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Abstract
Efficient iterative time preconditioners for Krylov-
based harmonic balance circuit simulators are pro-
posed. Some numerical experiments assess their
performance relative to the well-known block-
diagonal frequency preconditioner and the previously
proposed time preconditioners.

INTRODUCTION
The frequency-domain harmonic balance (HB) method proved
an efficient alternative to the time-domain shooting method for
computing periodic and quasi-periodic circuit steady states.
Both methods were made efficient for large circuits by imple-
menting the underlying Newton method using a matrix-implicit
Krylov-subspace algorithm [1], [4], [8], [10], [12], [14], for
the computation of the Newton direction at each iteration.
Such methods require the use of an appropriate preconditioner
in order to converge.

Some purely algebraic preconditioners based on incomplete
factorizations were tested for harmonic balance simulation (see
e.g.[15]), without much success. Therefore designing special
purpose preconditioners soon appeared mandatory. A first
approach was the frequency block-diagonal preconditioner
proposed in [4], that is ideal for linear circuits and was found
efficient for mildly nonlinear circuits. The need for efficient
preconditioners to simulate nonlinear and strongly nonlinear
circuits has given rise to some ongoing research.

In [5]-[7] two frequency-domain preconditioners are pro-
posed. One factorizes an approximate Jacobian matrix ob-
tained by neglecting the small harmonic of conductances and
capitances. The other one is built in a similar way for an
equivalent linear system already right preconditioned by the
diagonal blocks of the harmonic balance Jacobian matrix.

Some preconditioners using factorized approximate time Jaco-
bian operators based on averaging over time intervals during a
signal period were proposed in [9], efficiently implemented
using the theory of displacement structure.

The use of an approximate finite-difference time Jacobian ma-
trices as preconditioner for the Harmonic Balance linear sys-

tems at each Newton iteration was proposed in [13]. The
authors found the approximate Backward-Euler (BE) time
Jacobian operator not very effective for preconditioning and
suggested using higher-order differencing schemes.

The approximate BE and 2nd-order Backward Differentiation
Formulae (BDF-2) operators were assessed in [11], where they
perform better than the well-known block-diagonal frequency
preconditioner [3], [4] as a right preconditioner, except for a
small number of harmonics (typically less than 20). The author
reports on page 32 costly increases in both the numbers of
GMRES and Newton iterations when they are used for left
preconditioning.

The connection between spectral and standard finite-
difference schemes [13] and the ability of time-domain
shooting methods to handle strongly nonlinear circuits [11]
motivate the use of a finite-difference time preconditioner
for the accurate HB method. The approach proposed in [11]
and [13] is extended in the next section by removing the
approximations suggested by the authors, using an iterative
method. The following section reports some numerical ex-
periments.

ITERATIVE TIME PRECONDITONERS
Following [13] the time-domain circuit equations are written
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where u(t) is the vector of input sources, v(t) is the vector of
node voltages, and i(v(t)), q(v(t)) are the vectors of resistive
node currents and node charges (or fluxes) respectively; all
these vectors are of size N.

In harmonic balance formulation, any waveform x(t) is repre-
sented as a truncated Fourier series
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Substituting the Fourier representations of v(t) and u(t) in (2)
and using orthogonality of the Fourier basis functions, one
obtains the harmonic balance formulation of circuit equations

,0)()()( 11 =Γ+ΓΓ+ΓΩΓ= −− UViVqVF              (3)

where capital letters U, V and F indicate vectors of Fourier
coefficients, Ω is a diagonal matrix expressing time derivation
in frequency domain, and Γ is the inverse discrete Fourier
transform matrix operating on vectors of size NM where N is
the number of nodal unknowns and M=2K+1 is the number of
Fourier components. In practice the action of the operator Γ
and of its inverse are implemented using numerically efficient
Fast Fourier Transforms.

Newton’s method applied to (3) yields the iterations
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where n is the Newton iteration index and the Jacobian matrix
is given by

11)( −− ΓΓ+ΓΩΓ= GCVJ n
                                            (5)

In the above equation C is a block-diagonal matrix with blocks

dvtvdqC jj /))((=  and G is a block-diagonal matrix with

blocks ,/))(( dvtvdiG jj =  both evaluated at the current

residual time vector .1 nn Vv −Γ=

In order to solve (4) efficiently using Krylov subspace meth-
ods [12], [13], one needs a suitable preconditioner. Following
[11], we build such a preconditioner by approximating the time
counterpart of the frequency-domain Jacobian (given in (5)):

G
dt

dC
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Using a Backward-Euler scheme for the time differentiation,
one obtains the following preconditioner matrix

BLP −=                                                             (7)

where L denotes the block lower triangular part
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and B contains only one extra upper triangular nonzero block
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Other preconditioner matrices can be formed using different
differentiation schemes such as the second-order Backward
Differentiation Formula (BDF-2).

Algorithm
In this paper, unlike [11] and [13] that suggest to drop the
extra-block matrix B and to use only L as a preconditioner, the
full preconditioner matrix in (7) is retained. An iterative time
preconditioner is built as in the following figure.

1. Transform to time domain : Zz 1−Γ=
2. Compute zLy 1−=
3. Using an unpreconditioned iterative linear solver, compute an

approximate solution of ,)( 1 yxBLI =− −
starting from y.

4. Transform back to frequency domain to get the preconditioned

vector : .xX Γ=
Figure 1. Application of the iterative time preconditioner

to a vector Z of size NM of frequency components

Some remarks can be made:

• First, excluding step 3 of the preconditioning algorithm
one recovers a static (non-iterative) time preconditioner as
proposed by [11] and [13]. Our iterative approach ex-
tends it by enhancing the quality of the preconditioning in
step 3.

