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ABSTRACT 
We present a selective filter-bank translation lookaside buffer 
(TLB) system with low power consumption for embedded 
processors. The proposed TLB is constructed as multiple banks 
with a small two-bank buffer, called as a filter-bank buffer, 
located above its associated bank. Either a filter-bank buffer or a 
main bank TLB can be selectively accessed based on two bits in 
the filter-bank buffer. Energy savings are achieved by reducing the 
number of entries accessed at a time, by using filtering and bank 
mechanism. The overhead of the proposed TLB turns out to be 
negligible compared with other hierarchical structures. Simulation 
results show that the Energy*Delay product can be reduced by 
about 88% compared with a fully associative TLB, 75% with 
respect to a filter-TLB, and 51% relative to a banked-filter TLB. 
 
Categories and Subject Descriptors 
B.3 [Hardware]: Memory Structures – Design Styles; associative 
memories, C.3 [Computer Systems Organization]: Special-
Purpose and Application-Based Systems– Real-time and 
embedded systems, I.6 [Computing Methodologies]: Simulation 
and Modeling - Simulation Output Analysis 
 
General Terms 
Design, Experimentation, and Performance 
 
Keywords 
Translation lookaside buffer, low power consumption, filtering 
mechanism, and performance evaluation. 
 
1. INTRODUCTION 
Recent embedded processors support a virtual memory system 
through a hardware memory management unit (MMU) that 
translates virtual addresses to physical addresses. Moreover, those 
processors are widely used for multimedia and communication 
applications, requiring high-speed computing capability, high 
memory bandwidth, and effective memory hierarchy support. Also 

power consumption is a major factor in designing high 
performance embedded processors. In general, reducing power 
consumption architecturally in the memory system causes a more 
significant impact than many other techniques at the gate/circuit 
level.  

The translation look-aside buffer (TLB) is an on-chip memory 
structure that caches only page table entries for recently used 
virtual to physical address translations [1]. Most present TLBs are 
typically implemented with static RAM cells for data, and content 
addressable memories (CAMs) for tags. 

Conventional methods for reducing TLB power consumption are 
to make it hold fewer entries, apply a filtering or a block buffering 
mechanism, and utilize a bank structure [2,3,4]. When the number 
of TLB entries decreases, it brings about performance degradation. 
The filter-TLB mechanism, where a very small TLB is located 
above the conventional L1 TLB, causes a performance 
degradation because it increases the number of two-cycle accesses. 
Block buffering can be viewed as an approach similar to the filter 
mechanism. However, accessing the block buffer should be 
completed during one cycle for modern microprocessors with high 
clock frequency. The bank structure consumes less power than a 
fully associative TLB because only half of the CAM entries are 
looked up on each access to the TLB. But a drawback is 
performance degradation due to the tendency to encounter more 
capacity misses in a specific bank. But in case of a specific 
application, e.g., tomcatv, high performance may be achieved as 
particular access pattern. 

Our TLB structure supports low power consumption for 
embedded processors. We use a selective filtering and bank 
mechanism that offers low power consumption via a simple 
hardware control mechanism. That is, either a filter-bank buffer or 
a main bank TLB can be selectively accessed using simple logic. 
The average accuracy of these operations is about 97% with 
respect to the total number of addresses generated by the CPU. 
Our scheme divides both the small filter structure into two banks 
and the main TLB structure into four banks to reduce power 
consumption. We show that energy is saved by accessing either 
the main bank or the filter-bank buffer selectively and by 
decreasing the number of fully associative TLB entries to be 
accessed at a time. 

Simulation results show that the power consumption of the 
proposed TLB is about 90% less than the fully-associative TLB, 
70% less than a filter-TLB, and 34% less than a banked-filter TLB. 
Also, the Energy*Delay metric is reduced by about 88%, 75%, 
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and 51% compared with a fully associative TLB, a filter-TLB, and 
a banked-filter TLB respectively. 

