
 
Abstract— In this paper we consider the problem of finding a

smaller RLCM circuit that approximately replicates the
behavior (up to a certain frequency) of a given RLCM circuit.
Targeted at parasitic extractors for verification of VLSI
designs, the proposed algorithm uses a branch merge, node
elimination methodology, with the choice of nodes for
elimination being guided by time-constant criteria.  Reliable,
accurate, easy to code, the algorithm works well for coupled
buses and clocks, strongly inductive networks, and low-loss
transmission lines, as well as for lossy RLC networks.

Index Terms— Parasitic extraction, model order reduction,
Gaussian elimination, transmission-line modeling.

I. INTRODUCTION

S circuits get larger, verifying the correctness of a
design becomes more difficult. Final timing verification

is normally performed using extracted parasitics, and the
ability to produce compact interconnect models is important
if verification of VLSI designs is to be reasonably efficient.

Model order reduction of RC and RCLM networks has
been a vigorous area of research during the last decade.
Moment matching, popularized by AWE, has been a
dominant theme[1]; PVL and the Arnoldi methods improve
numerical conditioning [2][3]; congruence transformations
solve stability problems [4]; the culmination in this evolution
is Krylov subspace projection methods like PRIMA [5].

But a quit different approach to reduction has also
threaded the literature.  This approach produces an abridged
circuit in the form of a realizable, RLCM network, usually
as the result of local circuit transformations by which some
nodes or branches are eliminated while others are introduced
or modified.  If projection methods are the reduction
counterpart to the conjugate gradient method, then this
alternate approach of realizable reducers is the analog of
Gaussian elimination.  An early instance is [6] , where the
ideas of elimination of nodes and capacitance redistribution
are introduced; another early reference is [7]. To control
accuracy, Elias and van der Meijs in [8] pioneered the
strategy of selective node elimination.  In TICER [9],
Sheehan advocated the criterion of nodal time constants and
demonstrated that Gaussian elimination of a node and
                                                       

capacitance redistribution produce little error provided the
time constant of the node is small compared to the rise and
fall times of the circuit.

Realizable reducers have definite advantages. They are
highly efficient.  Relying as they do on strictly local circuit
transformations, they can operate ‘on the fly’ during scan-
line extraction of parasitics.  They can handle circuits with
many ports— a trouble spot for projection methods, whose
subspace size grows with port count.  But perhaps realizable
reducers’ biggest advantage is that they produce engineer-
friendly circuit descriptions as output; projection methods,
by contrast, manufacture matrices, perhaps poles and
residues, but not resistors, capacitors, and inductors.
Realizable reducers are the natural choice for extraction
tools that must generate SPICE or SPEF files of RLCM
components.

The problem of extraction of inductance has recently
received a lot of attention, and projection methods
formulated in terms of susceptance have been proposed
[10][11].  Recently, proposals have also been made for
realizable reducers that handle circuits with inductance
[12][13].  Following in this vein, the present paper develops a
realizable reducer algorithm for RLCM networks by
extending the ideas of nodal time constant and node
elimination to networks with inductance.  Rather than
treating the problem in its fullest generality, we restrict
topology to an important special case; by compensation, we
delve more deeply into the question of validity.

Underlying our approach is the recognition that the
amount of reduction that can be imposed on an RLCM
network depends on the intended operating range of
frequencies.  For digital circuits, an approximate operating
frequency is

minmax 41 rtf ≈ (1.1)

where min
rt is the fastest rise/fall time in the system.

II. BRANCH MERGING

A. The Neighborhood of a Node
Consider the circuit in Fig. 1.  This circuit is to be

regarded as part of a much larger network; path 1-N-2 might
be three successive nodes of a clock or bus path, for
example.  We take the perspective of node N, and only show
those elements that couple to it.  The circuit of Fig. 1 might
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be called the neighborhood of node N.
The neighborhood of a node has the following elements

(see Fig. 1).  First, nodes 1 and 2 are dc connected to N
through impedances Z1 and Z2, which we assume have the
form

222

111

sLRZ
sLRZ

+=
+= (2.1)

i.e., each consists of a resistor and inductor in series; we call
such branches incident RL branches.  Second, nodes like Vn

, Vp, … , Vm capacitively couple to N through capacitors CnN,
CpN, … , CmN; we call these capacitors C branches.  Finally,
there may be branches— such as those carrying currents Iq

and Ir in Fig. 1— that couple magnetically, through mutual
inductances, to Z1 and Z2;  these we call M branches.

