
A Trade-off Oriented Placement Tool 1

1This work was supported by NSF under Grant #CCR-0090203
†Dr. Maogang Wang is with Cadence Design Systems, San Jose, CA 95134.

Huaiyu Xu Maogang Wang † Bo-Kyung Choi Majid Sarrafzadeh
Computer Science Department

University of California, Los Angeles, CA, 90095
huaiyu@cs.ucla.edu, mgwang@cadence.com, bkchoi,majid@cs.ucla.edu

Abstract
High quality placement results are always produced at the cost of
significant runtimes. In this paper, we study the trade-off
between the overall quality and the runtime for standard-cell
placement problems. We implemented and studied a class of
schemes to achieve the runtime vs. quality trade-off. We
developed a new trade-off oriented placement tool (TOOP)
which is controlled by decision trees. TOOP can adjust itself
based on user’s requests and netlist properties. Compared to
Cadence QPlace, even the fastest mode of TOOP (lowest quality)
can produce placements with similar or better layout. TOOP also
shows much stronger ability to produce routable placement when
compared to Capo.

Keywords

Placement, Quality, Runtime

1 INTRODUCTION
Standard-cell placement is a fundamental problem in the
VLSI physical design area. It has been drawing massive
attentions in the VLSI CAD field for more than twenty
years. Even the most classical placement problem
(minimizing total wirelength) is still a very active topic
among researchers [1, 2, 3, 4, 5, 7]. Being an NP-hard
problem, the placement problem is unlikely to be solved
optimally within a reasonable amount of time. On the
other hand, the problem size keeps the exponentially
increasing trend, which makes old placement heuristics
less and less effective. In order to handle current multi-
million gates design, a state-of-the-art placement tool
typically consists of several heuristics with each of them
focused on a special sub-problem.

There are two essential aspects to consider in a VLSI
design process: quality and time to complete the design.
Ideally, designers would love to have designs with the
highest quality obtained within the shortest amount of
time. However, as the problem itself being NP-hard,
quality and time inevitably trades off each other. A good
placement tool should be very flexible to adapt itself based
on different requests from designers.

Almost all existing placement research works focused on
improving the quality or/and speeding up the runtime over
an existing algorithm. Almost none has been documented
in a way of adaptively controlling the trade-off between

quality and runtime. In this paper, we develop a trade-off
oriented placement tool (TOOP). We seek to establish an
adaptive way for our placer to perform placement based on
both requests from users and the properties of the netlist.
The actual placement process is controlled by decision
trees.

The rest of the paper is organized as follows. Section 2
briefly describes the framework of our trade-off oriented
placement tool. In section 3, several blocking schemes are
introduced and the decision trees are described to control
our placement tool. The experimental results are shown in
section 4 by comparing our placement tool with Cadence
QPlace and an academic placement tool Capo[2]. Section 5
is the conclusion.

2 FRAMEWORK OF TOOP
We use a high-quality academic placement tool, Dragon
[5] as the barebones of our trade-off oriented placement
system. Components and controls will be added to Dragon
to achieve the desired trade-off between quality and
runtime. Dragon consists of several parts including
partitioning, clustering, simulated-annealing based
optimization and local greedy improvement, etc. Since we
use Dragon to construct our trade-off oriented placement
tool, it is worthwhile to spend a paragraph here to briefly
review how Dragon works.

Dragon works in a top-down fashion. At each hierarchical
level, quadrisection is performed topologically on the
netlist as well as physically on the layout area. At the top
level, the layout area is divided into four areas and we call
these areas “bins”. Meanwhile, the netlist is partitioned
into four cell clusters with similar size to minimize the
interconnections between them. The next step is to put
clusters into bins. Simulated annealing is used to minimize
the total wirelength. This phase is called “bin annealing”.
These steps are recursively performed until each cluster
only contains a small number of cells. The “cell
annealing” phase is performed after bin annealing. It
moves single cells around bins to further reduce
wirelength. Finally, the detailed placement phase removes
overlaps between cells and greedily improves the final
wirelength. Our new trade-off placement tool is
constructed on top of Dragon. As shown in Fig. 1, controls

467

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ICCAD’03, November 11-13, 2003, San Jose, California, USA.
Copyright 2003 ACM 1-58113-762-1/03/0011 ...$5.00.

based on decision trees are added to the system to control
the interactions between each sub-component inside
Dragon.