• Second, [11] and [13] conclude that the Backward-Euler
static time preconditioner (with the lower-triangular ma-
trix L only) is not very effective and they propose to use
preconditioners derived from higher-order differencing
schemes.  Although using higher-order differencing
schemes would reduce the corresponding truncation error,
the main source of error is more likely orginated from
dropping the extra-block part B. Higher-order schemes
such as BDF-2 would require to drop more blocks, and
the resulting static time preconditioner may not be more
effective and it could even be worse. On the contrary, our
iterative time preconditioner retains the extra blocks and
using higher-order differencing schemes will certainly
benefit from reducing the corresponding truncation error.
However a BDF-2 iterative time preconditioner may not
be more effective than a Backward-Euler one, because the
corresponding linear system in step 3 of the algorithm is
likely to be more badly conditioned and the initial iterate y
provided by step 2 may be further from its solution.
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• Third, the iterative nature of the preconditioner requires
that the Krylov method used to solve the Newton itera-
tion (4) could cope with a variable preconditioner. This
is case for example with the flexible GMRES
(FGMRES) method.

• Finally, assume one solves the linear system in step 3
exactly. Then, disregarding the error introduced by the
time differencing scheme, the Newton iteration (4) re-
quires only one iteration of the Krylov subspace
method using this preconditioner. Indeed, this amounts
to solve the time equivalent of the Newton iteration (4)
using a finite-difference method. Therefore, our itera-
tive time preconditioner provides a natural mixed fre-
quency-time framework where the part of the solution
process is transfered to the time domain and this trans-
fer is controlled by the accuracy of the linear-system
solver requested in step 3.

NUMERICAL EXPERIMENT
The iterative time preconditioner introduced in the previous
section was implemented within the circuit simulator Eldo RF
of Mentor Graphics Corporation.

This section reports experiments with two types of circuits that
are time-consuming for harmonic balance simulation, namely a
divider-by-64 circuit and a third-order 8MHz phase-locked
loop (PLL) circuit with ideal charge pump described in [2].
Results are presented in tables 1 and 3 respectively, where the
static and iterative time preconditioners CPU-time perform-
ance is measured against that of the classical block-diagonal
frequency preconditioner [4] and reported as a speed-up ratio.
The number of Newton iterations to solve the harmonic bal-
ance formulation (3) and the total number of Krylov iterations
performed during the Newton iterations (4) are also reported.

Table 1. Experiments with frequency divider by 64

Preconditioner Speed-up
ratio

Newton

iterations

Krylov

iterations

Block-diagonal
frequency

preconditioner
1.0 4 173

Static time

preconditioner
1.67 4 25

Iterative time
preconditioner 1.34 4 25

The frequency divider circuit has N=68 nodal unknowns and it
was simulated using K=640 harmonics. The static time pre-
conditioner outperforms the block-diagonal  frequency pre-
conditioner, with a number of Krylov iterations approximately

divided by 7 and a speed-up ratio of 1.67. The discrepancy
between these two numbers arises from the extra work per-
formed at each Krylov iteration inside the preconditioner. The
iterative time preconditioner yields no further improvement in
terms of Krylov iterations and therefore a degradation in terms
of speed-up ratio compared to the static version, due to the
extra work perform in step 3 of the algorithm.

This divider circuit was designed by cascading D flip-flops set
up as divide-by-2 cells. Table 2 reports the number of Newton
iterations and the number of Krylov iterations required to
compute the steady state using the iterative time precondi-
tioner, for different division factors and number of harmonics.

Table 2. Experiments with frequency dividers

Frequency

division

factor

Number of
harmonics

Newton

iterations

Krylov

iterations

2 30 3 15

4 40 4 21

8 80 4 21

16 160 4 21

32 320 4 22

64 640 4 25

The iterative time preconditioner clearly appears almost insen-
sitive to the frequency division factor, except for a relatively
small number of harmonics.

Table 3. Experiments with third-order 8MHz PLL with ideal
charge pump

Preconditioner Speed-up
ratio

Newton
iterations

Krylov
iterations

Block-diagonal

frequency

preconditioner

1.0 10 1715

Iterative time
preconditioner

4.53 12 86

The third-order 8MHz PLL has N=72 nodal unknowns and
was simulated using K=100 harmonics. For this circuit, the
static time preconditioner (not reported in table 3) is so poor
that the Newton method does not converge. The enhancement
provided by step 3 in the algorithm of the iterative time pre-
conditioner not only enables the Newton method to converge,
but also leads to a number of Krylov iterations approximately
divided by 20 and a speed-up ratio of 4.53 when compared to
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the simulation using the block-diagonal frequency precondi-
tioner.

CONCLUSIONS
An iterative time preconditioner is proposed for harmonic bal-
ance RF circuit simulation and was implemented in the com-
mercial circuit simulator Eldo RF of Mentor Graphics Corpo-
ration. In numerical experiments, using a divider and a PLL
circuit, this new preconditioner is compared to the classical
block-diagonal frequency preconditioner [4] and a static time
preconditioner as proposed in [11] and [13].

For both circuits, the relatively small number of Krylov itera-
tions per Newton iteration is an indicator of the effectiveness
of our preconditioning approach. A reduction of this indicator
ratio may also correspond to substantial savings in terms of
memory if a non-restarted FGMRES solver is used.

However the efficiency of a particular preconditioner is always
a trade-off between the reduction of Krylov iterations and the
computational requirements of the preconditioner itself, and it
is better measured by the CPU time speed-up ratio.

These test circuits were deliberately chosen because of the
inadequacy of the block-diagonal frequency preconditioner.
For linear and mildly nonlinear circuits, the latter is likely to
outperform the iterative time preconditioner proposed here.

Further experiments of our iterative time preconditioner with
proprietary circuits have shown speed-up up to an order of
magnitude in some cases.
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