

A Selective Filter-Bank TLB System

Jung-Hoon Lee
CS, Yonsei University
134, Shinchon-dong,

Seoul, 120-749, Korea
+82-2-2123-2718
ljh@yonsei.ac.kr

Gi-Ho Park
System LSI Business,
Samsung Electronics
Co., Suwon, Korea
+82-31-279-7744

gmean@samsung.co.kr

Sung-Bae Park
System LSI Business,
Samsung Electronics
Co., Suwon, Korea
+82-31-279-7744

scpu1977@samsung.co.kr

Shin-Dug Kim
CS, Yonsei University
134, Shinchon-dong,

Seoul, 120-749, Korea
+82-2-2123-2718

sdkim@cs.yonsei.ac.kr

ABSTRACT
We present a selective filter-bank translation lookaside buffer
(TLB) system with low power consumption for embedded
processors. The proposed TLB is constructed as multiple banks
with a small two-bank buffer, called as a filter-bank buffer,
located above its associated bank. Either a filter-bank buffer or a
main bank TLB can be selectively accessed based on two bits in
the filter-bank buffer. Energy savings are achieved by reducing the
number of entries accessed at a time, by using filtering and bank
mechanism. The overhead of the proposed TLB turns out to be
negligible compared with other hierarchical structures. Simulation
results show that the Energy*Delay product can be reduced by
about 88% compared with a fully associative TLB, 75% with
respect to a filter-TLB, and 51% relative to a banked-filter TLB.

Categories and Subject Descriptors
B.3 [Hardware]: Memory Structures – Design Styles; associative
memories, C.3 [Computer Systems Organization]: Special-
Purpose and Application-Based Systems– Real-time and
embedded systems, I.6 [Computing Methodologies]: Simulation
and Modeling - Simulation Output Analysis

General Terms
Design, Experimentation, and Performance

Keywords
Translation lookaside buffer, low power consumption, filtering
mechanism, and performance evaluation.

1. INTRODUCTION
Recent embedded processors support a virtual memory system
through a hardware memory management unit (MMU) that
translates virtual addresses to physical addresses. Moreover, those
processors are widely used for multimedia and communication
applications, requiring high-speed computing capability, high
memory bandwidth, and effective memory hierarchy support. Also

power consumption is a major factor in designing high
performance embedded processors. In general, reducing power
consumption architecturally in the memory system causes a more
significant impact than many other techniques at the gate/circuit
level.

The translation look-aside buffer (TLB) is an on-chip memory
structure that caches only page table entries for recently used
virtual to physical address translations [1]. Most present TLBs are
typically implemented with static RAM cells for data, and content
addressable memories (CAMs) for tags.

Conventional methods for reducing TLB power consumption are
to make it hold fewer entries, apply a filtering or a block buffering
mechanism, and utilize a bank structure [2,3,4]. When the number
of TLB entries decreases, it brings about performance degradation.
The filter-TLB mechanism, where a very small TLB is located
above the conventional L1 TLB, causes a performance
degradation because it increases the number of two-cycle accesses.
Block buffering can be viewed as an approach similar to the filter
mechanism. However, accessing the block buffer should be
completed during one cycle for modern microprocessors with high
clock frequency. The bank structure consumes less power than a
fully associative TLB because only half of the CAM entries are
looked up on each access to the TLB. But a drawback is
performance degradation due to the tendency to encounter more
capacity misses in a specific bank. But in case of a specific
application, e.g., tomcatv, high performance may be achieved as
particular access pattern.

Our TLB structure supports low power consumption for
embedded processors. We use a selective filtering and bank
mechanism that offers low power consumption via a simple
hardware control mechanism. That is, either a filter-bank buffer or
a main bank TLB can be selectively accessed using simple logic.
The average accuracy of these operations is about 97% with
respect to the total number of addresses generated by the CPU.
Our scheme divides both the small filter structure into two banks
and the main TLB structure into four banks to reduce power
consumption. We show that energy is saved by accessing either
the main bank or the filter-bank buffer selectively and by
decreasing the number of fully associative TLB entries to be
accessed at a time.

Simulation results show that the power consumption of the
proposed TLB is about 90% less than the fully-associative TLB,
70% less than a filter-TLB, and 34% less than a banked-filter TLB.
Also, the Energy*Delay metric is reduced by about 88%, 75%,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
ISLPED ’03, August 25-27, 2003, Seoul, Korea.
Copyright 2003 ACM 1-58113-682-X/03/0008…$5.00.