Since our purpose is practical, we restrict ourselves in this
paper to a simple but important case.  We consider only
those nodes that have exactly two incident RL branches, like
N in Fig. 1. The reason for this restriction is several-fold.
First, as this configuration is by far the most common,
consideration of the errors incurred in this endemic case is
merited.  Second, eliminating nodes with more than 3
incident RL branches can increase circuit size, contrary to
our goal, rather than reduce it, because when a node is
eliminated, a complete clique of branches must be
introduced between its former neighbors (see [9]).  Finally,
eliminating nodes with incident RL degrees of 1 or 3 and
higher removes key topological features— leaves and
junctions— from the circuit.  Since a side benefit of this type
of reduction is that it can preserve overall topology, it is
sensible not to touch leaf and junction nodes.
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M
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N
2

Fig. 1.  Neighborhood of Node N
Other than this restriction, the neighborhood of N is

arbitrary. N can have any number of C and M branches, so
buses with magnetic and capacitive coupling are within the
scope of our algorithm.  In general, we assume Z1 and Z2 can
couple magnetically to each other (see M in Fig. 1).

B. Branch Merge Operation
Our algorithm for reducing RLCM circuits consists in

repeated application of an ‘atomic’ operation called a
branch merge, which: (1) combines impedances Z1 and Z2

in series, due account being taken of any mutual M coupling
them; (2) changes the sign of mutuals (e.g. –M2r) as
necessary in accordance with assumed current directions;
and (3) reattaches capacitors that had gone to N, a portion
going to node 1 and a portion to node 2.  Branch merge
converts the circuit of Fig. 1 into the circuit of Fig. 2.
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Fig. 2. Same circuit after Branch Merge
In this section, we derive heuristically the branch merge

equations; in the next section, we set forth criteria for when
branch merge can be applied such that the circuits before
and after modification behave nearly the same up to some
specified frequency.

C. Branch Impedance
The formula for Z, the impedance of the merged branch,

is a direct consequence of the approximation,

21 II −≈ , (2.2)
which follows from the assumption that the capacitive
current at node N (the current flowing to or from N through
incident C branches) is small compared to the currents I1

and I2 flowing through the incident RL branches.  We will
justify this assumption later.

We substitute the branch relations

∑
∑
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+++=
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into
NN VVV 2112 −= . (2.4)

and then replace 1I  by I and 2I  by I− ; the result is

∑∑ −++= r rrq qq IsMIsMZIV )( 2112 , (2.5)

where
sMsLRsLRZ 2)()( 2211 −+++= (2.6)

is the branch impedance and I the branch current (Fig. 2).
Equation (2.5) implies that any M branches coupled to Z1

or Z2 before the merge couple to Z after the merge, the sign
being changed if the old and new current directions differ.
When I1 and I2 magnetically couple to the same branch, the
corresponding terms in ∑ q qq IM1 and ∑ −r rr IM )( 2

combine.
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D. Capacitance Splitting Operation
In deciding how to handle capacitors, our guiding

principle is the requirement that, as far as possible, the net
charge stored by C-branch capacitors before and after
branch merge should be the same.

To see how this principle works out, consider a typical
capacitor CpN connecting node p to node N (Fig. 1).  Before
transformation, the charge on this capacitor will be

)( pNpN VVCQ −= . (2.7)
If the circuit is operating at sufficiently low frequencies,

the emf’s in branches 1 and 2 due to mutual inductances will
be small compared to the voltage drops across the resistors;
in this case,
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+≈ . (2.8)

Placing this expression into (2.7), we get
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for the charge on CpN before the merge.  Capacitors C1p and
C2p in Fig. 2 will store the same charge provided
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This is our formula for capacitance splitting; its legitimacy
rests on (2.8).  An immediate consequence of (2.10) is

pNpp CCC =+ 21 , (2.11)

i.e., total capacitance is preserved during a capacitor splitting
operation.  Another consequence is that the operation
preserves Elmore delay.  Together, equations (2.5), (2.6),
and (2.10) define the branch merge operation.

III. LEGITIMACY CRITERIA

We now shift to a more critical mindset and seek criteria
for when the branch merge can be applied with little error.

