
ATPG for Noise-Induced Switch Failures in Domino Logic

Rahul Kundu and R. D. (Shawn) Blanton
Center for Silicon System Implementation

ECE Department
Carnegie Mellon University
Pittsburgh, PA 15213-3890

Abstract

Domino circuits have been used in most modern high-performance mi-
croprocessor designs because of their high speed, low transistor-count and
hazard-free operation. However, with technology scaling, domino circuits
are increasingly susceptible to switch failures due to various noise sources
that include crosstalk, charge sharing and leakage. To test for such failures
in a manufactured chip, we describe a test pattern generation methodol-
ogy that generates specific test patterns to target such failures. These test
patterns activate noise from multiple sources such that their combined ef-
fect causes a switch failure at a domino gate output. In addition, the test
patterns propagate the resulting error to an observable output within the
duration of the circuit’s clock cycle. The methodology has been imple-
mented and validated using a domino multiplier circuit.

1 Introduction

Domino logic circuits [1] are extensively used in high performance mi-
croprocessors [2-6] since they offer several advantages over static CMOS
logic, namely higher speed, reduced transistor-count (resulting in reduced
die area) and hazard-free operation. However, with technology scaling,
designers find it difficult to deploy dynamic logic [7] because it has an in-
creased susceptibility to switch failure (i.e. an erroneous gate transition)
due to noise and process variations. Static CMOS on the other hand is very
robust to switch failure and is more likely to exhibit only delay failures due
to noise. In this paper, we study noise-induced switch failures in domino
logic and describe a methodology to derive test vectors that can be used to
test a domino logic circuit robustly for such failures.

2 Switch Failures

We define a switch failure [8, 9] as an irreversible and erroneous transition
of a domino gate output. Several sources of noise can cause switch fail-
ures in domino logic circuits. Of these sources, crosstalk noise caused by
capacitive coupling to neighboring lines, subthreshold leakage and charge
sharing are especially important. With technology scaling, the importance
of crosstalk noise and subthreshold leakage will increase. Although, the
effect of charge sharing is not expected to increase [6], it is a significant
problem for domino circuits in current technologies and may combine with
other sources to cause a switch failure.

To generate a test that satisfies the complicated timing and logic re-
quirements to detect a switch failure, we use the algorithm TEST GEN
outlined in Figure 1. TEST GEN follows a PODEM-like [12] approach.
Initially, logic x is assigned to all primary inputs. Then the algorithm pro-
ceeds in a recursive fashion as follows. At every level of recursion, it as-
signs a logic value at time t = 0 to a previously unspecified primary input

and then calculates all the logic and timing implications due to that assign-
ment. (The calculation of the timing and logic changes due to any primary
input assignment is performed in the Timed Imply routine of Figure 1.)
The newly calculated logic and timing information is used to determine if
a switch failure is possible at the targeted gate using a method detailed in
Section 3. (This is performed in the conflict detect routine of Figure 1.)
If the failure is still possible, the algorithm assigns another primary input
at the next level of recursion. If the failure is no longer possible, the al-
gorithm backtracks from the last decision and returns to the previous level
of recursion. The algorithm returns a test pattern if all the conditions for
switch failure are satisfied and the resulting error has been propagated to a
primary output within the duration of the circuit’s specified clock cycle.

TEST GEN(victim gate)
begin
if (error at PO), return SUCCESS
if (conflict detect), return FAILURE
(k, vk) = objective domino()
(j, vj) = backtrace domino(k, vk)
Timed Imply(j, vj)
if TEST GEN()=SUCCESS, return SUCCESS
Timed Imply(j, vj)
if TEST GEN()=SUCCESS, return SUCCESS
Timed Imply(j, x)
return FAILURE
end

Figure 1: Pseudocode for the test generation algorithm.

TEST GEN has two major differences from a standard PODEM based
test-generation approach [12]. Each difference is clarified in detail next.

1. The algorithm uses a time-based ATPG as opposed to a logic-only
ATPG. This means the algorithm maintains a timing window (i.e.
the minimum and maximum time that a signal can transition) with
every signal line along with the traditional logic value of either 0,
1, or x. The timing window changes dynamically during the test
generation process and is computed in a manner similar to that de-
scribed in [11]. We also understand that the gate delays vary as a
result of switching activities of neighboring wires (due to the effect
of crosstalk on delay), so this effect is calculated dynamically during
the ATPG process as well [13].