312

and 51% compared with a fully associative TLB, a filter-TLB, and
a banked-filter TLB respectively.

2. RELATED WORK
In both modern high performance microprocessors and embedded
processors, the TLB within the processor chip is split into separate
instruction and data TLBs (e.g., Strong-Arm, MIPS, Alpha,
PowerPC, and Ultra-SPARC, etc.,) [5,6]. The miss ratio in TLBs
tends to be very small because each entry refers to a page of
memory. However, a TLB miss is accompanied by a long handling
latency, i.e., on the order of tens to hundreds of cycles. Therefore,
a fully associative TLB is typically used to obtain lower miss rates.
But full associativity is very costly in terms of power consumption.
To reduce power consumption, the total number of TLB entry tags
accessed at the same time should be fewer than 64 or 128 [7].
However, higher performance can be achieved if more TLB
entries are provided. One method for dealing with these
conflicting goals is to divide the entire TLB space into several
sub-TLBs so that the number of tags accessed together can be
reduced to fewer than 32 or 64 [4]. This bank-TLB [4] consumes
less power than a fully associative TLB because only portions of
the CAM entries are activated on each access. The block buffering
technique [3,11,12] is an approach to reducing power
consumption without having any effect on performance. However,
accessing the block buffer must be completed during one cycle for
modern microprocessors with high clock frequency.

Another well-known TLB system, the filter (micro)-TLB is a
hierarchical structure, where a very small TLB is located above
the conventional L1 TLB [2]. In terms of power consumption, a
filter-TLB turns out to be effective when combined with the
instruction TLB due to its low miss ratio. But for the data TLB,
the performance degradation of the filter-TLB, compared with a
fully associative TLB, becomes significant.

Other TLB studies for low power consumption address memory
cell redesign, such as modifying the CAM cell [7], using a low
power RAM [8], and voltage reduction [9]. The work by Juan [7]
proposes modifying the CAM cell by adding another transistor in
the discharge path. The work by Itoh [8] proposes low-power
circuit design techniques, such as pulsed word-line and sense
circuitry. With these schemes, the access circuitry is enabled only
long enough to ensure reliable reading and writing of memory
cells. Work by Liu [9] proposes a method of supporting a lower
supply voltage in designing memory systems. Supply voltage is
one of the most important parameters controlling CMOS power
consumption.

3. SELECTIVE FILTER-BANK TLB
Our goal is to design a new TLB system to support low power
consumption for embedded processors. A mechanism based on a
filtering and banked structure is presented, which achieves both
fast access time and low power consumption.

The tag memory space in the fully associative TLB is
implemented using a group of content addressable memories
(CAMs), which have additional transistors to perform parallel
comparisons for all the tag entries in memory. If the tag in any one
entry is matched with the input tag placed on the bit lines, its
corresponding match line remains high and all other match lines
are pulled low, and the selected match line activates the
associated word line of the SRAM. Thus its corresponding PPN

(physical page number) information is read out from the data array.
The structure of the fully associative TLB precludes the need for
any external comparison logic or multiplexors, but its access time
is longer than that of other organizations because the tag
comparison cannot be simultaneously performed with reading the
data from SRAM. In addition, for each access to the CAM, all
match lines must be precharged high, and all match lines that do
not produce a match signal must then be discharged. These
precharge and discharge operations are responsible for a
significant fraction of the TLB's energy dissipation.

With fully associative TLB structures, power consumption tends
to increase abruptly as the number of TLB entries increases
beyond 64 [7]. To keep power consumption low, the total number
of TLB tags that are compared at once should thus be smaller than
64. However, higher performance can be achieved if more TLB
entries are provided. We would like to allow as many entries as
possible, while keeping the number of tags accessed together to
fewer than 64. This is done by dividing the entire TLB space into
separately accessed sub-TLBs. In our preliminary exploration of
the design space, we simulated several configurations and
determined that the most effective number of sub-TLBs for our
benchmarks is four. Figure 1 illustrates the organization of the
selective filter-bank TLB with its dynamic searching operation. As
shown in Figure 1, the selective filter-bank TLB is constructed as
four banks, and each bank consists of a main TLB and its
associated two small filter-bank buffers. Two small banks are
located above its associated main TLB in the hierarchy. To reduce
power consumption, the two low-order address bits of the tag for
any given VPN (virtual page number) are used to select a main
bank.

