
Abstract: Recent years have seen significant research in
finding closed form expressions for the delay of an RC cir-
cuit that improves upon the Elmore delay model. However,
several of these formulae assume a step excitation, leaving it
to the reader to find a suitable extension to ramp inputs (we
always assume a saturated ramp in this paper). The few
works that do consider ramp inputs do not present a closed-
form formula that works for a wide range of possible input
slews. We propose the PERI (Probability distribution func-
tion Extension for Ramp Inputs) technique, that extends
delay metrics for step inputs to the more general and realis-
tic non-step inputs. Although there has been little work done
in finding good slew - which is also referred as signal transi-
tion time - metrics, we also show how one can extend a slew
metric for step inputs to the non-step case. We validate the
efficacy of our approach through experimental results from
several hundred RC dominated nets extracted from an indus-
try ASIC design.
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Keywords
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1.  Introduction
Simple, closed-form formulae for delay are desirable for
timing-driven performance optimization tasks such as
floorplanning, placement, routing, and physical synthesis.
Delay metrics provide an efficient means for estimating wire
delay, which may be computed millions of times during the
above mentioned physical design tasks, provided they are
reasonably accurate. More than fifty years ago, by
interpreting the impulse response of a linear circuit as a
probability distribution function (PDF), Elmore proposed [4]
using the mean of the impulse response to approximate the
50% delay of the circuit (the median of the impulse response
under the probability interpretation) under a step excitation.

This metric was resurrected in the early eighties when
Rubenstein et al [12] published a simple closed-form
formula for computing the mean of the impulse response of
RC interconnect trees. Since the formula was simply
expressed in terms of the Rs and Cs of the wire, the Elmore
metric was widely adopted by the physical design
community. In that paper, it was also established that the
Elmore metric was the negative of the first moment of the
impulse response. However, a general technique to compute
higher order moments was discovered a few years later in
[10]. In the same work, it was also shown how these
moments can be used to approximate the poles of the circuit
and hence the time domain waveform can be computed
under arbitrary inputs. This technique, called AWE, was
implemented in an interconnect analysis tool called
RICE[11] which can approach SPICE-like accuracy.
However, the delay is not a simple closed-form formula
anymore and a non-linear equation needs to be solved for
delay. Therefore, the Elmore metric continues to be used in
the physical design tasks. It has been well established,
however, that the Elmore metric can be orders of magnitude
off in some cases and on average for far-end nodes, it is
about 25-30% in error for step inputs. Hence, considerable
research has been done to seek alternate delay metrics that
are more accurate than the Elmore metric [13, 6, 8, 7, 1, 9].

In almost all of these works, the delay metric assumes a step
excitation. In any practical application, the interconnect is
driven by a non-linear device and the driving-point
waveform is not a step. It is common practice for timing
analyzers to replace the non-linear driver by an ideal voltage
source generating a saturated ramp signal that has the same
10-90 transition time as the original waveform. Thus, any
practical delay metric should be able to handle non-zero
input slew1. Recognizing this, the authors in [8] propose
adding a third dimension to the two-dimensional lookup
table used for computing step delay. While being accurate,
this method requires a carefully constructed table which is
made harder by the fact that input slews can vary over a wide
range, especially during the initial stages of design. In the
above cited methods which compute delay directly as a
function of moments, either through a lookup-table [8, 7] or
an explicit formula [6, 1], a form of “moment massaging”
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was proposed in [7] to handle non-step inputs. The impulse
response moments are modified to account for the non-zero
input slews and these modified moments are used in the
original step formula. The advantage of this approach is that
the delay metric remains a closed-form formula even for
ramp inputs. However, the formula is only valid for very
fast input slews and has large errors for even moderately
slow inputs, as we show later in the paper.

