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Abstract  
High quality placement results are always produced at the cost of 
significant runtimes. In this paper, we study the trade-off 
between the overall quality and the runtime for standard-cell 
placement problems. We implemented and studied a class of 
schemes to achieve the runtime vs. quality trade-off. We 
developed a new trade-off oriented placement tool (TOOP) 
which is controlled by decision trees. TOOP can adjust itself 
based on user’s requests and netlist properties. Compared to 
Cadence QPlace, even the fastest mode of TOOP (lowest quality) 
can produce placements with similar or better layout. TOOP also 
shows much stronger ability to produce routable placement when 
compared to Capo.  
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1 INTRODUCTION 
Standard-cell placement is a fundamental problem in the 
VLSI physical design area. It has been drawing massive 
attentions in the VLSI CAD field for more than twenty 
years. Even the most classical placement problem 
(minimizing total wirelength) is still a very active topic 
among researchers [1, 2, 3, 4, 5, 7]. Being an NP-hard 
problem, the placement problem is unlikely to be solved 
optimally within a reasonable amount of time. On the 
other hand, the problem size keeps the exponentially 
increasing trend, which makes old placement heuristics 
less and less effective. In order to handle current multi-
million gates design, a state-of-the-art placement tool 
typically consists of several heuristics with each of them 
focused on a special sub-problem.  

There are two essential aspects to consider in a VLSI 
design process: quality and time to complete the design. 
Ideally, designers would love to have designs with the 
highest quality obtained within the shortest amount of 
time. However, as the problem itself being NP-hard, 
quality and time inevitably trades off each other. A good 
placement tool should be very flexible to adapt itself based 
on different requests from designers. 

Almost all existing placement research works focused on 
improving the quality or/and speeding up the runtime over 
an existing algorithm. Almost none has been documented 
in a way of adaptively controlling the trade-off between 

quality and runtime. In this paper, we develop a trade-off 
oriented placement tool (TOOP). We seek to establish an 
adaptive way for our placer to perform placement based on 
both requests from users and the properties of the netlist. 
The actual placement process is controlled by decision 
trees. 

The rest of the paper is organized as follows. Section 2 
briefly describes the framework of our trade-off oriented 
placement tool. In section 3, several blocking schemes are 
introduced and the decision trees are described to control 
our placement tool. The experimental results are shown in 
section 4 by comparing our placement tool with Cadence 
QPlace and an academic placement tool Capo[2]. Section 5 
is the conclusion. 

2 FRAMEWORK OF TOOP 
We use a high-quality academic placement tool, Dragon 
[5] as the barebones of our trade-off oriented placement 
system. Components and controls will be added to Dragon 
to achieve the desired trade-off between quality and 
runtime. Dragon consists of several parts including 
partitioning, clustering, simulated-annealing based 
optimization and local greedy improvement, etc. Since we 
use Dragon to construct our trade-off oriented placement 
tool, it is worthwhile to spend a paragraph here to briefly 
review how Dragon works. 

Dragon works in a top-down fashion. At each hierarchical 
level, quadrisection is performed topologically on the 
netlist as well as physically on the layout area. At the top 
level, the layout area is divided into four areas and we call 
these areas “bins”. Meanwhile, the netlist is partitioned 
into four cell clusters with similar size to minimize the 
interconnections between them. The next step is to put 
clusters into bins. Simulated annealing is used to minimize 
the total wirelength. This phase is called “bin annealing”. 
These steps are recursively performed until each cluster 
only contains a small number of cells. The “cell 
annealing” phase is performed after bin annealing. It 
moves single cells around bins to further reduce 
wirelength. Finally, the detailed placement phase removes 
overlaps between cells and greedily improves the final 
wirelength. Our new trade-off placement tool is 
constructed on top of Dragon. As shown in Fig. 1, controls 
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based on decision trees are added to the system to control 
the interactions between each sub-component inside 
Dragon.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 Framework of our placement tool 

3 DETAILED IMPLEMENTATION 
In this section, we illustrate detailed schemes and controls 
inside our trade-off oriented placement tool. 

All results shown are obtained by running experiments on 
a SUN Ultra10 workstation with a 400MHz CPU. TOOP is 
tested on selected benchmarks from the IBM placement 
benchmark suite. The placer reads LEF/DEF files and 
outputs placement results in the DEF format. The Cadence 
WarpRouter is used to read the placement and perform the 
routing. The properties of the benchmarks we used are 
summarized in Table 1. 

