
Energy-Aware Memory Allocation in Heterogeneous
Non-Volatile Memory Systems

Hyung Gyu Lee and Naehyuck Chang
∗

School of Computer Science & Engineering Seoul National University, Korea

{hglee, naehyuck}@cselab.snu.ac.kr

ABSTRACT
Memory systems consume a significant portion of power in hand-
held embedded systems. So far, low-power memory techniques
have addressed the power consumption when the system is turned
on. In this paper, we consider data retention energy during the
power-off period. For this purpose, we first characterize the data
retention energy and cycle-accurate active mode energy of the non-
volatile memory systems. Next, we present energy-aware memory
allocation for a given task set taking into account arrival rate, exe-
cution time, code size, user data size and the number of memory
transactions by the use of trace-driven simulation. Experiments
demonstrate that our optimal configuration can save up to 26%
of the memory system energy compared with traditional allocation
schemes.

Categories and Subject Descriptors
C.5.3 [Computer System Implementation]: Microcomputers—
Portable devices; B.3.0 [Hardware]: Memory Structures—Gen-
eral

General Terms
Measurement, Design, Experimentation

Keywords
low-power memory, Non-volatile memory, Memory allocation

1. INTRODUCTION
As hand-held devices become equipped with high-performance

large-capacity memory systems, battery capacity becomes one of
their most significant limitations. So far, system-level low-power
techniques for the memory system have focused on the reduction
of power consumption while the system is powered on or is in data
access mode. In reality, a non-volatile main memory system is one
of the most distinct features of modern hand-held embedded sys-
tems. Thus memory systems consume significant amount of power
when the system is in data retention mode. For example, low-power
PDAs (Personal Data Assistants) are known to consume more than

∗Corresponding author. The RIACT at Seoul National University
provide research facilities for this study. This work was partly sup-
ported by the Brain Korea 21 Project.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISLPED’03, August 25–27, 2003, Seoul, Korea.
Copyright 2003 ACM 1-58113-682-X/03/0008 ...$5.00.

half of the energy in the battery for data retention. This paper ad-
dresses power reduction of memory systems, taking data retention
energy into account, by the use of energy-aware memory alloca-
tion.

Typical embedded computing systems are equipped with three
types of memory devices for boot-up storage, primary storage and
secondary storage. The boot-up memory must be naturally non-
volatile and random-accessible for the read operation. The primary
storage must be high-performance both for read and write opera-
tions, and of large capacity. The secondary storage must be natu-
rally non-volatile, with large capacity and of low cost.

Despite semiconductor progress, no single semiconductor non-
volatile memory device at the mass-production stage satisfies all
the above constraints. Thus, most hand-held systems are equipped
with heterogeneous non-volatile memory devices combining Flash
memories and battery-backed dynamic memories in self-refresh
mode. A combination of different types of non-volatile memory
devices works in a complementary manner.

As various types of non-volatile memory devices show different
characteristics, we must allocate them carefully. But a traditional
allocation scheme does not guarantee energy efficiency because it
does not care about the characteristics of the memory systems and
applications.

In this paper, we provide techniques for energy-saving memory
allocation in the tasking environment as follows: Firstly, we ex-
plore the energy consumption of the three aforementioned non-
volatile memory devices by cycle-accurate energy measurement
and precise energy characterization. And then, we derive analytical
energy models of various combinations of the non-volatile memory
devices. Secondly, we perform trace-driven energy simulation so
that we can propose energy-efficient memory allocation schemes
in heterogenous non-volatile memory systems for given embedded
applications and user profiles.

2. RELATED WORK
There is relatively little literature that deals with data retention

energy. Palm Pilot opened a new era of PDA with their Hotsync
technology. The active power consumption of a Palm Pilot Pro is
reported by around 130mW to 150mW in the worst case, while the
data retention power (in sleep mode) is 26mW [1]. Palm Pilots
are equipped with asynchronous DRAM devices and retain data by
battery back up. In case of a 1,200mAH battery, the manufacturer
suggests up to 10 hour continuous usage is possible, and the power
consumption in active mode justifies this data [1]. On the other
hand, data sheets suggest 1mW data retention power for an asyn-
chronous DRAM. The sleep mode power [1] does not seem to be
the data retention power because we commonly experience a bat-
tery life of about a month if we do not turn on the device. Even
though we use a Palm Pilot for weeks without battery charging, the
actual run time is a few hours unless we play games for a long time;
if so, we will run out of the battery shortly. This suggests that we
usually use more than half of the battery energy for data retention.