Fig. 1 Framework of our placement tool

3 DETAILED IMPLEMENTATION
In this section, we illustrate detailed schemes and controls
inside our trade-off oriented placement tool.

All results shown are obtained by running experiments on
a SUN Ultra10 workstation with a 400MHz CPU. TOOP is
tested on selected benchmarks from the IBM placement
benchmark suite. The placer reads LEF/DEF files and
outputs placement results in the DEF format. The Cadence
WarpRouter is used to read the placement and perform the
routing. The properties of the benchmarks we used are
summarized in Table 1.

Table 1. Properties of circuit used in experiments

circuits cells nets rows white

space

core(row)

 util.

routing

 layers

ibm01 12,028 11,753 132 14.88% 85.12% 4

ibm07 44,811 44,681 233 10.05% 89.95% 5

ibm08 50,672 48,230 243 9.97% 90.03% 5

ibm09 51,382 50,678 246 9.76% 90.24% 5

ibm10 66,762 64,971 321 9.78% 90.22% 5

ibm11 68,046 67,422 281 9.89% 90.11% 5

ibm12 68735 68,376 347 14.78% 85.22% 5

In most top-down partitioning based placement
algorithms, interactions between partitions is prohibited.
Once a cell is assigned to a certain partition, it will stay
there throughout the whole placement process. This helps
to solve the original problem in a true divide-and-conquer
manner. However, an obvious disadvantage for this
approach is that a cell's position is restricted by a decision
which is made early in the process. To address this issue,
Dragon allows cells be moved between partitions.

We can describe this behavior by introducing the notion of
" block" . A block contains a set of partitions and acts as a
fence to restrict the moves of cells which belong to this set
of partitions. No cell can be moved outside the block
boundary (fence). In a classical top-down placement
algorithm, a block only contains one partition. Thus a cell
is always staying within this partition. For Dragon, there is
only one block which contains all the partitions.
Theoretically cells can be moved to anywhere within the
whole layout area at each hierarchical level. Besides these
two extreme cases, a block may contain an arbitrary
number of partitions and the boundary of the block need
not to be rectangular. Generally speaking, a large block
size is connected with a better final placement but a longer
runtime.

3.1 Pre-fixed Blocking Scheme

To test the first knob in our trade-off oriented placement
tool, we use three pre-fixed blocking approaches
(Approach A, B, C as shown in Fig. 2). At the first
hierarchical level, there are 4 bins and 4 cell clusters but
only one block in the entire layout area. At the second
level, each bin, cluster and block will be divided into 4
smaller parts. Thus we have 4 blocks, 16 bins and 16
clusters in total. In approach A, these 4 second level blocks
are obtained by crossly cutting the first level block. While
in approach B and C, these 4 second level blocks are
obtained by cutting the first level block vertically and
horizontally, respectively. Each of these 4 blocks has 4
bins and 4 clusters inside. Four clusters belonged to the
same block can only be shuffled within the block during
the bin annealing phase.

 Approach A Approach B Approach C

Fig. 2. Pre-fixed blocking schemes

The purpose of defining/using blocks is to restrict the
freedom of cluster movement when doing bin annealing.
Thus the size of the solution space for each cluster
placement problem is greatly reduced. We test these three
approaches on a set of benchmark circuits. The interesting
fact is that we found Approach B performs the best among
these three approaches. We compare the total wirelength
after placement and routing of Dragon and wirelength of
the pre-fixed blocking scheme. Table 2 shows the results.
On average, pre-fixed blocking scheme can speed up
Dragon by a factor of 2.7. On the other hand, the quality is
worsening by 10%.

Requirement

Decision trees to
control the quality
vs. runtime tradeoff

Adjust bins
to Rows

Cell
Annealing

Local
Improvement

Recursive
Partition

Bin
Annealing

blocks

bins

468

Table 2. Final placement comparison between Dragon
and TOOP with the pre-fixed blocking scheme

circuits placer

place.