In this work, we propose a simple technique for extending
any delay metric derived for a step input into a delay metric
for a ramp input for RC trees that is valid over all input
slews. A noteworthy feature of our method is that the delay
metric reduces to the Elmore delay of the circuit under the
limiting case of an infinitely slow ramp, a fact first proved
in [5] to establish the Elmore delay as an upper bound. We
also propose a method for converting a slew metric derived
for step input to a slew metric valid under non-step inputs.
In the limiting case of infinitely slow input, output slew
computed using our formula equals the input slew which is
correct since the interconnect essentially becomes a ramp-
follower under this condition. Bakoglu proposed a simple
slew metric based on the step response of an RC circuit [3].
Elmore [4], and more recently, Pileggi et al [5] noted that
the standard deviation of the impulse response was a good
estimator of output slew (Elmore called it the radius of
gyration). This notion makes intuitive sense since standard-
deviation measures the spread of the impulse response and
that is in essence what slew measures. Nevertheless, the
approach of this paper remains valid and can be used with
any step slew metric.

This remainder of the paper is organized as follows. Section
2 presents pertinent background information relating
probability and circuit theory. Section 3 shows our
techniques for extending step delay and slew metrics to
ramp inputs. Section 4 presents experimental results that
both validate the effectiveness of our approach and show
that our technique is much more effective than moment
massaging. Finally, we conclude the paper in Section 5.

2.  Background
We briefly review the relevant connections between
probability and circuit theory; for details, please refer to [5].
First, consider an unimodal probability distribution function
(PDF)  of a random variable  and its integral, the
cumulative distribution function (CDF)  in Fig. 1. The
mean of  is denoted by  and is marked in the figure.
Also marked are the 50% point or the median  and the
standard deviation .

Now consider the impulse response at a node of an RC tree,
 and its integral, , which is the step

response. We assume that there is no DC path to ground and
all voltages are normalized to one. As shown in [12], the

impulse response  is greater than or equal to zero over
all  and . Any continuous function which
satisfies these properties is a probability distribution
function (PDF)[2], i.e.,  and  respectively
correspond to  and  in Fig. 1. The authors of [5]
also showed that this PDF must be positively-skewed
( ) and unimodal.

The moments of the circuit are given by:

  (1)

and they can be computed efficiently, e.g., by path tracing
[11]. The Elmore delay, which is the mean  of  is
given by , i.e., the first moment of the impulse
response. The standard deviation of  is given by the
square root of the second central moment  of a PDF. The
central moments can be expressed explicitly as functions of
the circuit moments, e.g.,  and

. Hence, we have

(2)
The next section shows how we use this relationship
between  and the first two circuit moments to estimate
output delay and slew.

3.  The PERI Method
We now describe the PERI (PDF Extension to Ramp Inputs)
technique for extending delay and slew metrics for step
responses to ramps.

Suppose that an input  waveform is applied to the RC
circuit. The corresponding circuit response at the output is
given by the waveform , where  is
the convolution operator. The derivatives  and 
are both PDFs since  and  are both CDFs. It is a
property of convolution that . This can
be interpreted as the convolution of two PDFs to get the
PDF at the output node. 
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Let , , and  represent the PDFs corresponding to the
step response, the input waveform, and the output ramp
response from convolving  and . When referring to a
particular property of a PDF, we use functional notation to
specify the given PDF, e.g.,  is the mean of the step
response and  is the standard deviation of the ramp
output response.

The PERI technique derives from the following idea in
probability theory: when two mutually independent PDFs
are convolved, both the means and the central moments add
(see [5] and the references therein). For our application, this
means that 

, , and 
. (3)

In addition, as a direct result of Equation (2), we have that
the sum of the squares of the standard deviations add:

. (4)

3.1  PERI for Delay Metrics
It is the accepted practice to measure delay as the time

difference between when the output crosses the 50% point
and the time when the input crosses the 50% point. Thus,
the delay due to a step input is given by the median  (as in
Fig. 1) of the step response, . We assume that a delay
metric for  is given, e.g., via D2M [1] or h-Gamma
[8]. Our objective is to find an accurate estimate for the
median  of the ramp output response. The estimated
delay  under a ramp input is thus given by

. 

For example, one might assume that the input waveform is a
ramp input with slope , as shown in Fig. 2(a) (though
PERI can be applied to any symmetric input waveform with
known mean and standard deviation). The PDF of this

waveform is a uniform distribution with mean 
and standard deviation . Thus, the delay of
the output ramp is  as shown in Fig.
2(b).