Recently, WinCE PDAs have become more popular than the Palm
Pilot series. They are equipped with a 32bit RISC processor run-
ning at hundreds of MHz. To provide at least 16MB (generally
64MB or higher) memory, there is no alternative to SDRAMs. Re-
cent research reports the power consumption of four PDAs: the

420

Power
manager

Battery
manager

(b) Battery-backed SDRAM + NOR Flash

SDRAM
NOR
Flash

CPU/
L1 Cache

(a) SDRAM + NOR Flash

SDRAM
NOR
Flash

CPU/
L1 Cache

(c) Battery-backed SDRAM + NOR Flash + NAND Flash

Power
manager

Battery
manager

SDRAM
NOR
Flash

CPU/
L1 Cache

NAND
Flash

Figure 1: Typical configurations of the heterogeneous non-
volatile memory systems.

Compaq Aero (MIPS R4000 @70MHz, 16MB RAM), the Com-
paq iPAQ (StrongArm @206MHz, 32MB RAM), the Casio Cas-
siopeia, (MIPS VR4121 @131MHz, 32MB RAM) and the HP Jor-
nada (SH3 @133MHz, 32MB RAM) [2]. The power consumption
varies depending on the application, but generally ranges from 1W
to 3W, and thus results in a 3-hour to 5-hour continuous run. These
devices are usually equipped with a Lithium-ion battery of around
1,500mAH capacity. Data sheets describe the data retention energy
of two SDRAM devices as roughly 10mW, and thus data retention
is guaranteed for around two weeks.

Theoretical research has introduced power consumption models
and system-wide estimation of power requirement for a hand-held
embedded system [3]. It includes power analysis of a DRAM mem-
ory system, but no analysis of data retention power. Finding an op-
timal configuration for a memory system also reduces power con-
sumption [4]. Proper clustering can gather busy blocks into the
same banks. This helps to maximize the chance of the others being
powered down [5]. All of these techniques focus on power con-
sumption when the system is turned on even though they manage
the device power in the idle mode, (i.e., there is no consideration of
data retention energy).

3. NON-VOLATILE MEMORY SYSTEMS
As mentioned in the previous section, the ultimate memory de-

vice does not really exist. A practical approach is to provide a
heterogeneous non-volatile memory system.

Every system must have a naturally random-accessible non-volatile
memory device for boot up. The NOR Flash memory is suitable for
this purpose. Fig. 1 (a) shows a non-volatile memory systems con-
sisting of NOR Flash memory and SDRAM. The NOR Flash mem-
ory is used to support only asynchronous interface, which does not
provide enough transfer bandwidth for microprocessors operated at
a high clock frequency. Thus, they are typically employed shadow
memory configuration, which means copying the whole contents
of the NOR Flash memory to the SDRAM before use. Recent Intel
StrataFlash memory supports a 33MHz page-mode read operation
and thus brought the NOR Flash memory into use for XIP (eXecu-
tion In-Place).

As commercial products cannot justify the cost of large capacity
NOR Flash memory, non-volatile mass storage with battery back
up of the SDRAM is provided, as shown in Fig.1 (b). The SDRAM
is already used as primary storage; adding a battery back up sim-
ply achieves large amount of non-volatile storage. But we have to
provide the data retention energy. The combination of NOR Flash
memory and battery-backed SDRAM is a basic setup of modern
PDAs.

NAND Flash memory devices can be used only for the secondary
storage in cooperation with the primary storage. Many products
are equipped with optional NAND Flash memory in the form of
a removable card such as CompactFlash (Fig. 1(c)). Alternatively,
the NAND Flash memory is sometimes permanently mounted on
the circuit board. This configuration may not back up the SDRAM
while saving and restoring the SDRAM contents to and from the
NAND Flash memory.