WL

routed
WL

vios place.

time(s)

speedup WL

degra.

dragon 0.58 0.86 0 1803 ibm01

TOOP 0.63 0.90 0 547 3.3x 10%

dragon 3.55 4.55 0 5002 ibm07

TOOP 3.96 4.79 0 1998 2.5x 12%

dragon 3.21 3.77 0 8736 ibm09

TOOP 3.54 4.05 0 3415 2.6x 7%

dragon 4.77 5.50 0 9953 ibm11

TOOP 5.25 6.33 0 4380 2.3x 10%

3.2 Interconnection-Aware Blocking Scheme

The pre-fixed blocking scheme can effectively reduce the
size of the solution space for each cluster placement
problem. On the other hand, it blindly posts artificial
regulations on clusters to restrict where they can be moved.
A better way would be determining the block size and
shape dynamically to minimize the interconnection
between them.
When minimizing interconnections, we could have
arbitrary shaped blocks. To validate this idea, we
implement the interconnection-aware scheme by making
two simplifications: 1). All the blocks are rectangular. 2).
each block will be crossly cut (meaning one horizontal cut
followed by one vertical cut) to get smaller blocks at the
next hierarchical level. This approach is il lustrated in Fig.
3. When the horizontal cut is performed, we check all
possible horizontal cuts in the current block and pick the
one which results in the fewest interconnections at the cut-
line. The same procedure is performed to do the vertical
cut.

Fig. 3. Interconnection-aware blocking scheme

We compare placement results of this interconnection-
aware blocking scheme with placement results of Dragon
in Table 3. On average, interconnection-aware blocking
scheme can speed up Dragon by a factor of 1.3 with a
quality loss of 7%.

3.3 Congestion-Aware Blocking Scheme

Congestion is one of the most important metrics in modern
placement problem. In some high-utilized designs, we
need to especially be aware of congestion during

placement. In this subsection, we propose a congestion-
aware blocking scheme to help reduce location congestion
during placement.

Table 3. Final placement comparison between Dragon
and the interconnection-aware blocking scheme

circuits placer

place.

WL

routed
WL

vios place.

time(s)

speedup WL

degra..

dragon 0.58 0.86 0 1803 ibm01

 TOOP 0.61 0.88 0 1379 1.2x 5%

dragon 3.55 4.55 0 5002 ibm07

TOOP 3.80 4.83 0 3552 1.4x 9%

dragon 3.21 3.77 0 8736 ibm09

TOOP 3.37 3.94 0 7035 1.2x 6%

dragon 4.77 5.50 0 9953 ibm11

TOOP 5.06 5.72 0 7907 1.3x 6%

The Cheng's bounding box model is selected to evaluate
congestion during placement in our placement tool [6]. To
identify the congested area, we define the average
congestion in a bin b(i, j) as

Where Cavg,v and Cavg,h are vertical and horizontal crossings
interconnections for each edge of the bin, respectively.
They can be obtained by

 Cavg,h=
���

 Cij,h

 Cavg,h=
���

 Cij,v

The purpose of using the congestion-aware blocking
scheme is to help placer budgeting congestion distribution
well to avoid local congested spot in the final placement.
We set the blocks in a way to balance bin congestion.
Similar to what we did in the interconnection-aware
blocking scheme, we cut the current block twice (one
horizontal cut followed by one vertical cut). The criterion
for each cut is to balance the average bin congestion on
both sides of the cut-line.
3.4 Decision Tree Based Trade-off Oriented
Placement Tool

In previous subsections, we introduced several blocking
schemes (pre-fixed, interconnection-aware and congestion-
aware). Each of them has their own focuses and tradeoffs.
To briefly summarize, the pre-fixed blocking scheme is the
fastest among these three. The interconnection-aware
blocking scheme produces the best placement in terms of

1

(m-1)n

m-1 n

i=1 j=1

1

(m-1)n

m-1 n

i=1 j=1

minimum
interconnection

 Cij,h

 Cavg,h

 C(i-1)j,h

 Cavg,h

 Cij,h

 Cavg,v

 Ci(j-1),h

 Cavg,v

 1

 4
() + + + Cij= =

469

final wirelength and is relatively fast. The congestion-
aware scheme focuses on solving the local congestion
problem in the final placement, but it may lose some
placement quality. Based on these properties, we can
construct a "Blocking Decision Tree (BDT)" to decide
which individual blocking scheme to use for each block at
a hierarchical level.