To derive PERI, we use the principle of the skewness, i.e.,
the relative difference between the mean and the median.
Specifically, the Pearson Skewness [14] is defined as

, and the Pearson Skewness Coefficient [14] is
defined as . The skewness and the skewness
coefficient are proportional, i.e., .
Thus, we can write

 (5)

(6)

Note that a symmetric input waveform has zero skewness,
i.e., . Hence from Equation (3), we have

. The fact that the input waveform has zero
skewness also implies that . Hence, since

, we have
 which

simplifies to . We can rewrite Equation (6) as 

(7)

We now assume that the constants of proportionality 
and  are equal. Note that this is the one assumption that
introduces error into the PERI method. We believe that in
general these values should be quite close as the relationship
between skewness and the skewness coefficient should be
similar across similar looking PDFs. Dividing Equation (7)
by Equation (5) yields:

(8)

If we let  denote the constant , then solving
Equation (8) for  yields our delay estimate for the
ramp response:

(9)
Recall from Equation (4) that 
which implies that the constant  lies between zero and
one. Thus,  reflects the amount of trade-off between the
Elmore Delay ( ) and the step delay metric . For
example, when the input response is a ramp input with slope

,

(10)

Notice that for a step input ( ),  and thus
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Figure 2  Ramp input and its corresponding output response of 
an RC circuit
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 equals the step delay metric . On the other
hand, for infinitely slow ramps, as , we have 
and  approaches the Elmore Delay, which has been
shown to be the upper limit on delay [5]. Thus, the PERI
technique has the desired asymptotic behavior. 

3.2  PERI for Slew Metrics
Slew is a single measure for how fast the output waveform
rises to Vdd. Since the CDF may asymptotically approach
Vdd without actually reaching it, a commonly used
definition of slew is the 10/90 slew, i.e., the time difference
between when the waveform crosses the 90% point and the
10% point. The slowly climbing tail of the output waveform
may necessitate an even tighter slew definition, e.g., 30/70. 

Elmore observed that the output slew is proportional to its
standard deviation [4], and this was also noted by Gupta et
al. [5]. For our convolution example, this means that

,  and
, for constants , , and . From

Equation (4), we have:

. (11)

As we did for delay, we assume the constants of
proportionality are identical. While in reality the constants
of proportionality are not all the same, experimental results
show that only a small error is incurred by this assumption.
This assumption leads to our proposed estimation method
for ramp slew:

.2 (12)
This result is conceptually quite simple. The output slew is
the root-mean square of the step slew and input slew. This
result can also be applied for any slew measurement, 10/90,
30/70, etc., as long as all three slews are measured using the
same criteria. For example, in Fig. 2,  for
10/90 slew and  for 30/70 slew. Further, Equation (12)
exhibits the right limiting behavior: as , we
have , and as , we have

.

3.3  A Simple Example
We now show how one can apply PERI to a simple
example, the last node (node 5) in the randomly generated
5-segment RC ladder shown in Fig. 3. The first two circuit
moments of this node are:  and

. Though we can use any delay metric for
, to show the effectiveness of PERI, we use the actual

delay  ps, as computed by RICE. Since
, the ramp delay in Equation (9) reduces to

. One can see that when ,
the ramp delay equals the Elmore delay, corresponding to an
infinite input ramp. When , the ramp delay equals
the step delay, and for all other values of , the ramp delay
lies between these two extremes.

For example, if we assume a saturated ramp input of
ps, then Equation (10) yields , giving

us  ps. The actual delay value is .
Alternatively, a  ps input ramp yields

 and a corresponding delay of .
The actual delay is  ps. Thus, for both input slews, the
PERI delay method (which can be computed quickly from
just two circuit moments) has relative error of less than two
percent.

To find the ramp output slew at node 5, we use the actual
value for the step slew. If one assumes  ps, the 10/
90 slew is  ps, and we find using RICE that

 ps. Applying Equation (12) yields
 ps. The actual 10/90 output slew is

 ps, which is a less than two percent relative error.