Table 1: Summary of the energy and timing associated coeffi-
cients (@66MHz with 32Bit address and data buses).

Energy TimingDevice
Coeff. Value Coeff. Value

CPU EC 100 (mJ/sec) NA
ERSD 70.2 (nJ/4words) TRSD 120 (ns/4words)
EWSD 51.6 (nJ/4words) TWSD 120 (ns/4words)

SDRAM EISD 45.1 (mJ/sec) NA
EFSD 99.2 (nJ/refresh) NA
ET SD 1.8 (mJ/sec) NA

NOR ERNR 33.6 (nJ/4words) TRNR 210 (ns/4words)
Flash EWNR 107 (µJ/16words) TWNR 464 (µs/16words)

NAND ERND 1.18 (µJ/512bytes) TRND 35.8 (µs/512bytes)
Flash EWND 9.51 (µJ/512bytes) TWND 226 (µs/512bytes)

{E|T}ab
a (state): R (Read), W (Write), I (Idle), F (reFresh), T (reTention)
b (device): SD (SDRAM), NR (NOR Flash), ND (NAND Flash)

4. ENERGY CHARACTERIZATION

4.1 System-wide energy consumption
The energy consumption of an embedded system for [t0, t) is de-

noted by

ET (t) =
N

∑
i=1

EXi(t)+EM(t). (1)

We divide the total system energy into energy for task execution
and common mode energy, denoted by EXi(t) and EM(t), respec-
tively. Let us assume that t0 = 0, for convenience and without loss
of generality. The goal of this paper is to find a memory allocation
having the minimum ET (t) for a given task set, T = (τ1, ...,τN).

We consider a task model with independent exponential arrival
rates. A task τi has a 5-tuple, (λi,εi,Ci,Di,ρi), where λi is the
arrival rate, εi is the average execution time, Ci is the code size, Di
is the data size, and ρi is 0 if data is read-only, otherwise ρi is 1.

At each invocation j, the task τi activates with εi(j). The average
execution time of task τi is given by

εi =
1
k

k

∑
j=1

εi(j). (2)

The energy for task execution is given by

EXi(t) = λit(EC(εi + tLi + tSi)+(Emi +Eli +Esi)). (3)

EC is the energy consumption of the CPU for unit time; tLi is the
elapsed time for loading the code and the data if necessary; tSi is the
elapsed time for data saving if necessary; Emi is the energy con-
sumption of the memory system during task execution; Eli is the
energy consumption of the memory system for loading the code
and the data; Esi is the energy consumption of the memory sys-
tem during data saving. We derive the average active-mode energy
values of EC from the data sheets and/or measurement.

The common mode energy consumption, EM(t), is given by

EM(t) = EK(t)+ER(t)+EF (t), (4)

where EK(t), ER(t) and EF (t) are leakage energy, data retention
energy and refresh energy, respectively.

4.2 Device energy characteristics
This paper covers three different types of non-volatile memory

devices; battery-backed SDRAM, NOR Flash memory, and NAND
Flash memory. We derive the energy consumption of non-volatile
devices for data access by the use of a state-machine-based energy
characterization [6] so that we can model the active and idle energy
correctly.

Table 1 summarizes the energy and timing coefficients of the
above equations. Although the atomic access sizes are different,

421

Table 2: Memory allocation methods for the heterogenous non-
volatile memory systems (C: code, D: data).

Allocation No. 1 2 3 4 5 6 7 8 9
SDRAM C, D C D C D

NOR C, D D C C D
NAND C, D D C D C

if we convert the values so as to compare the energy characteris-
tic of each device for the same amount of data, we find out that
NOR Flash memory has best energy density in Read operation and
SDRAM has best in write operation. A static analysis can be used
to derive tLi, tSi, Eli and Esi in Eq. 3. On the other hand, we have
to profile the memory transactions in order to obtain Mci, Mri and
Mwi, which are the number of instruction cache misses, the number
of missed reads of the data cache and the number of missed writs or
flushed of the data cache, respectively. We can also perform cycle-
accurate simulation of the bus function and derive average values
of Mci, Mri and Mwi for unit time.