As shown in Fig. 4, we start traversing BDT by looking at
congestion distribution among all bins at this level. If the
total amount of congestion exceed a certain threshold, we
declare this block as congested and use congestion-aware
blocking scheme on this block. If the current block is not
congested, we look at the number of interconnections for
each bin inside this block. If the total number of
interconnections exceeds a certain threshold, we use
interconnection-aware blocking scheme, otherwise we use
the fastest pre-fixed blocking scheme. Basically, BDT tries
to use the fastest blocking scheme (pre-fixed) on blocks it
deems as "easy" for placer to handle and the most
complicated blocking scheme (congestion-aware) on
"difficult" blocks.

Fig. 4. Blocking Decision Tree (BDT): decide which
blocking scheme to use

The overall flow of the trade-off oriented placement tool is
controlled by the global decision tree (GDT) as shown in
Fig. 5. The decision of which specific sub-algorithm to use
internally in the placement system is made based on the
input vector. The user input vector has two elements: final
placement quality (Q) and runtime (T). The branches
coming out of each node represent different groups of
algorithms to use. The leaf node A, B1, B2, B3, C1, C2, C3, D
represent each different approaches we used in this tool to
achieve the trade-off between quality and runtime.

In our placement tool, there are four possible values for Q
(Excellent, Good, Average, Ok) and three possible values
for T (Fast, Average, Ok). GDT will pick which approach
to use based on the input vector {Q, T} .To achieve the
trade-off between the quality and runtime, the number of

blocks at each hierarchical level is another important
factor. The fewer blocks each level has, the longer the
runtime is and the better the placement quality is.

Starting at the top node, GDT branches left or right
depending on the input vector { Q, T} . When Q is set to
Excellent, we do not use any blocking schemes to achieve
the best placement quality. When Q is set to Good,
approach set B is selected. Approach set B makes use of
several blocking schemes described in the previous section
to optimize both wirelength and congestion. Specifically,
the pre-fixed blocking scheme is used to get the first level
blocks. Starting from the second hierarchical level, BDT
will be used to automatically select which blocking scheme
to use. Each individual approach in the set B (B1, B2, B3)
differs from each other by the number of blocks it has at
each hierarchical level. The more blocks an approach has,
the faster the approach is.

Q={Excellent, Good, Average, Ok}
T={Fast, Average, Ok}

Fig. 5. Global Decision Tree (GDT): A decision tree to
control the overall flow of our trade-off oriented placer.

When Q is set to Average, approach set C is selected.
Approach set C uses the pre-fixed blocking scheme at both
the first and the second hierarchical level. BDT is used
after the second hierarchical level. Similar to the approach
B set, different approaches in the C set differs themselves
by the number of blocks at each hierarchical level. When
Q is set to Ok, approach D is selected. Approach D is to
use the pre-fixed blocking scheme at all the hierarchical
levels and each block only contain one bin. It is essentially
the same algorithm as the classical top-down partitioning
placement algorithm.

To verify the trade-off between quality and runtime exists
in our decision tree, we tested our placer with all input

N Y

Q=Average?

N Y
R=Fast
?

N Y

T=Average?

N Y
T=Fast
?

N Y

T=Average
? B1

B2 B3 C1

C2 C3

D

(Q,T)

A

N Y

Q=Good?

Q=Excellent?

N

Y

Locally
Congested?

for each block at any hierarchial level

Clusters highly
connected?

Y

N

congestion-aware interconnection-aware pre-fixed

470

vectors on IBM placement benchmarks. Fig. 6 shows the
runtime vs. wirelength curve for each circuit we tested.
The x axis is runtime in a unit of 100 seconds; the y axis is
the total wirelength. From Fig. 6 we can see that different
approaches used in our placement tools can indeed control
the trade-off between runtime and quality. The approach
which runs longer produces a final placement with the
highest quality (smallest total wirelength). .

�

�

�

�

�

�

�

�

� ��� � ��� � ���

	�
��� � 	�
������ 	�
������ 	�
�� ���

Fig. 6. Placement wirelength vs. runtimes for different
benchmarks and input vectors

4 EXPERIMENTAL RESULTS
Table 4 shows the placement results comparison between
TOOP and QPlace. Even the fastest mode of TOOP
produces a similar or better placement result comparing to
QPlace.

