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ABSTRACT
This paper presents a generalized semi-analytic method for com-
puting oscillator phase noise spectra, including the details very
close to the oscillation frequency. The starting point is a general
relation between an oscillator’s output power spectral density and
the characteristics of the input noise processes. For weak input
noise processes that vary sufficiently fast over time, this relation re-
duces to an analytic expression. For cases that do not satisfy these
conditions, the relation is, in part, evaluated numerically. This is
accomplished using techniques for exponential data fitting. The re-
sulting method is able to compute oscillator phase noise spectra for
a wide range of input noise characteristics.

1. INTRODUCTION
Oscillators are key building blocks in almost all of today’s com-

munication systems. One of the most important quality measures
for an oscillator involves their phase noise behavior. This stochastic
phase behavior is characterized through the power spectral density
(PSD) of the oscillator’s output signal —which, in this text, is also
refered to as the oscillator’s phase noise spectrum. Design require-
ments concerning the quality of an oscillator are often specified as
constraints on the spectral spreading of this PSD. Hence, it is im-
portant to provide designers with methods to compute them.

Computing an oscillator’s PSD involves solving three problems:

1. Identify and characterize the input noise processes disturbing
the oscillator’s behavior. In this area, especially the characteri-
zation of 1/ f noise is still an open problem [1] although some
acceptable models have been presented [2, 3].

2. Given the input noise processes, extract the equations govern-
ing the oscillator’s stochastic phase behavior. This particular
problem has received much attention in recent years [3, 4, 5, 6]
and is considered to be solved.

3. Given the phase behavior, find the oscillator’s output PSD. Up
to now, this problem only received limited attention. In [5],
expressions are presented based on small-signal assumptions.
However, as pointed out in [4], small-signal assumptions do
not apply to oscillators. In [3, 4], an analytic expression is pre-
sented for oscillator spectra in the presence of white input noise.
This work also contains two separate asymptotic approxima-
tions for, respectively, the very close-in phase noise spectrum
and for the spectrum far away from the oscillation frequency.
The approximations are based on the work in [7, 8]. They are
claimed to hold for both white and colored input noise.

The work in this paper focuses on solving the third problem. As a
starting point, we develop a general relation between an oscillator’s

output PSD and the input noise characteristics. For weak noise
sources that vary sufficiently fast over time, this relation reduces to
a single analytic approximation that combines both the asymptotes
from [3]. For other types of noise processes, we refine results using
numerical techniques based on exponential data fitting [9].

The remainder of this paper is structured as follows. Section 2
summarizes theory that is needed to characterize an oscillator’s
stochastic phase behavior (the second step as mentioned above).
Next, section 3 reviews some general results on the spectra of phase-
modulated periodic signals. In section 4, these results make up the
starting point for elaborating a general relation between an oscilla-
tor’s output PSD and the input noise characteristics. Here, we also
consider analytic approximations for weak and fast-varying input
noise processes. Section 5 discusses a numerical method that can
be used when these approximations break down. Results identify-
ing the range of validity of the traditional 1/ f 2-1/ f 3 phase noise
characteristic are presented in section 6. Finally, conclusions are
drawn in section 7.

2. AVERAGED STOCHASTIC PHASE
BEHAVIOR

The behavior of an oscillator perturbed by a noise source εn(t)
—with ε denoting the strength (standard deviation) of the noise
source— can be modeled as [2, 4]

x(t) = xs (t +θ(t))+∆x(t) . (1)

Here, x(t) represents the output of the noisy oscillator while xs(t)
models the T -periodic steady-state behavior of the noise-free sys-
tem. Furthermore, the process θ(t) captures the oscillator’s phase
behavior. The term ∆x(t) represents a small orbital deviation. Since
the latter term has no part in the spectral spreading of the oscilla-
tor’s output PSD, it is neglected in the analysis that follows.

For a sufficiently weak noise source εn(t), i.e. for a noise strength
ε � 1, it is shown in [2, 3, 4] that the phase behavior θ(t) is related
to the driving noise process εn(t) by

dθ
dt

= εΓ(t +θ)n(t) . (2)

Here, n(t) is the normalized input noise process with ε denoting
the noise strength. Furthermore, Γ(t) is the corresponding —T -
periodic— impulse sensitivity function (ISF) [5]. A rigorous method
to compute this ISF requires us to project the noise, i.e. the pertur-
bations, onto the oscillator’s orbit using the perturbation projection
vector [3, 4].

Assuming n(t) to be stationary and Gaussian, it was recently
shown [6] that, up to first order in ε, (2) can be reduced to
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dθ
dt

= εn(t). (3)

Here, n(t) is called the —normalized— averaged input noise. This
noise can be shown to be both stationary and Gaussian with its
autocorrelation function equaling

Φn(τ) = E {n(t + τ)n(t)} (4)

≈ 1
T

Z
T
2

− T
2

Γ(t +
τ
2
)Γ(t − τ

2
)Φn(τ)dt (5)

where Φn(τ) = E {n(t + τ)n(t)} is the autocorrelation function cor-
responding to the original noise source n(t). Observing (5), it is
seen that averaging removed θ from the right-hand side of the equa-
tion (2). This greatly simplifies further analysis.

With n(t) Gaussian, the same will hold for the phase differences
θ(t + τ)− θ(t) =

R t+τ
t n(s)ds. As will be seen in the next section,

the variance of these phase differences, i.e.