2. RELATED WORK 
In both modern high performance microprocessors and embedded 
processors, the TLB within the processor chip is split into separate 
instruction and data TLBs (e.g., Strong-Arm, MIPS, Alpha, 
PowerPC, and Ultra-SPARC, etc.,) [5,6]. The miss ratio in TLBs 
tends to be very small because each entry refers to a page of 
memory. However, a TLB miss is accompanied by a long handling 
latency, i.e., on the order of tens to hundreds of cycles. Therefore, 
a fully associative TLB is typically used to obtain lower miss rates. 
But full associativity is very costly in terms of power consumption. 
To reduce power consumption, the total number of TLB entry tags 
accessed at the same time should be fewer than 64 or 128 [7]. 
However, higher performance can be achieved if more TLB 
entries are provided. One method for dealing with these 
conflicting goals is to divide the entire TLB space into several 
sub-TLBs so that the number of tags accessed together can be 
reduced to fewer than 32 or 64 [4]. This bank-TLB [4] consumes 
less power than a fully associative TLB because only portions of 
the CAM entries are activated on each access. The block buffering 
technique [3,11,12] is an approach to reducing power 
consumption without having any effect on performance. However, 
accessing the block buffer must be completed during one cycle for 
modern microprocessors with high clock frequency.  

Another well-known TLB system, the filter (micro)-TLB is a 
hierarchical structure, where a very small TLB is located above 
the conventional L1 TLB [2]. In terms of power consumption, a 
filter-TLB turns out to be effective when combined with the 
instruction TLB due to its low miss ratio. But for the data TLB, 
the performance degradation of the filter-TLB, compared with a 
fully associative TLB, becomes significant.  

Other TLB studies for low power consumption address memory 
cell redesign, such as modifying the CAM cell [7], using a low 
power RAM [8], and voltage reduction [9]. The work by Juan [7] 
proposes modifying the CAM cell by adding another transistor in 
the discharge path. The work by Itoh [8] proposes low-power 
circuit design techniques, such as pulsed word-line and sense 
circuitry. With these schemes, the access circuitry is enabled only 
long enough to ensure reliable reading and writing of memory 
cells. Work by Liu [9] proposes a method of supporting a lower 
supply voltage in designing memory systems. Supply voltage is 
one of the most important parameters controlling CMOS power 
consumption. 

 
3. SELECTIVE FILTER-BANK TLB 
Our goal is to design a new TLB system to support low power 
consumption for embedded processors. A mechanism based on a 
filtering and banked structure is presented, which achieves both 
fast access time and low power consumption. 

The tag memory space in the fully associative TLB is 
implemented using a group of content addressable memories 
(CAMs), which have additional transistors to perform parallel 
comparisons for all the tag entries in memory. If the tag in any one 
entry is matched with the input tag placed on the bit lines, its 
corresponding match line remains high and all other match lines 
are pulled  low, and the selected match line activates the 
associated word line of the SRAM. Thus its corresponding PPN 

(physical page number) information is read out from the data array. 
The structure of the fully associative TLB precludes the need for 
any external comparison logic or multiplexors, but its access time 
is longer than that of other organizations because the tag 
comparison cannot be simultaneously performed with reading the 
data from SRAM. In addition, for each access to the CAM, all 
match lines must be precharged high, and all match lines that do 
not produce a match signal must then be discharged. These 
precharge and discharge operations are responsible for a 
significant fraction of the TLB's energy dissipation. 

With fully associative TLB structures, power consumption tends 
to increase abruptly as the number of TLB entries increases 
beyond 64 [7]. To keep power consumption low, the total number 
of TLB tags that are compared at once should thus be smaller than 
64. However, higher performance can be achieved if more TLB 
entries are provided. We would like to allow as many entries as 
possible, while keeping the number of tags accessed together to 
fewer than 64. This is done by dividing the entire TLB space into 
separately accessed sub-TLBs. In our preliminary exploration of 
the design space, we simulated several configurations and 
determined that the most effective number of sub-TLBs for our 
benchmarks is four. Figure 1 illustrates the organization of the 
selective filter-bank TLB with its dynamic searching operation. As 
shown in Figure 1, the selective filter-bank TLB is constructed as 
four banks, and each bank consists of a main TLB and its 
associated two small filter-bank buffers. Two small banks are 
located above its associated main TLB in the hierarchy. To reduce 
power consumption, the two low-order address bits of the tag for 
any given VPN (virtual page number) are used to select a main 
bank.  
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Figure 1. Selective filter-bank TLB 