Table 4. Improvement of TOOP over QPlace on
placement, routing wirelength and number of vias

 TOOP(Q=E) TOOP (Q=G) TOOP (Q=O)

 WL

(P)

WL

(R)

vias WL

(P)

WL

(R)

vias WL

(P)

WL

(R)

vias

ibm01 17% 8% -2% 16% 3% -4% 10% 4% -5%

ibm07 4% 11% 11% -2% 3% 7% -8% 6% 7%

ibm08 9% 11% 16% 3% 4% 12% -6% 3% 12%

ibm09 10% 11% 15% 5% 7% 4% 1% 4% 2%

ibm10 8% 10% 14% 1% 4% 1% -9% -4% -3%

ibm11 8% 13% 3% 4% 5% 0 -1% -1% 0

Aver. 9% 11% 7% 5% 4% 3% -1% 2% 2%

*For ibm08, the routing result is considered finished with 2
violations.

Compared to Capo (Table 5), TOOP shows significantly
stronger ability to produce routable placement. Capo fails
to produce routable placement (without routing violation)
for ibm01, ibm07 and ibm08. For other tested circuits,
even our lowest quality mode in TOOP produces
placement with better routing wirelength (by 1%) and
fewer number of vias (by 4%)

Table 5. Improvement of TOOP over Capo on
placement, routing wirelength and number of vias

 TOOP(Q=E) TOOP (Q=G) TOOP (Q=O)

 WL

(P)

WL

(R)

vias WL

(P)

WL

(R)

vias WL

(P)

WL

(R)

vias

ibm01 6% - - 6% - - 0 - -

ibm07 9% - - 5% - - -2% - -

ibm08 7% - - 1% - - -6% - -

ibm09 8% 8% 6% 3% 4% 5% -1% 1% 3%

ibm10 10% 14% 10% 4% 8% 8% -6% 1% 4%

Aver. 8% 11% 8% 4% 6% 7% -3% 1% 4%

.

5 CONCLUSION
In this paper, we developed a trade-off oriented placement
tool (TOOP) which can self-adjust based on user’s requests
and netlist properties. Decision trees are used internally to
control TOOP’s placement process.

Experimental results show that TOOP can indeed get a
nice trade-off between different modes. By comparing with
Cadence QPlace and an academic placement tool Capo,
TOOP shows strong ability in producing high quality and
routable placement results. Even the lowest quality mode
of TOOP can produce similar or better placement results.

REFERENCES
[1] S. N. Adya, I. L. Markov, P. G. Villarrubia, P. Parakh, M. C.
Yildiz, and P. H. Madden, "Benchmarking for Large-Scale
Placement and Beyond," International Symposium on Physical
Design, April 2003.

[2] A. E. Caldwell, A. B. Kahng, and I. L. Markov. “Can
Recursive Bisection Alone Produce Routable Placements?” . In
Design Automation Conference, pages 477–482. IEEE/ACM,
June 2000.

[3] C.-C. Chang, J. Cong and M. Xie, "Optimal Scalability Study
of Existing Placement Algorithms," Asia South Pacific Design
Automation Conference, Kitakyushu, Japan, pp 621-627, January
2003.

[4] S. Hur and J. Lil lis. “Mongrel: Hybrid Techniques for
Standard Cell Placement” . In International Conference on
Computer-Aided Design, pages 165–170. IEEE, 2000.

[5] M. Wang, X. Yang, and M. Sarrafzadeh. “Dragon2000: Fast
Standard-cell Placement for Large Circuits” . In International
Conference on Computer-Aided Design, pages 260–263. IEEE,
2000.

[6] X. Yang, R. Kastner, and M. Sarrafzadeh. “Congestion
Reduction During Placement Based on Integer Programming”. In
International Conference on Computer-Aided Design, pages
573–576. IEEE, 2001.

[7] M. C. Yildiz and P. H. Madden. “ Improved Cut Sequences
for Partitioning Based Placement” . In Design Automation
Conference, pages 776–779. IEEE/ACM, 2001.

471

	Main Page
	ICCAD03
	Front Matter
	Table of Contents
	Author Index