Virtual address

TAG
(CAM)

:
VPN PPN

DATA
(SRAM)

:

TAG
(CAM)

:
VPN PPN

DATA
(SRAM)

:

TAG
(CAM)

:
VPN PPN

DATA
(SRAM)

:

TAG
(CAM)

:
VPN PPN

DATA
(SRAM)

:

Bank enable

 of tag bit

Decoder

Two low order

Two two-bit
comparators

two-bit
comparators

two-bit
comparators

two-bit
comparators

D
e
c
o
d
er

selective
search

Page table entry fromOff-chip Memory

tag bit

=

small bank 0 small bank 1

VPNPPN VPN PPN VPNPPN VPN PPN VPNPPN VPN PPN VPNPPN VPN PPN

Bank0 Bank1 Bank2 Main Bank3

One cycle hit /
One cycle delay miss

Filter-bank buffer

Figure 1. Selective filter-bank TLB

The filter-bank buffer associated with each bank stores a tag value
and a data value for the most recently accessed VA (virtual
address) belonging to its corresponding main bank module. Only
one of two small banks is activated by using a third bit of the tag
for any given VPN. A two-bit comparator compares two bits of
the VPN tag in the filter-bank buffer with two bits of a newly
generated VPN. This comparator consists of two XORs and one
AND gate. In our simulations, the particular two bits that are used
for the comparison are the fourth and fifth low-order bits of the

313

VPN. If more bits are used for the comparison, then higher
accuracy can be achieved. But overhead, such as the comparison
time and hardware cost, then increases. Conclusively, the
detection of dynamic searching operation occurs from comparison
of the number of five bits. Therefore, a newly generated address in
128-byte page boundary is detected correctly for accessing either a
filter-bank buffer or a main bank selectively.

The selective filter-bank TLB is designed so that eight two-bit
comparators can operate in parallel for fast access. The two-bit
comparison time takes place during the bank selection period and
thus can be almost completely hidden. When a two-bit comparator
identifies a match, the filter-bank buffer in its corresponding bank
module is enabled to check first. If the VPN in the corresponding
filter-bank buffer and the newly generated VPN are the same, the
PPN in the corresponding data buffer is fetched in one cycle. But
if the VPN comparison is a mismatch, then a one cycle delay is
incurred to search the main bank TLB. Of course, if the two-bit
comparator identified a mismatch, the corresponding main bank
TLB is just enabled directly and checked in one cycle, and the
comparison of the new VPN with the filter-bank buffer is skipped.
When a virtual address is generated, our scheme dynamically
chooses whether to compare it with the VPN in the filter-bank
buffer or its corresponding main bank TLB. In general, the LRU
(least recently used) replacement policy produces the best miss
rates since it minimizes conflicts. Unfortunately, the cost of
implementing this policy in hardware is high, so we have chosen
the FIFO (first in-first out) replacement policy for the proposed
TLB.

1) Hit in the two-bit comparator for a chosen small bank
module: When the CPU generates a virtual address, a subset of
the address bits are used to select one of the four bank modules
and one of the two small bank modules. If a hit occurs at the two-
bit comparator in the enabled small bank module, then the tag part
of the filter-bank buffer is enabled and compared for a match of
the entire tag field. If the VPN in the filter-bank buffer and the
newly generated VPN are identical, the PPN stored in the
corresponding data part is sent to the cache and compared with the
tag bits of the cache. But if the VPN in the filter-bank buffer
differs from the generated VPN, the cache tag comparison is
squashed at the filter-bank buffer and its corresponding main bank
TLB is accessed for a match during the next cycle. Also during
that cycle, the tag part in the filter-bank buffer is updated with the
generated VPN in order to store the most recently referenced VPN.
If a requested page is found in the main bank TLB, its action is the
same as a conventional TLB hit. And also, the data part in the
filter-bank buffer is updated at the same time. If the requested
page misses in the main bank, the OS invokes its miss handling
service.