4.3 Memory system energy consumption
Table 2 shows the possible cooperative memory allocation schemes

of the heterogeneous non-volatile memory systems. The following
three cases explain their energy consumption.

4.3.1 Battery-backed SDRAM
Energy consumption for a burst-mode read access, ERSD, occurs

when there is a cache miss in the instruction cache and a read miss
in the data cache. Energy consumption for a burst-mode write ac-
cess is denoted by EWSD. The SDRAM consumes leakage energy,
EISD, at all times except in the self-refresh mode.

The memory system energy consists of energy for instruction
fetch, data read and data write, and is given by

Emi = εi(MciERSD +MriERSD +MwiEWSD). (5)

The data retention energy does not vary with the amount of data in
conventional SDRAM. Since we assume a single microprocessor,
the total execution time of the task set T is denoted by

tA =
N

∑
i=1

λit(εi + tLi + tSi). (6)

The leakage energy, the data retention energy, and the energy for
refresh are as follows:

EK(t) = tAEISD (7)

ER(t) = ET SD(t − tA) (8)

EF (t) = EFSD� tA
15.6us

�. (9)

4.3.2 Battery-backed SDRAM and NOR Flash mem-
ory

As mentioned in the previous section, NOR Flash memory such
as Intel StrataFlash supports XIP without noticeable performance
degradation. Thus cooperative operation of the SDRAM and the
NOR Flash memory means that the code and the data are stored
in the NOR and the SDRAM, respectively. The memory system
energy is given by

Emi = εi(MciERNR +MriERSD +MwiEWSD). (10)

Another alternative is to store not only the code but the read-
only user data, such as MP3 music files or JPEG images, in the
NOR Flash memory. The memory system energy is given by

Emi = εi(MciERNR +(1−η)MriERSD +ηMriERNR +MwiEWSD),
(11)

where η is the proportion of NOR Flash memory accesses among
the data cache read miss transactions. When a read transaction oc-
curs in the NOR Flash instead of in the SDRAM, it requires an

Table 3: Examples of the user profile (minutes).
MP3 MPEG4 CJPEG DJPEGState t ′

(λit ′, εi) (λit ′, εi) (λit ′, εi) (λit ′, εi)
s1 120 1, 20 1, 5 0, 0 2, 5
s2 180 2, 10 1, 10 1, 10 2, 5
...

...
...

...
...

...
sn 180 1, 10 2, 20 0, 0 0, 0
Di (MB) 20 8 10 9

additional access time, TRNR−TRSD, and thus the energy consump-
tion of the microprocessor increases proportional to TRNR −TRSD.

4.3.3 Battery-backed SDRAM and NAND Flash mem-
ory

As the NAND Flash memory is the secondary storage, it must co-
operate with the SDRAM primary storage. There are two choices:
either the code and the data are both stored in the NAND Flash
memory or the code is stored in the SDRAM and the data is stored
in the NAND Flash memory. The former involves additional time
and energy for loading both code and data, and the latter involves
time and energy for the data only. Once the data has changed after
execution, the data is again transferred to the NAND Flash mem-
ory. We assume that all the data is written back with a part of
changed content since there is usually a file system on the NAND
Flash memory. This rather overestimates the migration overhead in
later sections, and thus underestimates the power reduction.

The time for loading and saving the code and the data are given
by

tLi = � Ci +Di

512bytes
�TRND + �Ci +Di

4words
�TWSD (12)

and

tSi = � ρiDi

4words
�TRSD + � ρiDi

512bytes
�TWND. (13)

In the same way, the energy for loading and saving are denoted
by

Eli = � Ci +Di

512bytes
�ERND + �Ci +Di

4words
�EWSD (14)

and

Esi = � ρiDi

4words
�ERSD + � ρiDi

512bytes
�EWND. (15)

As observed in the battery-backed SDRAM-only memory sys-
tem, the SDRAM requires the same amount of leakage energy and
refresh energy during task execution (i.e., EK(t) and EF (t) are equal
to Eqs. 7 and 9, respectively). If both code and data are stored in
the NAND Flash memory, we do not have to retain the data in the
SDRAM, and thus ER(t) = 0, otherwise ER(t) is the same as in
Eq. 8.