Table 1. Properties of circuit used in experiments 

circuits cells nets rows white 

space 

core(row) 

  util. 

routing 

 layers 

ibm01 12,028 11,753 132 14.88% 85.12% 4 

ibm07 44,811 44,681 233 10.05% 89.95% 5 

ibm08 50,672 48,230 243 9.97% 90.03% 5 

ibm09 51,382 50,678 246 9.76% 90.24% 5 

ibm10 66,762 64,971 321 9.78% 90.22% 5 

ibm11 68,046 67,422 281 9.89% 90.11% 5 

ibm12 68735 68,376 347 14.78% 85.22% 5 

In most top-down partitioning based placement 
algorithms, interactions between partitions is prohibited. 
Once a cell is assigned to a certain partition, it will stay 
there throughout the whole placement process. This helps 
to solve the original problem in a true divide-and-conquer 
manner. However, an obvious disadvantage for this 
approach is that a cell's position is restricted by a decision 
which is made early in the process. To address this issue, 
Dragon allows cells be moved between partitions. 

We can describe this behavior by introducing the notion of 
" block" . A block contains a set of partitions and acts as a 
fence to restrict the moves of cells which belong to this set 
of partitions. No cell can be moved outside the block 
boundary (fence). In a classical top-down placement 
algorithm, a block only contains one partition. Thus a cell 
is always staying within this partition. For Dragon, there is 
only one block which contains all the partitions. 
Theoretically cells can be moved to anywhere within the 
whole layout area at each hierarchical level. Besides these 
two extreme cases, a block may contain an arbitrary 
number of partitions and the boundary of the block need 
not to be rectangular. Generally speaking, a large block 
size is connected with a better final placement but a longer 
runtime. 

3.1 Pre-fixed Blocking Scheme 

To test the first knob in our trade-off oriented placement 
tool, we use three pre-fixed blocking approaches 
(Approach A, B, C as shown in Fig. 2). At the first 
hierarchical level, there are 4 bins and 4 cell clusters but 
only one block in the entire layout area. At the second 
level, each bin, cluster and block will be divided into 4 
smaller parts. Thus we have 4 blocks, 16 bins and 16 
clusters in total. In approach A, these 4 second level blocks 
are obtained by crossly cutting the first level block. While 
in approach B and C, these 4 second level blocks are 
obtained by cutting the first level block vertically and 
horizontally, respectively. Each of these 4 blocks has 4 
bins and 4 clusters inside. Four clusters belonged to the 
same block can only be shuffled within the block during 
the bin annealing phase.  

 

 

 
 Approach A    Approach B    Approach C 

Fig. 2. Pre-fixed blocking schemes 

The purpose of defining/using blocks is to restrict the 
freedom of cluster movement when doing bin annealing. 
Thus the size of the solution space for each cluster 
placement problem is greatly reduced. We test these three 
approaches on a set of benchmark circuits. The interesting 
fact is that we found Approach B performs the best among 
these three approaches. We compare the total wirelength 
after placement and routing of Dragon and wirelength of 
the pre-fixed  blocking scheme. Table 2 shows the results. 
On average, pre-fixed blocking scheme can speed up 
Dragon by a factor of 2.7. On the other hand, the quality is 
worsening by 10%. 
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Table 2. Final placement comparison between Dragon 
and TOOP with the pre-fixed blocking scheme 

circuits placer 

 

place. 

WL 

routed 
WL 

vios place. 

time(s) 

speedup WL 

degra. 

dragon 0.58 0.86 0 1803   ibm01 

TOOP 0.63 0.90 0 547 3.3x 10% 

dragon 3.55 4.55 0 5002   ibm07 

TOOP 3.96 4.79 0 1998 2.5x 12% 

dragon 3.21 3.77 0 8736   ibm09 

TOOP 3.54 4.05 0 3415 2.6x 7% 

dragon 4.77 5.50 0 9953   ibm11 

TOOP 5.25 6.33 0 4380 2.3x 10% 

 

3.2 Interconnection-Aware Blocking Scheme 

The pre-fixed blocking scheme can effectively reduce the 
size of the solution space for each cluster placement 
problem. On the other hand, it blindly posts artificial 
regulations on clusters to restrict where they can be moved. 
A better way would be determining the block size and 
shape dynamically to minimize the interconnection 
between them.  
When minimizing interconnections, we could have 
arbitrary shaped blocks. To validate this idea, we 
implement the interconnection-aware scheme by making 
two simplifications: 1). All the blocks are rectangular. 2). 
each block will be crossly cut (meaning one horizontal cut 
followed by one vertical cut) to get smaller blocks at the 
next hierarchical level. This approach is il lustrated in Fig. 
3. When the horizontal cut is performed, we check all 
possible horizontal cuts in the current block and pick the 
one which results in the fewest interconnections at the cut-
line. The same procedure is performed to do the vertical 
cut.  