2) Miss in the two-bit comparator for a chosen small bank
module: If a miss occurs at the two-bit comparator, it means that
VPN is definitely not in the tag part of corresponding small bank
in filter-bank buffer. Thus, the filter-bank buffer comparison can
be skipped. Instead, the corresponding main bank TLB is
immediately searched in the first cycle, and the filter-bank buffer
is simultaneously updated with the new VPN. The combination of
a rapid, very-low-power test for the most recent VPN, with the
ability to switch to main bank search without delay in most cases,
results in significant power savings and minimal loss of

performance. As we show in the next section, there are enough
accesses to the most recent VPN to justify the use of the filter-
bank buffer for power reduction, and the number of two-cycle
accesses are sufficiently minimized by the two-bit comparison,
where performance is only slightly reduced.

4. PERFORMANCE EVALUATION
Our simulation environment, performance metrics, and power
consumption analysis are presented in this section. The
benchmarks used in the trace-driven simulation are taken from
SPEC95. Four performance metrics, i.e., miss ratio, average
memory access time, power consumption, and Energy*Delay
product are used to evaluate and compare the proposed TLB
system with other approaches. Only data references are collected
and used for the simulation. The DineroIV and CACTI simulators
[11] were modified to simulate the proposed TLB system. The
basic parameters for the simulation are presented in Table 1.
These parameters are based on the values used for common 32-bit
embedded processors (i.e., Hitachi SH4 or ARM920T).

Table 1. Simulation parameters

4.1 Accuracy and overhead of the selective
searching operation
Many preliminary simulations were performed to explore the
design space and establish the parameters of the design. For
example, the proposed TLB uses two particular bits for initially
checking whether the VPN in the filter-bank buffer and the
generated VPN are potentially the same. Our simulations showed
that when the low order fourth and fifth bits of any given VPN,
are compared, it provides the most significant gain with the least
overhead. Because of the number of variations explored, we do
not present simulations of the different configurations, but instead
focus on simulations that enable analysis of the performance and
power saving that we achieve in comparison to prior research.

The one aspect of our design that has the potential to cause a loss
of performance is that an incorrect prediction by the two-bit
comparator can add an extra cycle to the TLB search. We refer to
this as two-cycle search overhead, and it is shown in Figure 2. In
this figure, two other TLB structures that are also subject to two-
cycle overhead are compared with our design. The first one is a
filter-TLB, constructed as a small TLB of 4 entries and an L1 TLB
with 128 entries. The second one is a plain 4-way banked-TLB
structure with four associated filter buffers. Figure 2 shows that
the percentages of two-cycle accesses for the filter-TLB, the bank-
filter TLB and our TLB turn out to be 22%, 15%, and 3%
respectively. Thus, according to the simulation results, our scheme
achieves the least overhead in comparison with the other
hierarchical TLB structures.

System parameters Values

CPU clock 200 MHz
Memory clock 133 MHz

Memory bandwidth 1.6 Gbytes / sec
Memory latency 70ns

314

0

5

10

15

20

25

30

35

4
0

applu compress go gcc li ijpeg m88ksim perl tomcatv vortex AVG

Tw
o

cy
cl

e o
ve

rh
ea

d
(%

)

Filter-TLB
(4entry-128entry)

Banked-filter TLB
(1entry *4banks -32entry * 4banks)

Selective filter-bank TLB
(2entry *4banks -32entry * 4banks)

Figure 2. Two-cycle access overhead

Figure 3 shows the percentage of the each TLB hit that was found
in the filter-bank buffers versus the main banks in our design. The
filter-bank buffers account for over 80%~90% of the hits in most
benchmarks.

0

10

20

30

40

50

60

70

80

90

100

applu compress go gcc li ijpeg m88ksim perl tomcatv vortex AVG

Pe
rc

en
ta

ge
 (%

)

Small bank hit ratio Main bank hit ratio

Figure 3. The percentage of the each hit portion for the tag
buffers and the main banks

Clearly, significant amount of energy can be saved by avoiding
accesses to the main bank TLB by 88% of the time, and instead
the much lower power is used for filter-bank buffer logic. Because
the two-cycle overhead of our design turns out to be negligible,
compared with other hierarchical structures, we also avoid the
pitfall of giving up performance in order to save power.