5. ENERGY-AWARE MEMORY ALLOCA-
TION

5.1 Target memory system architecture
The target system is equipped with a heterogeneous non-volatile

memory system. A 64MB mobile SDRAM memory system is com-
posed of two SDRAM devices, K4S56163LC: 4banks × 4M ×
16bit. A 16MB NOR Flash memory system is composed of two
NOR Flash memory devices, Intel StrataFlash 28F640J3A: 4M ×
16bit. A 64MB NAND Flash memory system is composed of a
NAND Flash memory device, K9K1208U: 64M × 8bit.

5.2 Application programs and user profiles
We considered four embedded applications: an MP3 decoder,

an MPEG4 player, a JPEG compressor and a JPEG decompressor.

422

Table 4: Experimental results for static and dynamic allocation (J).
Typical allocation Static allocation Dynamic allocationProfile No.

Total Memory Allocation Total % Memory % Allocation Total % Memory % Allocation
1 579 316 6-6-6-6 517 89.3 241 76.2 8-8-8-9 515 88.9 239 75.6
2 634 332 6-6-6-6 601 94.9 283 85.2 8-8-8-9 563 88.8 246 74.1 Table 5
3 571 290 6-1-6-7 555 97.2 261 90.0 5-5-8-2 553 96.8 260 89.6
4 735 400 6-1-6-6 713 97.0 365 91.3 8-8-5-8 702 95.5 354 88.5

Table 5: Dynamic allocation and migration costs (J).

StateProfile No.
s1 s2 s3 s4 s5 s6

Alloc. 8-8-3-9 8-8-8-9 8-8-3-9 8-8-8-9 8-3-8-9 8-8-8-91
Cost - 0.28 0.012 0.28 0.044 1.11

Alloc. 5-2-5-8 8-2-8-8 8-2-8-8 5-2-5-8 8-2-8-8 8-2-8-82
Cost - 4.61 0 0.72 4.61 0

Alloc. 5-8-5-2 8-5-5-2 8-5-5-2 5-8-5-2 - -3
Cost - 2.91 0 2.43 - -

Alloc. 5-8-8-8 8-5-8-8 8-8-5-8 8-8-8-5 - -4
Cost - 2.91 2.35 2.33 - -

We chose four profiles with 25% to 30% average system utilization
(i.e., the duty ratio of power-on and power-off states). Profile 1
consists of sub-states whose system utilizations are similar to each
other. Each task is also assumed to have similar execution times,
and the number of executions is assumed to be small. We further
assume that the size of the user data is small enough to avoid allo-
cation to the SDRAM if we do not want to lose the data retention
energy. In Profile 2, on the other hand, each sub-state is assumed
to have a different system utilization, with large variations between
them. Other conditions are the same as in Profile 1. Profile 3 is sim-
ilar to Profile 1, but each task require a lot of data so that allocation
to the SDRAM is inevitable, even though we want to avoid expend-
ing data retention energy. Profile 4 is similar to Profile 3, but each
task has a different execution time, and the number of executions
at each sub-state is different as well. Table 3 presents examples of
the user profiles.

5.3 Static allocation
Static allocation fixes the memory allocation in advance and this

initial allocation does not change. With given n tasks and three
types of non-volatile memory system, we have 9n possible mem-
ory allocation schemes. Exhaustive search requires 9n trials which
implies a non-polynomial time complexity. However, since we can
determine EXi(t) and EM(t) for all i in advance, allocation is equiv-
alent to the well-known Knapsack problem.

Allocation is now straightforward. First, we derive EXi(t) and
EM(t) for the nine feasible allocations. The complexity of this
equation is only 9N, and we do not have to simulate the energy
consumption 9N times because Mci, Mri and Mwi are independent
of the configuration. We derive the optimal allocations for time t
using a heuristic approach to the Knapsack problem. Here, t is the
time to the next battery recharge.