4.  Experimental Results
For our experiments, we extracted 432 routed nets from an
industrial ASIC part in 0.20um technology. The nets were
chosen to be those with maximum sink delay of at least 10
ps and with a ratio of the delay to the closest sink to the
delay to the furthest sink to be less than 0.25. This criteria
ensures that the nets are reasonably challenging by having
both near and far end sinks. A distribution of the nets by
number of sinks is given Table .

We classified the sinks into three categories: i) far-end
sinks: sinks that had a delay greater than or equal to 75% of
the maximum delay (where the maximum is taken over all
sinks in the net), ii) near-end sinks: sinks that had delay less
than or equal to 25% of the maximum delay, and ii) mid-end
sinks: the rest of the sinks. Of the 2244 total sinks, 367 are
near-end, 670 are mid-end, and 1187 are far-end sinks. For
every sink we measured the delay and 10/90 slew using
fourth order RICE approximation as our golden calculator,
since experience suggests the resulting waveform is

2 As pointed out by one of the anonymous reviewers, apparently
such a formula has been part of the folklore among oscilloscope
users.
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indistinguishable from that obtained using SPICE
simulations. For each net we randomly chose a saturated
ramp with a slew between  ps and  ps distributed
randomly.

4.1  Experiments for an Ideal Delay Metric
Our first experiments examine how well PERI performs
when we use an ideal step delay and slew metric, i.e., 4-pole
RICE. The purpose is to isolate the error caused by using
PERI to approximate the ramp response from the chosen
delay or slew metric. We measure the ratio of the PERI
delay  to the ideal delay, and report the average,
minimum and maximum values, along with the standard
deviation of these values in Table 2.

For comparison purposes, we implemented another
algorithm for comparison that uses a linear interpolation
technique. Although not published, the idea behind linear
interpolation is a “folklore” algorithm. Basically, this
algorithm uses the same principle as in Equation (9) to trade
off between Elmore delay and a delay metric (e.g., 
times Elmore delay), but uses a much simpler formula for

:

(13)

When , then , resulting in the step delay
metric formula, and when  is greater than or equal to ten
times the Elmore delay, , yielding the Elmore delay.
We know that as , the delay approaches Elmore
delay. We assume ten times Elmore to be sufficiently close
to a saturated ramp. Of course, one could use any other
constants as well. Results are also shown in Table 2.

Note that from the last line in the table that on average PERI
is only 0.3% away from optimal, though the range of errors
may potentially be large. By comparison, the average for
linear interpolation is 3.2% and its standard deviation is
higher than that of PERI. PERI is extremely effective for
far-end sinks as one can see from the low standard deviation
and that minimum and maximum values are close to one.
Linear interpolation is also effective at the far end, though
the standard deviation is higher and the worst-case behavior
is more extreme.

4.2  Experiments for an Ideal Slew Metric
We now repeat the same experiments, except using an ideal
slew metric, i.e., 4-pole RICE. For comparison, we use a
linear interpolation slew method. Industry folklore typically
treats slew as additive with respect to the input slew, i.e.,

, where  represents the slew
degradation of the interconnect. To get a linear
interpolation ramp extension for slew, we use the same  as
in Equation (13) and choose . One can also
view the formula as  and
get an additive form (instead of root-mean square) of

Equation (12). This formula has the correct limiting
behavior  as  and

 for .

Table 3 presents slew results in the same manner as Table 2,
this time measuring 10/90 slew accuracy. Observe from the
last row that the average error for PERI only 1% (versus
11.2% for Linear Interpolation) and that the largest relative
error over all 2244 instances is just 8.6% (versus 28.6% for
Linear Interpolation). Indeed, by comparing the PERI
results in Table 3 to Table 2, one can observe much smaller
standard deviation for slew (0.016) than for delay (0.164),
meaning the overall error introduced by PERI for slew is
minimal. To us, it is clear that PERI’s simple root mean
square formula for output slew is preferred to the traditional
idea of additive slew degradation.