4.2 Miss ratio and average memory access time
In this section we compare three different TLB structures in terms
of miss ratio and average memory access time. We do not consider
page faults. We assume 15 cycles for miss handling, as in Table 1.
CACTI circuit simulations [11] of the fully associative TLB, the
small TLB of the filter-TLB, and the banks of a banked TLB show
that accessing the fully associative TLB takes more than a single
cycle, while the other structures can be accessed in one cycle.
However, for our performance evaluations, we simply assume that
all of these structures operate in one cycle.

Figure 4 and Figure 5 show the average miss ratio and the average
memory access time, respectively for our design and the
conventional TLB structures, i.e., a FA (fully-associative)-TLB
with 128 entries and a filter-TLB constructed with a small TLB of
4 entries and an L1 TLB with 128 entries, and a four bank-TLB
with an associated buffer entry above each bank of 32 entries. In
Figure 4, most of the TLB structures can be seen to have similar

average miss ratios. However, in terms of the average memory
access time, the filter-TLB and the bank-filter TLB show greater
performance degradation due to a large number of two-cycle
accesses.

Filter-TLB
(4entry-128entry)

Banked-filter TLB
(1entry *4banks -32entry * 4banks)

Selective filter-bank TLB
(2entry *4banks -32entry * 4banks)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

FA TLB
(128 entry)

M
iss

 ra
tio

applu compress go gcc li ijpeg m88ksim perl tomcatv vortex AVG
Figure 4. Miss ratios of the selective filter-bank TLB and other
TLBs

Filter-TLB
(4entry-128entry)

Banked-filter TLB
(1entry *4banks -32entry * 4banks)

Selective filter-bank TLB
(2entry *4banks -32entry * 4banks)

FA TLB
(128 entry)

A
ve

ra
ge

 m
em

or
y

ac
ce

ss
 ti

m
es

applu compress go gcc li ijpeg m88ksim perl tomcatv vortex AVG
0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

Figure 5. Average memory access times of the selective filter-
bank TLB and other TLBs

4.3 Comparison of TLB power consumption
Because all of the entries are searched for every memory access in
a fully-associative TLB, one might expect that it would be the
worst structure in terms of power consumption. But this is true
only when it has more than 64 or 128 entries. Figure 6 shows the
average energy dissipation for a TLB access, for various TLB
configurations. The fully associative TLB has less power
consumption than a set associative TLB when the number of
entries is small. This is because the set associative TLB is
constructed with more sense amplifiers than the fully associative
TLB and these have higher energy consumption. For a 128-entry
fully-associative TLB, the energy dissipated at the match line and
the bit lines in the CAM reaches the point that it consumes more
power than any other TLB configuration.

The overall energy dissipation in the TLB can be divided into two
parts, i.e., internal energy dissipation and external energy
dissipation. The internal energy dissipation is the energy
dissipation within the TLB system when the TLB is accessed.
External energy dissipation includes driving the I/O pads for off-
chip memory access and searching the data cache for the required
page table entry. First, we evaluate power consumption for
various TLB configurations using the CACTI simulator, which

315

can calculate access times, cycle times, and power consumption
for many types of hardware caches [11, 12].

Number of entries

0

1

2

3

4

5

6

7

8

9

4 8 16 32 64 128

En
er

gy
 d

iss
ip

at
io

n
(n

J)

Direct-mapped TLB 2-way TLB 4-way TLB FA TLB

Figure 6. Energy dissipation for a variety of TLB

The CACTI simulator was modified for TLB simulation in several
ways. First, the number of bits allocated to a TLB entry is not
variable but fixed by the PTE (page table entry) size. Throughout
this research, the PTE size was assumed to be 4 bytes. Second, in
the cache, the length of the offset field within an address is
determined by the size of a cache block, but in the TLB, a
predefined page size determines the length of the page offset field
for a given virtual address. In the simulation, it is assumed that the
page size is 4 Kbytes but that the tag array has sufficient tag width
to support a small page size of 1 Kbyte. Additionally there is one
valid bit and an 8-bit extension address for each set in the tag
array. Finally, CACTI could not originally simulate small caches
with fewer than eight sets because its decoder architecture is based
on a 3-to-8 decoder block. Thus, we modified the decoder
architecture to simulate a 2-to-4 decoder block, which enables
used of a 4-entry TLB. Our results are based on 0.8 µm
technology with a 4.5 V supply voltage.

