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Abstract 
A fully-analytical approach to estimate the statistics of 
dynamic non-linearity parameters of pipeline analog-to-
digital converters (ADCs) in the presence of circuit non-
idealities including capacitance mismatches and non-ideal 
opamps is presented. These parameters include the spurious-
free dynamic range (SFDR) and the signal to noise-and-
distortion ratio (SNDR). The simple closed-form formulas 
for SFDR and SNDR presented here are useful for design 
automation of highly-linear pipeline ADCs in order to 
extract the required values for the circuit-level specifications 
of the sub-blocks of converters. Behavioral simulations are 
presented to show the accuracy of the proposed equations. 

1. INTRODUCTION 
Linearity is one of the most important specifications of an 
analog-to-digital converter (ADC), especially in high-speed and 
high-dynamic-range applications such as cellular base-station 
transceivers and multi-standard software radios. These modern 
communication systems with the ultimate goal of directly 
digitizing the RF signal [1] will require high-resolution highly-
linear ADCs [2,3]. This is due to the wide bandwidth of the 

signal and the density of signal information.  
The dynamic range of an ADC is mostly expressed by the 
spurious-free dynamic range (SFDR) [2], and signal to noise and 
distortion ratio (SNDR). The SFDR of an ADC is defined as the 
difference in decibel, between the full-scale fundamental tone 
and the largest spurious (harmonic) component in the output 
spectrum. In addition the SNDR is defined as the ratio of the 
signal power to the total noise and harmonic power at the 
output, when the input is a sine wave [4]. 
Pipeline ADCs (Figure 1) are the most popular architecture in 
high-speed medium-to-high-resolution applications. There have 
been several approaches proposed in literature for characterizing 
and calculating the non-linearity parameters of pipeline ADCs. 
In [5] a complete study of integral non-linearity (INL) and 
differential non-linearity (DNL) parameters is presented, 
whereas the dynamic parameters i.e. SFDR and SNDR are not 
considered. In [6] the total SFDR of a pipeline ADC is roughly 
approximated; but it does not present an exact relationship for 
the total SFDR. However, in this paper a comprehensive 
analysis of the dynamic non-linear effects in a pipeline ADC is 
presented. A set of accurate closed-form equations for the SFDR 
and SNDR which can be used in developing automated design 
CAD tools is also presented. The effects of the non-idealities in 
the residue-amplifier gain values arisen from circuit 
imperfections such as mismatch in capacitor values, finite DC 
gain of the operational amplifiers, and the settling errors of the 
residue amplifiers, in the SFDR and SNDR values of a pipeline 
ADC are investigated and the total spurious signal and total 
noise and distortion power are calculated. Finally, the behavioral 
Monte-Carlo simulation results are presented that clearly verify 
the accuracy of the given simple closed-form relations. 
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Figure 1. A generic pipeline ADC structure 2. 

QUANTIZATION NON-LINEARITY 
In an ideal quantizer, when no non-linearity and noise except the 
quantization non-linearity is existent, it has been shown that the 
maximum SNDR is [4] 

76.102.6 +≈ nSNDR                             (1) 

where n is the ADC resolution. In this case, the spurious signal 
is only produced by the quantization non-linearity. If a sine 
wave is passed through an ideal quantizer, the Fourier series of 
the output signal leads to the closed-form expression for the 
magnitudes of the harmonic signals [7] as 
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where xi is the ith quantized level. The largest harmonic 
component (named Hq) is about 9n-c dB below the fundamental 
component [7] where the resolution-dependent offset c ranges 
from 0 for low resolutions to 6 for high resolutions (or even 8 

for more than 12-bit resolutions). Thus, the SFDR is 
approximated by 

cnSFDR −≈ 9                                (3) 
These equations obtained for an ideal quantization system, 
express that increasing one bit in the ADC resolution results in a 
6dB increase in the SNDR value and a 9dB improvement in the 

SFDR value. 