 

 

 

 

 
Fig. 3. Interconnection-aware blocking scheme 

We compare placement results of this interconnection-
aware blocking scheme with placement results of Dragon 
in Table 3. On average, interconnection-aware blocking 
scheme can speed up Dragon by a factor of 1.3 with a 
quality loss of 7%.  
 
3.3 Congestion-Aware Blocking Scheme 

Congestion is one of the most important metrics in modern 
placement problem. In some high-utilized designs, we 
need to especially be aware of congestion during 

placement. In this subsection, we propose a congestion-
aware blocking scheme to help reduce location congestion 
during placement. 
 

Table 3. Final placement comparison between Dragon 
and the interconnection-aware blocking scheme 

circuits placer 

 

place. 

WL 

routed 
WL 

vios place. 

time(s) 

speedup WL 

degra.. 

dragon 0.58 0.86 0 1803   ibm01 

 TOOP 0.61 0.88 0 1379 1.2x 5% 

dragon 3.55 4.55 0 5002   ibm07 

TOOP 3.80 4.83 0 3552 1.4x 9% 

dragon 3.21 3.77 0 8736   ibm09 

TOOP 3.37 3.94 0 7035 1.2x 6% 

dragon 4.77 5.50 0 9953   ibm11 

TOOP 5.06 5.72 0 7907 1.3x 6% 

 

The Cheng's bounding box model is selected to evaluate 
congestion during placement in our placement tool [6]. To 
identify the congested area, we define the average 
congestion in a bin b(i, j) as 
 
 
 
 
 
Where Cavg,v and Cavg,h are vertical and horizontal crossings 
interconnections for each edge of the bin, respectively. 
They can be obtained by 
 

                                   Cavg,h=              
���

 Cij,h 
 

 

   Cavg,h=              
���

 Cij,v 
 
 
The purpose of using the congestion-aware blocking 
scheme is to help placer budgeting congestion distribution 
well to avoid local congested spot in the final placement. 
We set the blocks in a way to balance bin congestion. 
Similar to what we did in the interconnection-aware 
blocking scheme, we cut the current block twice (one 
horizontal cut followed by one vertical cut). The criterion 
for each cut is to balance the average bin congestion on 
both sides of the cut-line. 
3.4 Decision Tree Based Trade-off Oriented 
Placement Tool 

In previous subsections, we introduced several blocking 
schemes (pre-fixed, interconnection-aware and congestion-
aware). Each of them has their own focuses and tradeoffs. 
To briefly summarize, the pre-fixed blocking scheme is the 
fastest among these three. The interconnection-aware 
blocking scheme produces the best placement in terms of 
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final wirelength and is relatively fast. The congestion-
aware scheme focuses on solving the local congestion 
problem in the final placement, but it may lose some 
placement quality. Based on these properties, we can 
construct a "Blocking Decision Tree (BDT)" to decide 
which individual blocking scheme to use for each block at 
a hierarchical level.  

As shown in Fig. 4, we start traversing BDT by looking at 
congestion distribution among all bins at this level. If the 
total amount of congestion exceed a certain threshold, we 
declare this block as congested and use congestion-aware 
blocking scheme on this block. If the current block is not 
congested, we look at the number of interconnections for 
each bin inside this block. If the total number of 
interconnections exceeds a certain threshold, we use 
interconnection-aware blocking scheme, otherwise we use 
the fastest pre-fixed blocking scheme. Basically, BDT tries 
to use the fastest blocking scheme (pre-fixed) on blocks it 
deems as "easy" for placer to handle and the most 
complicated blocking scheme (congestion-aware) on 
"difficult" blocks.  

 

 

 

 

 

 

 

 

 

 

Fig. 4. Blocking Decision Tree (BDT): decide which 
blocking scheme to use  
 

The overall flow of the trade-off oriented placement tool is 
controlled by the global decision tree (GDT) as shown in 
Fig. 5. The decision of which specific sub-algorithm to use 
internally in the placement system is made based on the 
input vector. The user input vector has two elements: final 
placement quality (Q) and runtime (T). The branches 
coming out of each node represent different groups of 
algorithms to use. The leaf node A, B1, B2, B3, C1, C2, C3, D 
represent each different approaches we used in this tool to 
achieve the trade-off between quality and runtime. 

In our placement tool, there are four possible values for Q 
(Excellent, Good, Average, Ok) and three possible values 
for T (Fast, Average, Ok). GDT will pick which approach 
to use based on the input vector {Q, T} .To achieve the 
trade-off between the quality and runtime, the number of 

blocks at each hierarchical level is another important 
factor. The fewer blocks each level has, the longer the 
runtime is and the better the placement quality is. 