 
The filter-bank buffer associated with each bank stores a tag value 
and a data value for the most recently accessed VA (virtual 
address) belonging to its corresponding main bank module. Only 
one of two small banks is activated by using a third bit of the tag 
for any given VPN. A two-bit comparator compares two bits of 
the VPN tag in the filter-bank buffer with two bits of a newly 
generated VPN. This comparator consists of two XORs and one 
AND gate. In our simulations, the particular two bits that are used 
for the comparison are the fourth and fifth low-order bits of the 
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VPN. If more bits are used for the comparison, then higher 
accuracy can be achieved. But overhead, such as the comparison 
time and hardware cost, then increases. Conclusively, the 
detection of dynamic searching operation occurs from comparison 
of the number of five bits. Therefore, a newly generated address in 
128-byte page boundary is detected correctly for accessing either a 
filter-bank buffer or a main bank selectively.  

The selective filter-bank TLB is designed so that eight two-bit 
comparators can operate in parallel for fast access. The two-bit 
comparison time takes place during the bank selection period and 
thus can be almost completely hidden. When a two-bit comparator 
identifies a match, the filter-bank buffer in its corresponding bank 
module is enabled to check first. If the VPN in the corresponding 
filter-bank buffer and the newly generated VPN are the same, the 
PPN in the corresponding data buffer is fetched in one cycle. But 
if the VPN comparison is a mismatch, then a one cycle delay is 
incurred to search the main bank TLB. Of course, if the two-bit 
comparator identified a mismatch, the corresponding main bank 
TLB is just enabled directly and checked in one cycle, and the 
comparison of the new VPN with the filter-bank buffer is skipped. 
When a virtual address is generated, our scheme dynamically 
chooses whether to compare it with the VPN in the filter-bank 
buffer or its corresponding main bank TLB. In general, the LRU 
(least recently used) replacement policy produces the best miss 
rates since it minimizes conflicts. Unfortunately, the cost of 
implementing this policy in hardware is high, so we have chosen 
the FIFO (first in-first out) replacement policy for the proposed 
TLB.  
 
1) Hit in the two-bit comparator for a chosen small bank 
module: When the CPU generates a virtual address, a subset of 
the address bits are used to select one of the four bank modules 
and one of the two small bank modules. If a hit occurs at the two-
bit comparator in the enabled small bank module, then the tag part 
of the filter-bank buffer is enabled and compared for a match of 
the entire tag field. If the VPN in the filter-bank buffer and the 
newly generated VPN are identical, the PPN stored in the 
corresponding data part is sent to the cache and compared with the 
tag bits of the cache. But if the VPN in the filter-bank buffer 
differs from the generated VPN, the cache tag comparison is 
squashed at the filter-bank buffer and its corresponding main bank 
TLB is accessed for a match during the next cycle. Also during 
that cycle, the tag part in the filter-bank buffer is updated with the 
generated VPN in order to store the most recently referenced VPN. 
If a requested page is found in the main bank TLB, its action is the 
same as a conventional TLB hit. And also, the data part in the 
filter-bank buffer is updated at the same time. If the requested 
page misses in the main bank, the OS invokes its miss handling 
service. 
 
2) Miss in the two-bit comparator for a chosen small bank 
module: If a miss occurs at the two-bit comparator, it means that 
VPN is definitely not in the tag part of corresponding small bank 
in filter-bank buffer. Thus, the filter-bank buffer comparison can 
be skipped. Instead, the corresponding main bank TLB is 
immediately searched in the first cycle, and the filter-bank buffer 
is simultaneously updated with the new VPN. The combination of 
a rapid, very-low-power test for the most recent VPN, with the 
ability to switch to main bank search without delay in most cases, 
results in significant power savings and minimal loss of 

performance. As we show in the next section, there are enough 
accesses to the most recent VPN to justify the use of the filter-
bank buffer for power reduction, and the number of two-cycle 
accesses are sufficiently minimized by the two-bit comparison, 
where performance is only slightly reduced. 
 