3. EFFECTS OF NON-IDEALITIES IN ADC LINEARITY 
In a pipeline ADC shown in Figure 1, circuit imperfections such 
as capacitor mismatches, finite opamp DC gains, and incomplete 
settling of the residue amplifiers deteriorate the linearity of the 
ADC transfer function. 
For every stage of an ADC, with 1 bit of resolution (mi=1), one 

can write [8] 
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where Bi, ri, ai, fi, T, τi, ∆Ci/Ci are the output digit, the output 
residue signal, the gain, the feedback factor, the dedicated time 
for settling, the time constant of the system, and the normalized 
capacitance mismatch of the ith residue stage. With these 
definitions, it is assumed that the sampling and amplification 
capacitors of the 1-bit stage have the deterministic values of 
C+∆C/2 and C-∆C/2, respectively, and the statistical behavior of 
the capacitive mismatch and gain are not considered yet. xi is the 
input signal of the ith stage that is also the residue signal of the 
previous stage. In order to have shorter expressions for the 
equations, we define 
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and assuming Vref=1, we can rewrite (5) as 
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Assuming that r1 i.e. the residue of the first stage is perfectly 
digitized by the following stages and no error is added to its 
value, it can be stated that the digital equivalent value for the 
output word of the ADC, is obtained from 
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Making use of (4) and (7) in (8) result in 
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In an ideal ADC the input-output transfer curve is a straight line 
with a gain of unity (Figure 2(a)). However, as shown in (9), a 
non-ideality in the first stage leads to a total gain error of 
(1+δg1+½δC1) instead of 1 and a breaking point at zero in the 

input-output curve as shown in Figure 2(b). This breaking point 
caused by the first stage non-ideality leads to a non-linearity in 
the entire ADC. Of course, the jump value at this breaking point 
located at zero in a practical converter is also affected by the 
non-ideality of the succeeding stages. In order to investigate this 
effect, consider that the second stage has a non-ideal transfer 
characteristics expressed by (4) and (5). The digital equivalent 
of the second stage input, r1, can be determined as follows  
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Hence, the second stage non-ideality leads to 3 breaking points as 
depicted in Figure 2(c). It can be easily shown that the height of the 
jump at the middle breaking point, located at zero, is equal to 
+½δg2. The height of the breaking point at zero for the 
combination of two non-ideal stages will be determined by the sum 
of the effects of both stages as (δg1+δC1+½δg2). The effect of other 
two breaking points arisen from the second stage will be discussed 
when the second stage non-linearity effects are discussed. 
In a 1.5-bit residue stage considering the fact that the amplifier’s 
gain is again equal to 2, it can be easily shown that (7) can be 

rewritten as [8] 
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Therefore, in the input-output transfer curve, a similar gain error 
to what extracted for the 1-bit case and two breaking points at  
-¼ and ¼ occur as shown in Figure 2(d). For the digital equivalent 
output of the ADC, similar to what expressed for (9), one can write 
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Figure 2. The input-output transfer curve for an ADC (a) 
ideal, (b) with a non-ideal first stage of 1-bit (Gain<2), (c) 
with two successive 1-bit stages in front-end with non-
ideality only in the second stage, (d) with non-ideal first 
stage of 1.5-bit. 

where ∆e1/2 is the jump at -¼ and ¼. Since this jump will be 
affected by its following stage, using similar strategy stated for 
the 1-bit case, it can be shown that for a 1.5-bit stage ∆ei is 
equal to 

∆ei= δgi+δCi-½δCi+1                           (13) 
It is evident that (13) is obtained assuming a deterministic 
behavior for capacitive mismatches and also gain errors. To 
have a statistical approach, assume that the δgi and δCi are 
normally-distributed variables with variance of σ2δgi

 and σ2δCi
, 

respectively. Therefore, ∆ei will be a normally-distributed 
variable with the variance value of 

 σ2∆ei
= σ2δCi

+σ2δgi
+σ2δCi+1

/4                    (14) 

Here it is assumed that the mean values of δgi and δCi are zero.  
In order to determine the power of the total harmonics of such 
an ADC, an ideal n-bit quantizer following a non-ideal system 
with a transfer function of f(x) expressed in (12) is considered. 
Assuming a sine-wave input x(t)=cos(t), using Fourier series 
expansion, one can write 
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The amplitude of the kth harmonic signal is obtained from 
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From (16), it is observed that the magnitudes of the even 
harmonic components are zero and the largest harmonic 
component is found to be the third one, approximately equal to 