Definition.  The predicate LEGITIMATE(N, maxf ) is true if
and only if the neighborhood circuit before and after a
branch-merge at node N has nearly the same currents at
neighbor nodes 1 and 2, all other conditions being equal.1

A number of legitimacy criteria are possible.
Theorem 1. LEGITIMATE(N, maxf )=true if the following

conditions all hold up to max2 jfs π= :

1ˆ1ˆ)( 21 <<<< YZorYZi

1)( <<YsMii

                                                       
1 ‘All other conditions being equal’ means V1, V2, voltages at the other

end of C branches, and currents in M branches, are taken to be the same
when making the comparison.
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where
)(ˆ),(ˆ
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and

∑== p pNCCsCY , (3.3)

Proof:  See Appendix.
Two derivative criteria, perhaps more useful in practice,

can be stated in terms of the quantities:
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Corollary 1. LEGITIMATE(N, maxf )=true if all the following

conditions hold up to max2 jfs π= :
1)( <<si RCτ

1)( 22 <<sii LCτ
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Proof.  We show (3.5) implies (3.1).  For definiteness,
suppose },min{ 211 RRR = . Then

1))((ˆ 22
111 <<+≤−+= sssCMLsRYZ LCRC ττ

1222 <<≤= MsMCsYsM τ

Also, (iv) of (3.5) clearly implies (iii) of (3.1).
Corollary 2. LEGITIMATE(N, maxf )=true if both of the

following conditions hold up to max2 jfs π= :
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Proof.  Again, we show (3.6) implies (3.1).  Supposing
},min{ 211 RRR = , we have
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where 2,1,1,/)( =<<≤−= isRMLs RLiiii τεε .
The criteria of Corollary 1 and Corollary 2 are both useful

in practice, but refer to different situations.  Corollary 1 is
useful for discretized lines or buses having uniform
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electrical parameters per unit length; the lines can be low
loss with inductance predominating over resistance.
Corollary 2, on the other hand, does not require uniformity
but requires— condition (3.6)(ii)— that resistive drops be
more significant than inductive.  Note that RCτ and LCτ scale
with the granularity of the extraction; smaller R’s, C’s, and
L’s result in smaller RCτ ’s and LCτ ’s.  Contrarily, RLτ is an
intrinsic property of the interconnect technology,
independent of how finely the circuit is minced during
extraction.  To get a feel for the magnitude of RLτ , consider
a VLSI interconnect with

mmpstZmmr pd /11,50,/220 0 =Ω=Ω= (see 14):

pspst
r

Z
lc

c
l

rr
l

pdRL 5.211
220
501 0 =====τ (3.7)

and the condition 1<<sRLτ becomes— using (1.1)—

min4
4

2
rRL tps <<≈τπ .  As minimum edge rates are usually

much slower than 4ps, (3.6)(ii) is likely to hold in practice.

IV. BRANCH-MERGE ALGORITHM

A simple but effective algorithm based on branch merge is
summarized in listing 1.  The algorithm makes several
passes over the circuit following a schedule of maximum
frequencies.  On a given pass, each node in the circuit is
visited.  If the node has more or fewer than two incident RL
branches, the algorithm skips to the next node; otherwise, it
checks if a branch merge can be legitimately done based on
the current max frequency; if so, it modifies the circuit as in
section II by doing a branch-merge.

Algorithm: BMReducer(fmax)
For Pass=1 to NumPasses
{

fpass=Multiplier[Pass]* fmax;
For each node N in circuit
{

If RL_Deg(N)!= 2
Continue;

if LEGITIMATE(N, fpass)
BranchMerge(N);

}
}

Listing 1.  Model Order Reduction Algorithm
A typical scheduling array might be Multiplier[]=

{10,5,2.5,1.5,1}.  The idea is simply to ensure that nodes
with smaller time constants are eliminated before nodes with
larger ones.  At the cost of extra bookkeeping, an alternative
is to maintain a priority queue sorted by nodal time constants
and sequence branch-merges by taking from the top of the
queue.

If the number of RL, C, and M branches incident on any
node is bounded, the complexity of BMReducer is O(n),

where n is the number of nodes in the circuit.