2. To determine if a switch failure has occurred at a gate output, we
calculate the maximum possible noise effect at a dynamic node of a
gate from the current signal line values and transition windows. The
noise calculation is described in greater detail in the next section.

765

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ICCAD’03, November 11-13, 2003, San Jose, California, USA.
Copyright 2003 ACM 1-58113-762-1/03/0011 ...$5.00.

3 Maximizing Noise

Consider the complex domino gate shown in Figure 2. Assume that at a
given stage of ATPG, we know that A=1, B=0, and there is a crosstalk
glitch present on line B. For this circuit, the crosstalk effect is maximized
if the remaining inputs are assigned C=1, either D=0 or E=0, and one of
F, G and H is 0. Leakage is maximized when C=1, D⊕E=0, and only two
of the signals F, G and H are logic 1. Charge sharing is maximized if the
circuit values are C=H=0 and D=E=F=G=1. We can observe that some
of the requirements for maximization of one noise effect conflicts with
the requirements of another. For example, the requirements for maximum
charge sharing conflict with those of leakage. In our work, we indepen-
dently calculate the maximum noise effect due to each noise source and
combine their effects. Obviously, there is some overestimation of the total
noise effect when calculating the effect of each noise source independently.
However, this overestimation is reduced during ATPG as more and more
inputs are specified. Next, we describe how the maximum noise effect due
to each source is determined.

CLK

A=1

B=0

C=x

F=x

G=x

H=x

D=x

E=x

Figure 2: A domino gate with partially-specified input values.

3.1 Crosstalk

Crosstalk noise is dependent on how many aggressors (i.e. signal lines
capacitively coupled to a victim line) transition and the relative timing of
their transitions. A detailed procedure for conservatively estimating the
impact of crosstalk due to a partially-specified vector is presented in [11].
In addition, we utilize the methodology presented in [11] to calculate the
maximum discharge ∆Qcross from the dynamic node.

3.2 Charge Sharing

To estimate the maximum voltage drop due to charge sharing for a
partially-specified vector Vi, the partially-specified vector is converted to
a fully-specified vector Vj . For example, assume a partially-specified Vi

has established gate inputs A=1 and B=0 for the gate shown in Figure 3a.
The fully-specified vector Vj of A=C=D=E=G=1 and B=F=0 maximizes
charge sharing since this Vj connects the dynamic node to the maximum
number of intermediate nodes (i.e. 2, 3 and 4) without creating a discharge
path to ground. (See Figure 3b.)

The conversion of a partially-specified vector to a fully-specified vec-
tor can be achieved using two depth-first traversals of a gate’s transistor
schematic. Once the fully-specified vector is obtained, we calculate the
voltage drop due to charge sharing using the model presented in [10]. In
[10], the circuit is converted into a network of capacitances, where some of
the capacitances (referred to as CV DD) are connected to VDD and the oth-
ers (referred to as CGND) are connected to ground. The resulting voltage

Z

B=0

CLK

A=1
C=x

D=x

E=x

G=x

F=x

Precharge transistor

Z

B=0

CLK

A=1
C=1

D=1

E=1

G=1

F=0

Precharge transistor

MNA MNB MNC MND

MNE

MNG

MNF

MNA MNB MNC MND

MNE

MNG

MNF

1

2

3

4

1

2

3

4

footer footer

(a) (b)

Figure 3: (a) A partially-specified vector Vi and (b) a corresponding fully-
specified vector Vj constructed to maximize charge sharing.

vD due to charge sharing is then calculated using equation 1,

vD =
VDD × CVDD + Qi

CVDD + CGND
(1)

where Qi is the initial stored charge at the dynamic node after precharge.
In [14], it is shown that this model can accurately predict switch failure
due to charge sharing.