Table 2 shows the power consumption for each event
corresponding to a TLB access. For a fully associative
configuration, most of the power is consumed in the decode stage,
where the tag comparison is performed. The significant difference
in power consumption between a TLB with 128 entries and one
with 64 entries comes from the growth in power consumed by the
match line and bit lines in the CAM. Each entry of Table 2 shows
the power dissipation for a TLB read hit, a TLB read miss, and a
TLB write. As expected, the power consumption almost doubles
when the number of entries increases from 32 to 64, and from 64
to 128 respectively.

Table 2. Power consumption per access for TLB sizes

The average power consumption of the fully associative TLB is
given by:

Avg.power = Nhit * Phit + Nmiss * Pmiss , (1)

where Nhit and Nmiss are the ratios of hits and misses in the TLB or
small buffer . Phit and Pmiss are the power required to process a hit
and a miss respectively. Pmiss can be calculated as follows:

 Pmiss = PCAM + Pwrite + Poff , (2)

where PCAM is the power dissipated by all the entries when the tag
part of the TLB is accessed, and Pwrite is the power dissipated by
the data memory and tag memory in order to update an entry on a
miss. Poff is the power dissipated by the cache and pads when a
TLB miss occurs. Then Poff can be calculated as follows:

 Poff = Pcache_acc + Mcache_miss * (Pcache_write + Ppad), (3)

where Pcache_acc is the power used to access a cache block,
Mcache_miss is the cache miss ratio, Pcache_write is the power for a
cache write operation on a cache miss, and Ppad is the power
dissipated at the on-chip pad slot. Ppad can be calculated as follows
[11,12]. The capacitive load for off-chip destinations is assumed
to be 20pF. Also a 32KB 2-way set associative data cache with
32-byte block size is assumed, where the values of Wdata and Waddr
are also 32 bits. The basic parameters for the simulation are
summarized in Table 3.

Table 3. Simulation parameters
Mcache_miss 0.05
Pcache_acc 21.291 nJ
Pcache_write 10.145 nJ

Ppad 6.48 nJ
Poff 22.122 nJ

Figure 7 presents the power consumption of the different TLB
structures compared to our design for the same set of benchmarks.
The power consumption data for the selective filter-bank TLB are
obtained by considering all possible cases, such as the power
consumed by the comparators, an additional multiplexor, and so
on. These values are obtained from the CACTI model indirectly.
The figure shows that a filter-TLB or a banked-filter TLB is a
good structure in terms of power consumption because the hit
ratio at the block buffer exceeds 80%. But their performance
degradation tends to be significant because their small buffers are
always compared before accessing the main TLB. In our design,
the tag part of the filter-bank buffer is only compared when there
is a hit in the two-bit comparators. As shown in this figure, power
consumption in the proposed TLB can be reduced by about 90%
compared with a fully-associative TLB, 70% with respect to a
filter-TLB, and 34% compared with a banked-filter TLB.

Figure 8 shows the Energy*Delay product for the different TLB
structures. This metric provides a basis to identify a specific TLB
configuration that offers the best balance of both power and
performance. Simulation results show that the Energy*Delay
metric is reduced by about 88%, 75%, and 51% compared with a
fully associative TLB, a filter-TLB, and a banked-filter TLB,
respectively. Conclusively, the proposed selective filter-bank TLB

of entries in
FA TLB

Read / Hit
(nJ)

Read / Miss
(nJ)

Write
(nJ)

4 2.2630 0.6154 0.2397
16 2.9209 1.1021 0.5526
32 3.7575 1.7511 0.7097
64 5.4200 3.0490 0.9908

128 8.7272 5.6447 1.8551

316

offers the best result in terms of both performance and power
consumption among all of the approaches.

Filter-TLB
(4entry-128entry)

Banked-filter TLB
(1entry *4banks -32entry * 4banks)

Selective filter-bank TLB
(2entry *4banks -32entry * 4banks)

FA TLB
(128 entry)

0

1

2

3

4

5

6

7

8

9

Po
w

er
 c

on
su

m
pt

io
n

(n
J)

applu compress go gcc li ijpeg m88ksim perl tomcatv vortex AVG
Figure 7. Power comparison of the selective filter-bank TLB
and other TLBs

Filter-TLB
(4entry-128entry)

Banked-filter TLB
(1entry *4banks -32entry * 4banks)