V. EXAMPLES

Our first example demonstrates how RCτ and LCτ
demarcate the operating frequencies beyond which branch-
merge should not be performed.  Fig 3 shows a simple RLC
circuit before and after branch merge. For simplicity, R=1Ω ,
C=1F, L=1H.  We see in Fig. 4 that the frequency responses
are nearly the same up to about HzLCRC 1/1/1 == ττ .
Beyond this frequency the 1-π circuit rolls off at
20dB/decade and the 2-π circuit at 40dB/decade.  This
example suggests that (3.5) can be interpreted as a
requirement that the circuit operate below the cutoff or
resonant frequency of the local mesh.

Our second example is a unit length transmission line with
per-unit length parameters R=1Ω , C=1F, and L=1H.  The
line is fractured randomly into 500 sections, and each

section is modeled as a RLC π circuit.  In Fig. 5 we plot the
response of the original circuit and the circuit obtained by
applying the branch merge algorithm with 5max =f .  The
near-end and far-end waveforms of the original and reduced
circuits are almost identical. Propagation delay due to
inductance, evident in the figure, is faithfully captured by the
reduced circuit.  This example used a 1Ω  driver with rise

R R+sL R+sL

RC/2 C C/2

(a)
R 2R+s2L

RC C

(b)

Fig. 3. (a) 2 π section. (b) 1 π section.

10-1 100 101
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100

Fig. 4. Frequency Response of 1 and 2 π sections (C=R=L=1).

2 π
1 π

1 Hz
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time 1=rt s.  Reduction amounts for this and the following
examples are in Table 1.
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Fig. 5. Uniform T-line, R=1Ω , C=1 F, L=1 H, fmax=5
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Fig. 6. Low-Loss T-line, R=0.1Ω , C=1 F, L=1 H, fmax=5
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Fig.7. Response of 3 conductor bus, fmax=5
Figure 6 gives near and far end waveforms for an identical

setup except that now R=0.1Ω /pul instead of 1.0Ω /pul.  In
this case (3.6) does not hold ( 110 >>=sRLτ ) but (3.5) does.
The responses of the original and reduced circuits are again
nearly identical, confirming the applicability of our
algorithm to low loss transmission lines.

To indicate the effectiveness of the branch-merge
algorithm applied to coupled lines, Fig. 7 plots waveforms
for 3 traces of a bus one of which is driven.  The bus is

modeled by 200 equal-length coupled π sections.  The
original and reduced responses agree closely both for
victims and aggressor.

Fig. 8 shows the results of reducing the same coupled 3
line bus (similar to the circuit of Fig. 7) multiple times using
different values of maxf .  The abscissa is percentage
reduction in node count and the ordinate is maximum
percentage error in the response voltage when the reduced
circuit is simulated with a driver rise time

max4 fCFtr = . (5.1)
In Fig. 8 the constant CF— called the conservation factor
since it measures the degree of conservatism in the
reduction— is set at 20.  The numbers annotating points are
the values of maxf  used in the corresponding reduction.

0 20 40 60 80 100
0

0.5

1

1.5

2

2.5

Percent reduction

M
ax

im
um

 p
er

ce
nt

 e
rr

or

 30

 25

 20

 15

 10

  7

  5

3.5

2.5
  1

0.1

Fig. 8.  Reduction of a 3 conductor bus for various fmax values.  X-axis
is percentage reduction, y-axis percentage error when simulated.  Next

to each point is the fmax used for that reduction.
A key point illustrated by Fig. 8 is that reduction amount

depend critically on intended operating frequency.  Fig. 8 is
typical.  One can have arbitrary reduction amounts by
making maxf  small enough, and the reduced circuit still will
be accurate provided the driver’s rise time rt is related to

maxf  by (5.1).  In practice, one starts with a knowledge of
the likely rt for a given technology and then computes from

(5.1) a suitable maxf to use in reduction.
Amount of reduction also, of course, depends on the

distribution of nodal time constants in the original circuit.
Branch CountCircuit Nodes RL C M

BEFORE 501 500 501 0Fig. 5
AFTER 13 12 13 0
BEFORE 501 500 500 0Fig. 6
AFTER 13 12 13 0
BEFORE 603 600 1206 600Fig. 7
AFTER 99 96 390 96

Table 1. Circuit  element counts before and after reduction.
Table 1 gives node and element counts before and after

reduction for the circuit of Figures 5, 6, and 7.  In the
reductions underlying these figures, as well as in Fig. 8, a
node was eliminated if either (3.5) or (3.6) was true.  In

____ Before
- - - After

____ Before
- - - After

____ Before
- - - After

662



applying the legitimacy conditions, a test like 1<<sRCτ was

replaced by 1max ≤fRCτ , the ‘much less than’ requirement
being taken into account by providing BMReducer with a
suitably large maxf  (e.g. 5max =f ).