3.3 Leakage

Using the BSIM2 MOSFET model [15], the expression for subthreshold
leakage current through a transistor is given by

Il = A
W

L
eq/kT (vgs−VT H0−γ×vsb+η×vds) × (1 − e

−vds/(kT
q

)
) (2)

where W and L are the channel width and length of the transistor, respec-
tively, A is a constant, vgs is the gate-to-source voltage of the transistor,
VTH0 is the threshold voltage, vds is the drain-to-source voltage across
the transistor, KT/q is the thermal voltage, γ is the body-effect coeffi-
cient, and η is the DIBL coefficient. From this equation, we can observe
that the leakage increases with vds. Thus, when multiple off-transistors
are stacked in series, their leakage decreases significantly since vds across
each transistor is reduced. Thus, the maximum leakage current through a
transistor ti occurs when all other transistors in series with ti are turned
on. In addition, the leakage depends only on the W/L ratio of the off
transistor ti. Since L is identical for all transistors in digital circuits, the
problem reduces to maximizing the cumulative W of all off transistors ti

with the remaining series transistors being on. This optimization is easily
mapped to identifying the maximum cut of a graph model of the evalu-
ate chain. We have shown that the max-cut of a graph corresponding to a
domino logic evaluate chain can be found in polynomial time [14].

4 Combination of Noise Sources

Our methodology for integrating noise due to multiple noise sources is
based on the following observation: If the reduction of voltage at the dy-
namic node is not too severe, then the various noise mechanisms act inde-
pendently. For example, in Figure 5 some amount of charge ∆Qcross is
removed from the dynamic node due to crosstalk. Simultaneously, there is

766

A

B

C

D

E

F

G

H

CLK

A(2)

B(4) E(4) G(4)

C(2)

dynamic node

F(2)

ground

2

4

2

3

4

2

4

4

max-cut

D(3)

H(4)

(a) (b)

Figure 4: (a) An example domino gate with various W values; the width of each
transistor is shown next to the transistor. (b) The corresponding graph for estimating
maximum leakage. The quantities in parentheses indicate the transistor width W as
edge weight. The max-cut of the graph is shown using a dotted line.

also a reduction of the dynamic node voltage due to charge sharing among
circuit nodes 1, 2, 3 and 5. If the amount of voltage reduction at the dy-
namic node due to noise leaves the victim transistor MNA in saturation,
the current due to crosstalk is independent of the voltage at the dynamic
node. From Figure 5, it is also observed that the victim transistor affected
by a crosstalk glitch is always outside any charge sharing path, meaning
that crosstalk discharge occurs through a separate path to ground. In other
words, crosstalk discharge does not involve any of the nodes that partici-
pate in charge sharing. Thus, the charge loss due to crosstalk is indepen-
dent of the charge redistribution due to charge sharing. Given that the ini-
tial charge stored in the dynamic node is Qid, crosstalk drains ∆Q from
the dynamic node and charge sharing causes a redistribution of the dy-
namic node charge, causing a reduction of the voltage by some factor K.
The two effects can be combined to give vD = Qid−∆Q

Cinv
× K, where vD

is the voltage at the dynamic node and Cinv is the input capacitance of the
static inverter connected to the dynamic node. Hence, to obtain the final
voltage due to the combined effect of all three noise sources, we indepen-
dently derive the charge loss ∆Qcross due to crosstalk, ∆Qleak =

∫
Ildt

due to leakage, CV DD and CGND due to charge sharing, and combine
them using equation 3.

vD =
VDD · CV DD + Qi − ∆Qcross − ∆Qleak

CV DD + CGND
(3)

CLK

1

1

0

1

0

0

1

A=

1

5

6

1

2

3

4

MNA

charge-sharing path

crosstalk-discharge path

Figure 5: An example domino gate that has both crosstalk discharge due to a
glitch on line A and charge sharing due to device capacitances at nodes 1, 2, 3 and
5.

If the dynamic node voltage vD predicted by equation 3 is less than or
equal to the switching threshold of the output inverter, the failure is possi-
ble. Otherwise, the failure is not possible and the test generation process
has to backtrack from a previous circuit input assignment.

Crosstalk only

Charge sharing only

Charge sharing and crosstalk

Crosstalk glitch

time (picosecs)

150 160 165 170 175 180

vo
lta

ge
 (

vo
lts

)

155

2.5

2.0

1.5

1.0

0.5

0.0

Figure 6: Hspice simulation results showing the voltage at the dynamic node due
to crosstalk only, charge sharing only, and crosstalk and charge sharing together.