4.3   Comparing PERI to Moment Massaging
So far we have compared PERI to a folklore Linear
Interpolation method for extending step metrics to ramps.
Another approach which accomplishes this is the “moment
massaging” technique that was suggested in [1]. Moment
massaging converts the circuit moments of the impulse
response to modified moments of the ramp response. For
example the first two ramp moments are 
and . Then a delay and/or slew
metric can be computed using these new circuit moments,
assuming the delay/slew metrics are computed from the
circuit moments.

To compare to moment massaging, we cannot directly apply
RICE for the step delay and choose the D2M delay metric
[1] for our delay experiments. We re-ran the same
experiments as in Section 4.1 using D2M instead of RICE
for the step delay basis and summarize the results in
Table 4. Observe from the last row that the average relative
error for D2M is about 8.5% which is significantly better
than the 153% relative error for moment massaging. Indeed,
it is clear that moment massaging is not an effective
technique for extending step metrics to ramps. Also note
that like D2M, PERI has less than 1% error for far-end
sinks.Next, we compare PERI to moment massaging for
slew. Although there really have not been any higher-order
slew metrics proposed in the CAD literature, Bakoglu
suggested an Elmore-like metric for 10/90 slew, namely 2.2
(or ) times the  delay [3]. The results are shown
in Table 5. Despite being a first-order slew approximation,
the PERI results using the Bakoglu metric are surprisingly
accurate. From the last row in the table, one observe a 4.0%
relative error versus RICE for PERI, while moment
massaging sports a 31.8% relative error. As compared with
Table 4, we see that most of the error induced for PERI is
from the slew metric, not from the PERI extension to a ramp
response. 
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4.4  PERI Performance As Input Slew Changes
For the final set of experiments, we wish to demonstrate
how PERI performs as a function of the input slew.
Consider the seven node RC circuit in Fig. 4, which was
also presented in [1][7]. 10/90 input slew values of

, and  picoseconds were
chosen and delays and slew were computed for each node
by RICE. We also computed the RICE delay and slew using
a step input, and use this value to as the step basis for
computing delays and slews via PERI and linear
interpolation. The results are shown in Table 6 and Table 7.

Once again, observe that PERI delays and slews are quite
comparable to RICE. The accuracy of both PERI and LI is
best when the input slew is either very small (250 ps) or
very large (4000 ps). For the mid-rang input slew values,
PERI deviates a bit more from RICE, especially for the
near-end node. The delays and slews from PERI are more
accurate (as measured by RICE) than Linear Interpolation.
The advantage for PERI versus Linear Interpolation is more
pronounced for slew than for delay. For a closed-form
metric approach, the PERI technique are quite promising

5.  Conclusions
We presented PERI, a technique for extending the step
delay and slew metrics to handle the more realistic case of
ramp inputs. PERI derives from a key result in statistics:
that under convolution the means and the central moments
of PDFs are additive. We also make use of the fact that the
skewness of a PDF is proportional to the relative separation
of the mean from the median. For output slew, we show that
a simple root mean square formula is extremely effective for
measuring the output ramp slew. The key advantages of
PERI are that it is simple to use, requiring nothing more
than two circuit moments, and that it can be used in
conjunction with any step input delay and slew metrics. Our
experiments validate the effectiveness of PERI using ideal
delay and slew metrics on challenging, actual industry
Steiner routes. Further, we show that PERI is clearly more
effective than either linear interpolation or moment
massaging.

Our future work seeks to find a simple, yet accurate slew
metric for a step input, since unlike delay metrics, slew
metrics for RC trees has not yet been explored significantly
in the literature.
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Figure 4  An example 7-node RC circuit.
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Slew extension method Linear Interpolation PERI

error measure avg SD max min avg SD max min

far-end sinks (1187) 1.007 0.010 0.996 0.936 1.006 0.005 1.021 1.000

mid-end sinks (670) 0.976 0.056 1.015 0.665 0.984 0.038 1.040 0.781

near-end sinks (367) 1.249 0.600 3.818 0.601 1.025 0.398 2.250 0.333

all sinks (2224) 1.032 0.264 3.818 0.601 1.003 0.164 2.250 0.333

Table 2  Delay ratios of PERI ramp output to exact output over all sinks from 432 nets. 
Average, minimum, and maximum ratios, along with standard deviation is reported.