VI. CONCLUSION

This paper proposes an algorithm which, in our view, is
ideal for parasitic extraction tools that must convert RLCM
networks with broad, unregulated time constant profiles into
compact circuits suitable for efficient and accurate
simulation at designated edge-speeds.

In many ways the algorithm is an attempt to extend
TICER to RLCM circuits— in particular, it extends TICER’s
idea of nodal time constants that guide nodal elimination.
Years of industrial with TICER have shown that this
approach works well for RC circuits.  But inductance makes
the question of time constant definition and legitimacy more
delicate.  Here we propose several time-constant criteria—
e.g. (3.5) and (3.6).  Our examples indicate that branch
merge using these criteria works well on important practical
circuits like low-loss clock lines and buses with significant
electric and magnetic coupling.  And provided maxf  is
suitably tied to the circuit-technology’s edge-speed, the
proposed legitimacy criteria maintain accuracy within a few
percent.  The algorithm is easy to implement, and very
efficient— O(n)— making it applicable to the largest
industrial circuits.

VII. APPENDIX

We prove Theorem 1.  Our analysis begins with the
modified nodal equations for node N in Fig. 1:
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For brevity, we set

∑∑∑
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C IsMVIsMV
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V 2211 ,, ,

and Y is defined by (3.3).
As required by the ‘all other conditions equal’ clause in

our definition of legitimacy, we take V1 and V2, all M
branch currents, and far-node voltages on C branches as
known.

Suppose that conditions (3.1) of Theorem 1 hold, and, for

definiteness, suppose that .11̂ <<YZ

We first consider A , the determinant of the coefficient
matrix in (A.1), for this quantity sets the poles and hence the
dynamics of node N.  It is straightforward to show that

YZZYsMZZA 2121
ˆˆ)1)(ˆˆ( +++= , (A.3)

21
ˆ,ˆ ZZ being defined in (3.2).  If (3.1) (i) and (ii) are true,

ZZZYZYsMZYsMZA =+≈++++= 21121
ˆˆ)ˆ1(ˆ)1(ˆ (A.4)

quantities small compared to 1 being neglected in the final
step.  If (3.1) holds, the dynamics of the node are largely
determined by Z, the impedance of the merged branch.

Next, consider the current flowing, say, at node 1; by our
definition of legitimacy, the net current at node 1 should be
equal, or nearly equal, for the circuits of Fig. 1 and Fig. 2.

Solving (A.1) for 1I of in Fig. 1, we get, after
manipulation,
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a similar expression holding for 2I . Consider each of the
terms in (A.5).  A  nearly equaling Z of Fig. 2 (by A.4), the
first term is substantially I, the current through the merged
branch in Fig. 2.  The second term, by (3.1)(iii) and (A.4),
can be written
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use being made of the definitions of Y and VC; accordingly,
this term nearly equals the current in the displaced capacitors
of Fig. 2— i.e., the capacitors that have been moved from
node N to node 1 as part of the branch merge.  The forth
term in (A.5) is small compared to the first, by (3.1)(ii), and
so may be neglected.

This leaves us with only term (3) to be accounted for.  We

argue that it is also negligible; for either 11̂ <<YZ  or

12̂ <<YZ  (or both), by (3.1)(i).  If 12̂ <<YZ , then term

(3)— which has YZ 2̂ as a factor— is negligible compared to
the contribution of MV1 in term (1).  Suppose instead that

11̂ <<YZ .  This means that, measured against Y, 1R and

)( 1 MLs − are small; that is, branch 1Z  models a short piece
of metalization; therefore, mutual inductances M1q must also
be small (a metal trace cannot have a small self inductance
and a large mutual inductance); in other words,

∑=
q

qqM IMV 11 will tend to be small compared to Y, and

1/ˆ
112 <<≤ MM YVAVZY will almost always hold in practice

though it is not a logical necessity.
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