Figure 6 shows the Hspice waveforms of a representative domino gate.
Here crosstalk alone removes about 1

3
of the initial charge from the dy-

namic node and charge sharing alone causes a reduction of the initial
node voltage by 2

3
. When crosstalk and charge sharing occur together,

our model predicts a reduced voltage of 4
9
VDD which is corroborated by

the Hspice simulation shown in Figure 6.

5 Simulation Results

We applied our method to a dual-rail domino Wallace tree multiplier cir-
cuit [16], implemented in a 2-metal, 0.18µm, 1.8V technology. The mul-
tiplier consists of 1806 transistors, arranged in 43 identical adder cells
that formed a total of 172 domino gates. A layout of the multiplier
was generated automatically using an industrial place and route tool. A
netlist containing parasitic capacitances was extracted from the layout us-
ing Space [17].

In order to validate our methodology for combined analysis of charge
sharing, crosstalk and leakage, we inserted several noise failures into the
multiplier circuit. The method for inserting a noise failures is as follows.
We first select a test vector that creates a small crosstalk glitch on a victim
line. No charge sharing exists at the destination gate of the victim line since
device capacitances are initially too small. Also, the glitch by itself is not
large enough to cause a switch failure at any of the destination gates of the
victim line. Next, we incrementally increase the device capacitances of
the transistors of the victim gate to increase charge sharing. The increase
of the device capacitances is continued until we observe an error at one of
the destination gates. Once we observe the error in Hspice, the modified
netlist that exhibits the failure is used as input to our test generation tool.
If the test-generation methodology is sound, we expect the test generation
tool to identify the failure. In addition, the tool should generate all the
tests, including the original input vector used for creating the failure, that
can both activate the failure and propagate the resulting error to a circuit
output.

The outcome of test generation for three failures is listed in Table 1.
Column one of Table 1 shows the failure identification number. Column
two shows the total number of test vectors generated for the failure. Col-
umn three shows the number of generated vectors that succeeded in de-
tecting the switch failure. For each failure, our test generator identifies the
failure at the victim line. The test generator also provides a set of test vec-
tors for each failure and in every case, the test set subsumes the original test

767

Failure id Number of tests Number of successful
number generated tests

1 9 2
2 2 1
3 8 6

Table 1: Test vectors obtained for switch failures in the presence of
crosstalk, charge sharing and leakage.

vector. It is observed that the percentage of tests successful in creating a
failure varies from 20% to 75% since (1) our test generation methodology
always overestimates the amount of noise and (2) has inherent inaccuracy
in the timing calculation since the effects of interconnect are not dealt with
comprehensively.

Next, our test generation tool was used to analyze the entire multiplier
circuit. The nominal multiplier circuit does not contain any testable switch
failures, so we introduced manufacturing variations into the circuit. The
methodology for incorporating manufacturing variations is described in
[14]. Here, we use a parameter α to quantify the level of manufacturing
variations, where α = 0.0 represents the nominal design and increasing
values of α denote an increasing amount of manufacturing variations. We
performed our analysis for α values ranging from 0.0 to 0.9. Table 2 shows
the number of detected switch failures for each value of α. The analysis
includes the combined effect of crosstalk, charge sharing, leakage and the
delay variation of all lines in the circuit due to coupling. For each failure,
all the test vectors were generated. Column one of Table 2 shows the value
of α considered. Column two shows the number of testable failure sites
identified for each value of α. Column three shows the number of test
vectors generated for all the failure sites for each value of α. Column four
shows the total amount of CPU time taken by timed ATPG for generating
all the tests for each value of α. Because the total number of test vectors
generated is large, we only validated the test vectors for α = 0.3 using
Hspice simulation of the entire netlist. Of the 15 test vectors generated
for α = 0.3, five were successful in activating a failure and propagating
the resulting error to a circuit output. The remaining ten vectors were
not successful because our analysis of delay in the presence of crosstalk
accounts for the simultaneous switching of multiple gate inputs in a min-
max fashion only, and therefore introduces uncertainty in the computed
delays within timed ATPG.

No. of No. of CPU
α failures tests generated time (secs)

0.0 0 0 0.0
0.1 0 0 0.0
0.2 2 15 19.2
0.3 3 31 46.1
0.4 5 41 68.0
0.5 6 84 98.7
0.6 9 101 116.4
0.7 12 168 170.1
0.8 14 180 192.2
0.9 20 268 294.4

Table 2: Number of testable failures for each value of α.