 13 0.155 ea ∆≈                                (17) 

The third harmonic component due to the ith stage can be 
similarly extracted. For a sine wave applied to its input, the 
largest harmonic component in the digital equivalent of the 
input of the ith stage, is obtained from 
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ii ea ∆= 0.155,3                                 (18) 

In order to calculate the effect of this harmonic component in 
the digital equivalent of the input of the entire ADC, the 
magnitude of the harmonic component is divided by the voltage 
gain of the preceding stages as 
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In the entire ADC, with non-idealities in all stages, it can be 
stated that the third harmonic component is derived from the 
summation of the third harmonic components of all residue 
stages, therefore 
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As ∆eis are stochastic variables with normal distribution, the 
third harmonic of the converter is also a normally-distributed 
variable with the variance value of 
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Since ∆eis are not totally uncorrelated, for (21) to be true, it can 
be shown that σ2∆ei

 should be changed as 
  σ2∆ei

= σ2δCi
+σ2δgi

- σ2δCi+1
/4                       (22)  

4. SFDR CALCULATION 

4.1 Residue Stages of 1.5 Bits 
In order to calculate the spurious-free dynamic range of the 
pipelined ADC composed of 1.5-bit residue amplifiers, the 
largest harmonic component should be determined. It is known 
that the largest harmonic component caused by the quantization 
non-linearity (named Hq) is certainly not the third harmonic 
component [7] and its magnitude is 9n-c dB below the 
fundamental component [7]. Therefore, it can be concluded that 
the magnitude of the largest spurious signal is the maximum 
value of either a3 determined in (20) or Hq. As a result, the 
spurious-free dynamic range is obtained from 

( ){ }3/1log20,9min acnSFDR ⋅−=                    (23) 

As mentioned before, a3 is a random variable where its variance 
value was derived in (21). In order to estimate the one-sigma 
SFDR, one can show that the corresponding a3 is obtained from 

3,3 asigmaonea σ=−                             (24) 

Using (21), (23) and (24) it can be concluded that the total 
SFDR is  

{ })log(102.16,9min EcnSFDR ∆⋅−−=             (25) 

where 20log(0.155) = -16.2, and 
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As can be seen from (25) and (26), every halving ∆E results in 
3dB improvement in SFDR. Besides, the non-idealities of the 
front-end stages have bigger effect on the total SFDR. 

4.2 Residue Stages of more than 1.5 Bits 
In order to determine the SFDR in an ADC with stage 
resolutions of more than one effective bit, the input-output 
transfer function for a residue amplifier of m effective bits 
should be calculated. In a conventional m-effective-bit residue 
stage with 2m equal capacitors, the input-output transfer function 
of the residue amplifier is obtained from [9] 

( )
















+
















++= ∑∑
−

=

−

=

12

1

,
12

1

,
11

mm

k F

kSk

k F

kS

C

Cd
x

C

C
gr δ            (27)  

where dk is either 0 or ±1, depending on the sub-ADC outcome. 
CF is the feedback capacitor and CS,k is the kth sampling 
capacitor in the residue amplifier.   
The mismatch for the kth capacitor of the residue stage is defined 
as  
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So (27) can be rewritten as  
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Such non-idealities in the m-bit residue stage, result in a total 

gain error of 
















++ ∑
−

=

12

1
2

1

m

k
m
kC

g
δδ  and (2m+1-2) breaking points 

with heights of  

           ( ) m
kk Cg 2δδ +=∆                             (30) 

In order to estimate the harmonic component of such an input-
output transfer curve, a sine wave is applied as the input and the 
harmonic component of the output wave is analyzed.  
Using similar strategy utilized in deriving (16), it can be shown 
that the even harmonic components are zero and the odd 
harmonic components are obtained from 
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It can be seen that the biggest harmonic component is the third 
one. As ∆ks are normally-distributed variables, the third 
harmonic component of the converter has also a normal 
distribution with the variance value of  
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In this residue amplifier, all Cs have the same mean value. 
Therefore the capacitor mismatches have similar variances, to be 
named σ2δC. For ith residue stage we name it as σ2δCi

. 