Selective filter-bank TLB
(2entry *4banks -32entry * 4banks)

FA TLB
(128 entry)

applu compress go gcc li ijpeg m88ksim perl tomcatv vortex AVG
0

1

2

3

4

5

6

7

8

9

En
er

gy
*D

el
ay

 P
ro

du
ct

Figure 8. Energy*Delay product of the selective filter-bank
TLB and other TLBs

5. CONCLUSION
In order to achieve high performance, recent TLB research for
embedded processors tends to support many page entries via large
TLB sizes. But in fully associative TLBs, all the entries are
searched for every memory access. Because of this, they would be
among the worst structures in terms of power consumption. When
they have more than 64 or 128 entries, their power consumption is
especially high. Therefore, in order to attain low power
consumption, a banked-TLB was designed that divides one fully
associative TLB space into four smaller fully associative TLBs.
To further reduce power consumption, a selective searching
mechanism is applied in the proposed TLB to compensate for the
weaknesses in the filter-TLB. The amount of energy saved by the
proposed TLB strongly depends on the filtering effect of the two-
bit comparison that quickly selects between searching a main bank
or a small bank in its buffer. This selection avoids the need to
search the buffer on every access, thereby saving power. It also
reduces the frequency of two-cycle accesses, which reduces the
performance penalty incurred by previous low-power designs.

We showed that the average hit ratios of the filter-bank buffers
and the main banks of the proposed TLB are 88% and 12%
respectively. Simulation results show that the average memory
access time of the proposed TLB is almost equal to that of a

conventional fully-associative TLB. But the power consumption
of the proposed TLB is about 90% less than the fully-associative
TLB, 70% less than a filter-TLB, and 34% less than a banked-
TLB with block buffering. Thus, the Energy*Delay metric is
reduced by about 88%, 75%, and 51% compared with a fully
associative TLB, a filter-TLB, and a banked-filter TLB,
respectively.

6. ACKNOWLEDGMENTS
This work was supported by Samsung Co. “Design of Memory
Management Unit for Embedded Processors” project.

7. REFERENCES
[1] T. M. Austin, et al., High-bandwidth address translation for

multiple-issue processors in the Proceedings of the 23rd
ACM Int’l Symp. on Computer Architecture, (May 1996)
158-167.

[2] J. Kin, M. Gupta, et al., The Filter Cache: An Energy Efficient
Memory Structure in the Proceedings of Int’l Symp.
Microarchitecture, (1997), 184-193.

[3] K. Ghose, et al., Reducing Power in Superscalar Processor
Caches Using Subbanking, Multiple Line Buffers and Bit-
Line Segmentation in the Proceedings of International
Symposium on Low Power Electronics and Design, (August
1999), 70-75.

[4] S. Manne, et al., Low power TLB Design for High
Performance Microprocessors. Univ. of Colorado Technical
Report, 1997.

[5] B. L. Jacob, et al., Virtual Memory in Contemporary
microprocessors. IEEE Micro, Vol. 18, No. 4, July/August
1998, pp. 60-75.

[6] B. L. Jacob, et al., Virtual Memory: Issues of Implementation,
IEEE Computer, Vol. 31, No. 6, (June 1998), 33-43.

[7] T. Juan, et al., Reducing TLB Power Requirements in the
Proceedings of ISLPED, 1997.

[8] K. Itoh, et al., Trends in Low-Power RAM Circuit
Technologies in the Proceedings of the IEEE, vol. 83, no. 4,
(April 1995), 524-543.

[9] D. Liu, et al., Trading Speed for Low Power by Choice of
Supply and Threshold Voltages. IEEE Journal of Solid State
Circuits, Vol. 28, No. 1, 1993.

[10] G. Reinman, et al., CACTI 3.0: An Integrated Cache Timing
and Power, and Area Model. Compaq WRL Report, August
2001.

[11] M. B. Kamble, et al., Energy-Efficiency of VLSI Cache: A
Comparative Study in the Proceedings of IEEE 10-th. Int’l.
Conf. On VLSI Design, (Jan.1997), 261-267.

[12] M. B. Kamble, et al., Analytical Energy Dissipation Models
for Low Power Caches in the Proceedings of ISLPED, Aug.
1997.

317

	Main Page
	ISLPED'03
	Front Matter
	Table of Contents
	Author Index

