From table 2, it can be seen that CPU time is reduced by a factor of
3~5x while total wire lengths are comparable to or slightly better

total WL (m) CPU(s)

bench Capo FPI Capo FPI
ibm08 396.7 390.9 2653 1079
ibm09 335.7 328.6 3098 921
ibm10 643.8 637 5083 1420
ibml1 49.7 49.9 5180 1522
ibm12 57.4 57.6 5614 1895
ibm13 40.6 40.2 6757 1792
ibm14 98.7 98.8 26922 5769
ibm15 112.2 109.2 30881 7183
ibm16 139.2 136.7 38779 8223

100% 98% 100% 24%

TABLE 2. Comparison with Capo|[4]
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than the results of Capo. Furthermore, as the sizes of the bench-
marks increase, more speedup is achieved. It is actually not sur-
prising because of the polynomial time-complexity of the
placement. These results suggest that it is possible to dramatically
speed up the placement of standard cell netlists by applying the
time-consuming global placement optimization only on Fine Clus-
ter netlists. By carefully generating such Fine Cluster netlists, the
placement quality can be maintained or may be even better. The
results also indicate that the net absorption is a good objective for
Fine Cluster netlist generation.

6. Conclusions

In this paper, we have explored the problem of size reduction for
large-scale placement. We present a linear time net-absorption-
based algorithm FGC to create a Fine Cluster netlist. With FGC,
we propose a Fast Placer Implementation (FPI) framework. In FPI,
we apply a time-consuming global placement optimization only to
a Fine Cluster netlist. By embedding the existing standard cell
placer into our FPI framework, we find that 3~5x placement
speedup can be achieved by the FPI while the solution is of compa-
rable or even better quality.
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