4. PERFORMANCE EVALUATION 
Our simulation environment, performance metrics, and power 
consumption analysis are presented in this section. The 
benchmarks used in the trace-driven simulation are taken from 
SPEC95. Four performance metrics, i.e., miss ratio, average 
memory access time, power consumption, and Energy*Delay 
product are used to evaluate and compare the proposed TLB 
system with other approaches. Only data references are collected 
and used for the simulation. The DineroIV and CACTI simulators 
[11] were modified to simulate the proposed TLB system. The 
basic parameters for the simulation are presented in Table 1. 
These parameters are based on the values used for common 32-bit 
embedded processors (i.e., Hitachi SH4 or ARM920T). 
 

Table 1. Simulation parameters 

 
4.1 Accuracy and overhead of the selective 
searching operation 
Many preliminary simulations were performed to explore the 
design space and establish the parameters of the design. For 
example, the proposed TLB uses two particular bits for initially 
checking whether the VPN in the filter-bank buffer and the 
generated VPN are potentially the same. Our simulations showed 
that when the low order fourth and fifth bits of any given VPN, 
are compared, it provides the most significant gain with the least 
overhead. Because of the number of variations explored, we do 
not present simulations of the different configurations, but instead 
focus on simulations that enable analysis of the performance and 
power saving that we achieve in comparison to prior research.  

The one aspect of our design that has the potential to cause a loss 
of performance is that an incorrect prediction by the two-bit 
comparator can add an extra cycle to the TLB search. We refer to 
this as two-cycle search overhead, and it is shown in Figure 2. In 
this figure, two other TLB structures that are also subject to two-
cycle overhead are compared with our design. The first one is a 
filter-TLB, constructed as a small TLB of 4 entries and an L1 TLB 
with 128 entries. The second one is a plain 4-way banked-TLB 
structure with four associated filter buffers.  Figure 2 shows that 
the percentages of two-cycle accesses for the filter-TLB, the bank-
filter TLB and our TLB turn out to be 22%, 15%, and 3% 
respectively. Thus, according to the simulation results, our scheme 
achieves the least overhead in comparison with the other 
hierarchical TLB structures.  

System parameters Values 

CPU clock 200 MHz 
Memory clock 133 MHz 

Memory bandwidth 1.6 Gbytes / sec 
Memory latency 70ns 
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Figure 2. Two-cycle access overhead 

 
Figure 3 shows the percentage of the each TLB hit that was found 
in the filter-bank buffers versus the main banks in our design. The 
filter-bank buffers account for over 80%~90% of the hits in most 
benchmarks. 
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Figure 3. The percentage of the each hit portion for the tag 
buffers and the main banks 
 
Clearly, significant amount of energy can be saved by avoiding 
accesses to the main bank TLB by 88% of the time, and instead 
the much lower power is used for filter-bank buffer logic. Because 
the two-cycle overhead of our design turns out to be negligible, 
compared with other hierarchical structures, we also avoid the 
pitfall of giving up performance in order to save power. 
 
4.2 Miss ratio and average memory access time  
In this section we compare three different TLB structures in terms 
of miss ratio and average memory access time. We do not consider 
page faults. We assume 15 cycles for miss handling, as in Table 1. 
CACTI circuit simulations [11] of the fully associative TLB, the 
small TLB of the filter-TLB, and the banks of a banked TLB show 
that accessing the fully associative TLB takes more than a single 
cycle, while the other structures can be accessed in one cycle. 
However, for our performance evaluations, we simply assume that 
all of these structures operate in one cycle. 