Slew Extension Method Linear Interpolation PERI

error measure avg SD max min avg SD max min

far-end sinks (1187) 1.122 0.057 1.254 1.013 0.999 0.004 1.004 0.983

mid-end sinks (670) 1.100 0.045 1.240 1.015 0.987 0.014 1.003 0.934

near-end sinks (367) 1.100 0.095 1.286 0.960 0.968 0.022 1.014 0.914

all sinks (2224) 1.112 0.063 1.286 0.960 0.990 0.016 1.014 0.914

Table 3  10/90 Slew ratios of PERI ramp output to exact output over all sinks from 432 nets. 
Average, minimum, and maximum ratios, along with standard deviation is reported.

Step Delay Basis D2M (2-moment delay metric)

Ramp Extension Method moment massaging PERI

error measure avg SD max min avg SD max min

far end sinks (1187) 1.291 0.162 1.801 1.027 1.003 0.008 1.034 0.983

mid end sinks (670) 1.618 0.294 2.805 1.115 1.140 0.096 1.472 0.976

near end sinks (367) 8.225 10.105 52.46 1.259 1.246 0.336 2.250 0.500

all sinks (2224) 2.534 4.828 52.45 1.027 1.085 0.174 2.250 0.500

Table 4  Delay comparisons of PERI to moment massaging using the D2M delay metric.

Step Slew Basis Bakoglu Slew Metric

Ramp Extension Method moment massaging PERI

error measure avg SD max min avg SD max min

far-end sinks 1.362 0.120 1.726 1.043 1.134 0.058 1.247 0.978

mid-end sinks 1.115 0.140 1.772 0.840 0.892 0.076 1.207 0.748

near-end sinks 1.543 0.383 2.860 0.656 1.006 0.214 1.898 0.656

all sinks 1.318 0.244 2.860 0.656 1.040 0.150 1.898 0.656

Table 5  10/90 Slew comparisons of PERI to moment massaging using Bakoglu’s slew metric. 
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input slew 250 500 1000 2000 4000

node LI PERI RICE LI PERI RICE LI PERI RICE LI PERI RICE LI PERI RICE

1 213 207 210 229 235 272 261 321 371 325 465 466 454 541 530

2 386 383 383 397 407 409 420 479 499 465 604 597 555 674 662

3 487 484 482 497 505 498 517 572 578 558 702 699 639 788 777

4 708 707 705 716 724 716 730 781 761 760 896 884 819 980 968

5 851 851 849 858 867 859 870 921 900 895 1030 1014 945 1111 1099

6 463 461 461 473 484 487 493 555 570 533 678 668 613 746 733

7 925 925 923 931 941 933 944 994 974 966 1102 1086 1013 1183 1171

Table 6  Delay comparisons for each node in Fig. 4 using RICE as the ideal delay metric (ps).

input slew 250 500 1000 2000 4000

node LI PERI RICE LI PERI RICE LI PERI RICE LI PERI RICE LI PERI RICE

1 1772 1614 1659 1949 1671 1758 2305 1882 2003 3017 2558 2624 4439 4306 4228

2 1894 1725 1733 2082 1779 1816 2457 1978 2046 3208 2629 2659 4709 4349 4267

3 2168 1996 2003 2356 2042 2079 2733 2218 2293 3487 2814 2872 4995 4463 4395

4 2354 2173 2164 2549 2215 2219 2941 2379 2412 3725 2942 2969 5291 4545 4468

5 2416 2230 2223 2617 2271 2267 3019 2431 2449 3823 2985 2998 5430 4573 4491

6 1918 1743 1748 2110 1796 1826 2497 1994 2054 3270 2641 2665 4812 4356 4272

7 2426 2237 2233 2630 2279 2276 3038 2438 2456 3853 2990 3004 5482 4576 4495

Table 7  Slew comparisons for each node in Fig. 4 using RICE as the ideal slew metric (ps).
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