6 Summary

In this paper, we described how vector-dependent effects of multiple noise
sources can be combined to cause erroneous operation (i.e. switch fail-
ure) in a domino logic circuit. Specifically, we demonstrated how test
input vectors can be derived to activate and observe switch failures using a
PODEM-based timed test-generation framework that combines the effect

of crosstalk, charge sharing and leakage. Application of the technique to a
multiplier circuit showed that effective test vectors can be obtained using
reasonable CPU resources.

References
[1] R. H. Krambeck, C. M. Lee and H. F. S. Law, “High-speed Compact Circuits

with CMOS,” IEEE Journal of Solid-State Circuits, vol. SC-17, no. 3, pp. 614–
619, June 1982.

[2] R. Heald, “A Third-generation SPARC V9 64-b Microprocessor,” IEEE Jour-
nal of Solid-State Circuits, vol. 35, no. 11, pp. 1526–1535, Nov. 2000.

[3] D. R. Bearden, “A 780 MHz PowerPC/sup TM/ Microprocessor with Integrated
L2 Cache,” in International Solid-State Circuits Conference, pp. 90–91, Aug.
2000.

[4] J. Silberman et. al., “A 1.0-GHz Single-issue 64-bit PowerPC Integer Proces-
sor,” IEEE Journal of Solid State Circuits, pp. 1600–1608, Nov. 1998.

[5] D. W. Bailey, “High Performance Alpha Microprocessor Design,” Tech. Rep.,
Compaq Computer Corporation, 2000.

[6] R. Kumar, “Interconnect and Noise Immunity Design for Pentium 4 Processor,”
in Intel Technology Journal, Jan. 2001.

[7] M. Allam, M. Anis and M. Elmasry, “Effect of Technology Scaling on Digital
CMOS Logic Styles ,” in Custom Integrated Circuits Conference, pp. 401–408,
2000.

[8] R. Kundu, and R. D. Blanton, “Identification of Crosstalk Switch Failures in
Domino CMOS Circuits,” in International Test Conference, pp. 502–509, Oct.
2000.

[9] D. Somasekhar, S. H. Choi, K. Roy, Y. Ye, and V. De, “Dynamic Noise Analysis
in Precharge-Evaluate Circuits ,” in Design Automation Conference, pp. 243–
246, June 2000.

[10] K. Heragu, M. Sharma, R. Kundu, and R. D. Blanton, “Testing of Domino
Circuits Based on Charge Sharing,” in VLSI Test Symposium, pp. 396-403,
April 2001.

[11] R. Kundu and R. D. Blanton, “Timed Test Generation for Crosstalk Switch
Failures in Domino CMOS,” in VLSI Test Symposium, pp. 379-385, April 2002.

[12] P. Goel, “An Implicit Enumeration Algorithm to Generate Tests for Combi-
national Logic Circuits,” in IEEE Transactions on Computers, vol. C-30, no. 3,
pp. 215-222, March 1981.

[13] R. Kundu and R. D. Blanton, “Timing Analysis of Domino Logic in the Pres-
ence of Crosstalk,” in Technical Report, Department of Electrical and Com-
puter Engineering, Carnegie Mellon University, no. CSSI 02-21, June 2002.

[14] R. Kundu, “Test Generation for Noise-Induced Switch Failures in Domino
CMOS Circuits,” in PhD Thesis, Department of Electrical and Computer En-
gineering, Carnegie Mellon University, Aug. 2003.

[15] Avant! Corporation, Star-HSPICE Manual. Santa Clara, CA, 2000.

[16] B. Ramasubramanian, H. Schmit and L. R. Carley, “Mixed-swing Quadrail
for Low Power Dual-rail Domino Logic,” in 1999 International Symposium on
Low Power Electronics and Design, pp. 82–84, Aug. 1999.

[17] N. P. Van der Meijs and A. J. Van Genderen, “An Efficient Finite Element
Method for Submicron IC Capacitance Extraction,” in Design Automation Con-
ference, pp. 678–681, June 1989.

768

	Main Page
	ICCAD03
	Front Matter
	Table of Contents
	Author Index