Figure 4 and Figure 5 show the average miss ratio and the average 
memory access time, respectively for our design and the 
conventional TLB structures, i.e., a FA (fully-associative)-TLB 
with 128 entries and a filter-TLB constructed with a small TLB of 
4 entries and an L1 TLB with 128 entries, and a four bank-TLB 
with an associated buffer entry above each bank of 32 entries. In 
Figure 4, most of the TLB structures can be seen to have similar 

average miss ratios. However, in terms of the average memory 
access time, the filter-TLB and the bank-filter TLB show greater 
performance degradation due to a large number of two-cycle 
accesses.  
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Figure 5. Average memory access times of the selective filter-
bank TLB and other TLBs 
 
4.3 Comparison of TLB power consumption 
Because all of the entries are searched for every memory access in 
a fully-associative TLB, one might expect that it would be the 
worst structure in terms of power consumption. But this is true 
only when it has more than 64 or 128 entries. Figure 6 shows the 
average energy dissipation for a TLB access, for various TLB 
configurations. The fully associative TLB has less power 
consumption than a set associative TLB when the number of 
entries is small. This is because the set associative TLB is 
constructed with more sense amplifiers than the fully associative 
TLB and these have higher energy consumption. For a 128-entry 
fully-associative TLB, the energy dissipated at the match line and 
the bit lines in the CAM reaches the point that it consumes more 
power than any other TLB configuration.  

The overall energy dissipation in the TLB can be divided into two 
parts, i.e., internal energy dissipation and external energy 
dissipation. The internal energy dissipation is the energy 
dissipation within the TLB system when the TLB is accessed. 
External energy dissipation includes driving the I/O pads for off-
chip memory access and searching the data cache for the required 
page table entry. First, we evaluate power consumption for 
various TLB configurations using the CACTI simulator, which 
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can calculate access times, cycle times, and power consumption 
for many types of hardware caches [11, 12].  
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Figure 6. Energy dissipation for a variety of TLB 

 
The CACTI simulator was modified for TLB simulation in several 
ways. First, the number of bits allocated to a TLB entry is not 
variable but fixed by the PTE (page table entry) size. Throughout 
this research, the PTE size was assumed to be 4 bytes. Second, in 
the cache, the length of the offset field within an address is 
determined by the size of a cache block, but in the TLB, a 
predefined page size determines the length of the page offset field 
for a given virtual address. In the simulation, it is assumed that the 
page size is 4 Kbytes but that the tag array has sufficient tag width 
to support a small page size of 1 Kbyte. Additionally there is one 
valid bit and an 8-bit extension address for each set in the tag 
array. Finally, CACTI could not originally simulate small caches 
with fewer than eight sets because its decoder architecture is based 
on a 3-to-8 decoder block. Thus, we modified the decoder 
architecture to simulate a 2-to-4 decoder block, which enables 
used of a 4-entry TLB. Our results are based on 0.8 µm 
technology with a 4.5 V supply voltage.  

Table 2 shows the power consumption for each event 
corresponding to a TLB access. For a fully associative 
configuration, most of the power is consumed in the decode stage, 
where the tag comparison is performed. The significant difference 
in power consumption between a TLB with 128 entries and one 
with 64 entries comes from the growth in power consumed by the 
match line and bit lines in the CAM. Each entry of Table 2 shows 
the power dissipation for a TLB read hit, a TLB read miss, and a 
TLB write. As expected, the power consumption almost doubles 
when the number of entries increases from 32 to 64, and from 64 
to 128 respectively.  
 

Table 2. Power consumption per access for TLB sizes 

 

The average power consumption of the fully associative TLB is 
given by: 

Avg.power  =  Nhit * Phit  +  Nmiss * Pmiss ,            (1) 
 
where Nhit and Nmiss are the ratios of hits and misses in the TLB or 
small buffer . Phit and Pmiss are the power required to process a hit 
and a miss respectively. Pmiss can be calculated as follows: 
 
                       Pmiss  =  PCAM  +  Pwrite  +  Poff ,                 (2) 
 
where PCAM is the power dissipated by all the entries when the tag 
part of the TLB is accessed, and Pwrite is the power dissipated by 
the data memory and tag memory in order to update an entry on a 
miss. Poff is the power dissipated by the cache and pads when a 
TLB miss occurs. Then Poff can be calculated as follows: 
 
             Poff  = Pcache_acc + Mcache_miss  * (Pcache_write + Ppad), (3) 
 
where Pcache_acc is the power used to access a cache block, 
Mcache_miss is the cache miss ratio, Pcache_write is the power for a 
cache write operation on a cache miss, and Ppad is the power 
dissipated at the on-chip pad slot. Ppad can be calculated as follows 
[11,12]. The capacitive load for off-chip destinations is assumed 
to be 20pF. Also a 32KB 2-way set associative data cache with 
32-byte block size is assumed, where the values of Wdata and Waddr 
are also 32 bits. The basic parameters for the simulation are 
summarized in Table 3.  
 