Starting at the top node, GDT branches left or right 
depending on the input vector { Q, T} . When Q is set to 
Excellent, we do not use any blocking schemes to achieve 
the best placement quality. When Q is set to Good, 
approach set B is selected. Approach set B makes use of 
several blocking schemes described in the previous section 
to optimize both wirelength and congestion. Specifically, 
the pre-fixed blocking scheme is used to get the first level 
blocks. Starting from the second hierarchical level, BDT 
will be used to automatically select which blocking scheme 
to use. Each individual approach in the set B (B1, B2, B3) 
differs from each other by the number of blocks it has at 
each hierarchical level. The more blocks an approach has, 
the faster the approach is.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Q={Excellent, Good, Average, Ok} 
T={Fast, Average, Ok}  

Fig. 5. Global Decision Tree (GDT): A decision tree to 
control the overall flow of our trade-off oriented placer. 
 

When Q is set to Average, approach set C is selected. 
Approach set C uses the pre-fixed blocking scheme at both 
the first and the second hierarchical level. BDT is used 
after the second hierarchical level. Similar to the approach 
B set, different approaches in the C set differs themselves 
by the number of blocks at each hierarchical level. When 
Q is set to Ok, approach D is selected. Approach D is to 
use the pre-fixed blocking scheme at all the hierarchical 
levels and each block only contain one bin. It is essentially 
the same algorithm as the classical top-down partitioning 
placement algorithm. 

To verify the trade-off between quality and runtime exists 
in our decision tree, we tested our placer with all input 
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vectors on IBM placement benchmarks. Fig. 6 shows the 
runtime vs. wirelength curve for each circuit we tested. 
The x axis is runtime in a unit of 100 seconds; the y axis is 
the total wirelength. From Fig. 6 we can see that different 
approaches used in our placement tools can indeed control 
the trade-off between runtime and quality. The approach 
which runs longer produces a final placement with the 
highest quality (smallest total wirelength). . 
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Fig. 6. Placement wirelength vs. runtimes for different 
benchmarks and input vectors 

4 EXPERIMENTAL RESULTS 
Table 4 shows the placement results comparison between 
TOOP and QPlace. Even the fastest mode of TOOP 
produces a similar or better placement result comparing to 
QPlace.  

Table 4. Improvement of TOOP over QPlace on 
placement, routing wirelength and number of vias 

 TOOP(Q=E) TOOP (Q=G) TOOP (Q=O) 

 WL 

(P) 

WL 

(R) 

vias WL 

(P) 

WL 

(R) 

vias WL 

(P) 

WL 

(R) 

vias 

ibm01 17% 8% -2% 16% 3% -4% 10% 4% -5% 

ibm07 4% 11% 11% -2% 3% 7% -8% 6% 7% 

ibm08 9% 11% 16% 3% 4% 12% -6% 3% 12% 

ibm09 10% 11% 15% 5% 7% 4% 1% 4% 2% 

ibm10 8% 10% 14% 1% 4% 1% -9% -4% -3% 

ibm11 8% 13% 3% 4% 5% 0 -1% -1% 0 

Aver. 9% 11% 7% 5% 4% 3% -1% 2% 2% 

*For ibm08, the routing result is considered finished with 2 
violations. 

Compared to Capo (Table 5), TOOP shows significantly 
stronger ability to produce routable placement. Capo fails 
to produce routable placement (without routing violation) 
for ibm01, ibm07 and ibm08. For other tested circuits, 
even our lowest quality mode in TOOP produces 
placement with better routing wirelength (by 1%) and 
fewer number of vias (by 4%) 

Table 5. Improvement of TOOP over Capo on 
placement, routing wirelength and number of vias 

 TOOP(Q=E) TOOP (Q=G) TOOP (Q=O) 

 WL 

(P) 

WL 

(R) 

vias WL 

(P) 

WL 

(R) 

vias WL 

(P) 

WL 

(R) 

vias 

ibm01 6% - - 6% - - 0 - - 

ibm07 9% - - 5% - - -2% - - 

ibm08 7% - - 1% - - -6% - - 

ibm09 8% 8% 6% 3% 4% 5% -1% 1% 3% 

ibm10 10% 14% 10% 4% 8% 8% -6% 1% 4% 

Aver. 8% 11% 8% 4% 6% 7% -3% 1% 4% 

. 

5 CONCLUSION 
In this paper, we developed a trade-off oriented placement 
tool (TOOP) which can self-adjust based on user’s requests 
and netlist properties. Decision trees are used internally to 
control TOOP’s placement process. 

Experimental results show that TOOP can indeed get a 
nice trade-off between different modes. By comparing with 
Cadence QPlace and an academic placement tool Capo, 
TOOP shows strong ability in producing high quality and 
routable placement results. Even the lowest quality mode 
of TOOP can produce similar or better placement results. 
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