Using some simplifications in (32), and considering the next 
stage effect on the heights of the previous stage break points, the 
input-referred variance value for the third harmonic component 
for the ith stage of a pipeline ADC, is approximated by 
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So, in the entire pipeline ADC, one can write 
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where N and mj are the number of residue stages and the 
effective resolution of jth residue stage (see Figure 1), 

respectively. 
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5. SNDR CALCULATION 
The total input-referred distortion of the converter can be 
obtained from               ( )∑

∞

=

=
2i
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2/idstr aP                         (36) 

where ai is the magnitude of the ith input-referred harmonic 
component of the entire converter. As the harmonic components 
of the converter stages are assumed uncorrelated, in order to 
estimate the average power of the spurious signals due to circuit 
imperfections, the input-referred spurious power of each stage 
should be calculated (using (31) and (36)) and then added to 
estimate that of the entire ADC. This will lead to an estimation 
of the total spurious power as 
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where f is a fitting parameter equal to 0.95. 
This distortion power is added to what arises from quantization 
non-linearity, thus 
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and VFS is the full-scale (reference) voltage of the converter. 
As considered in (15), the amplitude of the input sine wave is 1 
and so VFS=2 . Therefore 
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By using (38) and (39), the total distortion plus noise is obtained 
from      )/(2333.0 2 CkTPP n

dstrND α+×+= −
+        (40) 

Having known Psignal=1/2, the total SNDR is obtained from 
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6. SIMULATION RESULTS 
A complete ADC circuit has a great number of devices and a 
comprehensive Monte-Carlo SPICE simulation through a large 
number of points (to extract the exact value of the SFDR and 
SNDR) is time consuming. Hence, in order to model the 
behavior of a pipeline ADC, using MATLAB a behavioral 
simulation tool of such an ADC in which the non-ideal agents of 
the residue stages are taken into account, is developed. In order 
to simulate the residue stages behaviorally, equations (11) and 
(27) were employed. In order to estimate the value of SFDR and 
SNDR when the statistical behavior of δg and δC are known, a 
Monte-Carlo simulation with normal distribution for δg and δC 
is performed and then the average power of the largest spurious 
signal and the average value of the total spurious power is used 
to extract the value of the SFDR and SNDR, respectively. 
Figure 3 shows the dependency of the total SFDR and SNDR of 
a 12-bit 1.5-bit/stage pipeline ADC on the values of σδg for two 
values of σδC. Note that δg and δC for all stages are taken with 
similar variance yet uncorrelated. It shows a very good 
agreement between the Monte-Carlo simulation results and the 
proposed equations. Figure 4 shows the dependency of the total 
SFDR and SNDR of a 12-bit pipeline ADC with a first-stage 
resolving 3-effective bits and 1.5 bits for all other stages on the 
values of σδg for two values of σδC. A good agreement between 
the proposed formulas and simulation results is again achieved.  

7. CONCLUSION 
In this paper, a fully analytical approach to the estimation of the 
statistics of SFDR and SNDR for a pipeline ADC is presented. 
Using the proposed simple closed-form formulas for SFDR and 
SNDR, the required accuracies of the residue-amplifiers gain 

values as well as the mismatches in the capacitors to satisfy a 
particular SFDR and a specific distortion budget can be 
extracted. The Monte-Carlo simulation results confirm the 
accuracy of the proposed formulas. These formulas can be 
employed in CAD tools as well as hand calculation in pipeline 
ADC designs.  
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Figure 3. Values of SFDR and SNDR of a 12-bit 1.5-
bit/stage pipeline ADC versus σδg of all stages for (a) 
σδC=0, (b) σδC =0.1%. 
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Figure 4. Values of SFDR and SNDR of a 12-bit pipeline 
ADC with a first-stage resolving 3-effective bits and 1.5 
bits for all other stages versus σδg of all stages for (a) 
σδC=0, (b) σδC =0.1%. 
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