Table 3. Simulation parameters 
Mcache_miss 0.05 
Pcache_acc 21.291 nJ 
Pcache_write 10.145 nJ 

Ppad 6.48 nJ 
Poff 22.122 nJ 

 

Figure 7 presents the power consumption of the different TLB 
structures compared to our design for the same set of benchmarks. 
The power consumption data for the selective filter-bank TLB are 
obtained by considering all possible cases, such as the power 
consumed by the comparators, an additional multiplexor, and so 
on. These values are obtained from the CACTI model indirectly. 
The figure shows that a filter-TLB or a banked-filter TLB is a 
good structure in terms of power consumption because the hit 
ratio at the block buffer exceeds 80%. But their performance 
degradation tends to be significant because their small buffers are 
always compared before accessing the main TLB. In our design, 
the tag part of the filter-bank buffer is only compared when there 
is a hit in the two-bit comparators. As shown in this figure, power 
consumption in the proposed TLB can be reduced by about 90% 
compared with a fully-associative TLB, 70% with respect to a 
filter-TLB, and 34% compared with a banked-filter TLB. 

Figure 8 shows the Energy*Delay product for the different TLB 
structures. This metric provides a basis to identify a specific TLB 
configuration that offers the best balance of both power and 
performance. Simulation results show that the Energy*Delay 
metric is reduced by about 88%, 75%, and 51% compared with a 
fully associative TLB, a filter-TLB, and a banked-filter TLB, 
respectively. Conclusively, the proposed selective filter-bank TLB 

# of entries  in 
FA TLB  

Read / Hit 
(nJ) 

Read / Miss 
(nJ) 

Write 
(nJ) 

4 2.2630 0.6154 0.2397 
16 2.9209 1.1021 0.5526 
32 3.7575 1.7511 0.7097 
64 5.4200 3.0490 0.9908 

128 8.7272 5.6447 1.8551 
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offers the best result in terms of both performance and power 
consumption among all of the approaches. 
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Figure 7. Power comparison of the selective filter-bank TLB 
and other TLBs 
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5. CONCLUSION 
In order to achieve high performance, recent TLB research for 
embedded processors tends to support many page entries via large 
TLB sizes. But in fully associative TLBs, all the entries are 
searched for every memory access. Because of this, they would be 
among the worst structures in terms of power consumption. When 
they have more than 64 or 128 entries, their power consumption is 
especially high. Therefore, in order to attain low power 
consumption, a banked-TLB was designed that divides one fully 
associative TLB space into four smaller fully associative TLBs. 
To further reduce power consumption, a selective searching 
mechanism is applied in the proposed TLB to compensate for the 
weaknesses in the filter-TLB. The amount of energy saved by the 
proposed TLB strongly depends on the filtering effect of the two-
bit comparison that quickly selects between searching a main bank 
or a small bank in its buffer. This selection avoids the need to 
search the buffer on every access, thereby saving power. It also 
reduces the frequency of two-cycle accesses, which reduces the 
performance penalty incurred by previous low-power designs.  

We showed that the average hit ratios of the filter-bank buffers 
and the main banks of the proposed TLB are 88% and 12% 
respectively. Simulation results show that the average memory 
access time of the proposed TLB is almost equal to that of a 

conventional fully-associative TLB. But the power consumption 
of the proposed TLB is about 90% less than the fully-associative 
TLB, 70% less than a filter-TLB, and 34% less than a banked-
TLB with block buffering. Thus, the Energy*Delay metric is 
reduced by about 88%, 75%, and 51% compared with a fully 
associative TLB, a filter-TLB, and a banked-filter TLB, 
respectively. 
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