Table 4 shows the energy reduction achieved by the energy-aware
memory allocation for the heterogeneous non-volatile memory sys-
tems. The total energy consumption includes energy for the CPU
and the memory systems. The four digits in the allocation col-
umn mean the allocation number of MP3, MPEG4, CJPEG and
DJPEG (Table 2) in the order of appearance. We compare the en-
ergy consumption of our scheme with a typical allocation scheme
for commercial PDAs, which allocates the codes and small amount
of user data to the SDRAM, extensive user data to the NAND Flash
memory, and default applications to the NOR Flash memory. The
energy gain is 10% to 24% depending on the characteristics of the
task and user profiles. This gain is significant but variable to user
profiles and applications.

5.4 Dynamic allocation
Static allocation sometimes fails to find an allocation that is dis-

tinctly superior to others. Dynamic allocation changes the initial
allocation as the user profile changes. Table 3 shows that user
behavior can be divided into several sub-states. Each sub-state
shows different task invocations for time t ′ and thus different opti-
mal memory allocation. The proposed dynamic allocation migrates
the allocation when the sub-state changes. The dynamic allocation
involves a migration overhead as shown in Table 5.

Table 4 also shows the energy gain achieved by dynamic allo-
cation. If each memory device has enough capacity to store all
the applications in one device, allocation is a trade-off between the
data retention energy and the migration overhead. Profile 1 shows
similar energy reduction for the static and the dynamic allocations,
while Profile 2 shows significant further energy reduction after the
dynamic allocation. If each memory does not have enough capac-
ity to avoid allocation to the SDRAM, we must expend the data
retention energy. In this case, we can save the energy during ac-
tive mode by allocating the tasks to the SDRAM as much as pos-
sible, considering task behavior and energy consumption for active
mode. Profile 3 shows the reduction of active energy for static and
dynamic allocation. Because task behavior is similar in each sub-
state, static and dynamic allocations show similar energy reduction
ratios, while Profile 4 shows that dynamic allocation achieves more
energy saving than static allocation.

6. CONCLUSIONS
We propose an energy-aware memory allocation of code and

data in heterogeneous non-volatile memory systems, considering
not only active mode energy but also data retention energy. For
this purpose, we derive analytical energy consumption models of
various heterogeneous non-volatile memory systems based on the
high-fidelity energy characterization of memory devices.

Energy-optimal memory allocation is achieved by taking into ac-
count the active-mode energy, the idle-mode energy and the data
retention energy, which are affected by the device characteristics as
well as the code, the data and the user profile. We present a static
allocation and a dynamic migration scheme, and analyze energy
savings under diverse user profiles and task models reflecting prac-
tical patterns of use. Trace-driven simulation results demonstrate
up to 26% of memory system energy reduction over traditional al-
locations.

7. REFERENCES
[1] M. Newman and J. Hong, “A look at power consumption and

performance on the 3Com Palm Pilot,” UC Berkeley CS252,
Spring 1998.

[2] R. Lee and R. Nathuji, “Power and performance analysis of
PDA architectures,” Advanced VLSI Computer Architecture,
Fall 2000.

[3] T. Simunic, L. Benini, and G. D. Micheli, “Energy-efficient
design of battery-powered embedded systems,” in
Proceedings of International Symposium on Low Power
Electronics and Design, pp. 212–217, August 1999.

[4] S. L. Coumeri and D. E. Thomas, “An environment for
exploring low power memory configurations in system level
design,” in Proceedings of ICCD, pp. 348–353, September
1999.

[5] A. R. Lebeck, X. Fan, H. Zeng, and C. S. Ellis, “Power aware
page allocation,” in Architectural Support for Programming
Languages and Operating Systems, pp. 105–116, 2000.

[6] Y. Joo, Y. S. Choi, H. Shim, H. G. Lee, K. Kim, and N. Chang,
“Energy exploration and reduction of SDRAM memory
systems,” in Proceedings of DAC 2002, pp. 892–897, June
2002.

423

	Main Page
	ISLPED'03
	Front Matter
	Table of Contents
	Author Index