σ2(τ) = E
{

(θ(t + τ)−θ(t))2
}

, (6)

is the quantity of greatest interest in finding the oscillator phase
noise spectrum. It can be shown that this variance satisfies

d2

dτ2 σ2(τ) = ε22Φn(τ), with σ2(0) = 0,
d
dτ

σ2(0) = 0. (7)

As an important property of σ2(τ), it holds that for τ > τnoise

d
dτ

σ2(τ) ≈ ε22
Z ∞

0
Φnds = ε2Sn(0) = constant. (8)

Here, τnoise is the time constant of the input noise, i.e. the time
constant beyond which Φn(τ) ≈ 0. Furthermore,

Sn(ω) =
Z +∞

−∞
Φn(τ)e− jωτdτ (9)

is the PSD of the —normalized— averaged input noise signal n(t).
Having established these results, we can go on computing the os-
cillator’s output PSD.

3. PHASE-MODULATED OSCILLATOR
SPECTRA

An oscillator’s output PSD Sx(ω) models the time-averaged en-
ergy contained in a narrow band around the frequencies of interest.
Mathematically, this corresponds to

Sx(ω) = F {Φx(τ)} (10)

= F

{

lim
t→∞

1
t

Z t/2

−t/2
E {x(s+ τ)x(s)∗}ds

}

. (11)

Using (1) and with xs(t)= ∑+∞
k=−∞ xs,ke jkω0t being the Fourier series

corresponding to the oscillator’s noise-free steady-state solution,
where ω0 = 2π/T , the integral within the curly brackets can be
approximated as

Φx(τ) ≈
+∞

∑
k=−∞

∣

∣xs,k
∣

∣

2 e jω0kτe−
k2ω2

0 σ2(τ)
2 . (12)

In obtaining (12), we made use of the fact that the process θ(t)
varies slowly over time, i.e. on a time-scale T/ε. Moreover, we
also used the result that the process θ(t + τ)− θ(t) is stationary
and Gaussian with its variance σ2(τ) determined from (7). The
oscillator’s output PSD is now found as the Fourier transform of
(12) with respect to τ.

Finding the Fourier transform of (12) basically comes down to
finding the Fourier transforms of

Φx,k(τ) = e−
k2ω2

0σ2(τ)
2 = e−ε2vk(τ) . (13)

In the expression above, the process vk(τ) = k2ω2
0σ2(τ)/

(

2ε2) is
introduced for convenience in further computations. It is solved
from

d2vk

dτ2 = k2ω2
0Φn(τ), with vk(0) = 0,

dvk

dτ
(0) = 0 . (14)

In terms of the process vk(τ), we then find

Sx,k(ω) = F
{

Φx,k(τ)
}

(15)

= 2
Z ∞

0
cos(ωτ)e−ε2vk(τ)dτ (16)

where we used the fact that vk(τ)= vk(−τ) in obtaining (16). Sx,k(ω)
represents the oscillator’s normalized equivalent baseband phase
noise spectrum (output PSD) around the k-th harmonic.

4. A GENERAL RELATION FOR OSCIL-
LATOR PHASE NOISE SPECTRA

In a first step, we rewrite (16) in a manner that reveals the relation
between the phase noise spectrum and the input noise PSD. This
is of great help in gaining understanding on how the input noise
characteristics affect the resulting oscillator spectrum. For weak
input noise that varies sufficiently fast, i.e. for ε � 1 and τnoise <
T/ε, it is even possible to obtain a single analytic expression that
relates the noisy oscillator’s output PSD to the input noise PSD. For
input noise processes that do not satisfy these conditions, we resort
to the numerical techniques discussed in section 5.

Integrating (16) by parts twice yields

Sx,k(ω) = −2ε2

ω2

Z ∞

0

(

ε2
(

dvk

dτ

)2
− d2vk

dτ2

)

e−ε2vk(τ)

×cos(ωτ)dτ . (17)

In obtaining (17), we used the boundary conditions in (14). Fur-
thermore, we assume that Sn(0) > 0 such that, by virtue of (8),
limτ→∞ vk(τ) = +∞. This in turn yields limτ→∞ e−ε2vk(τ) = 0. Us-
ing (14) and (16), (17) can be rewritten as

Sx,k(ω) = −ε4

(

k2ω2
0

2
Sn(0)

)2
Sx,k(ω)

ω2

+ε2 k2ω2
0

ω2

(

Sn(ω)+Rx,k(ω)
)

(18)

From this, we finally obtain

Sx,k(ω) = ε2
k2ω2

0
ω2

(

Sn(ω)+Rx,k(ω)
)

1+ ε4 (k2ω2
0Sn(0)/2)

2

ω2

. (19)

The residual term Rx,k(ω) in (18) and (19) equals

Rx,k(ω) =
2

k2ω2
0

Z ∞

0



ε2

(

k2ω2
0

2
Sn(0)

)2

e−ε2vk(τ)

−ε2
(

dvk

dτ

)2
e−ε2vk(τ)

+
d2vk

dτ2

(

e−ε2vk(τ)−1
)

]

cos(ωτ)dτ . (20)
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If this residual term is small compared to Sn(ω), i.e.
∣

∣Rx,k(ω)
∣

∣�
|Sn(ω)|, (19) can be approximated as

Sx,k(ω) ≈ ε2 k2 ω2
0

ω2 Sn(ω)

1+ ε4 k4

4
ω2

0
ω2 ω2

0Sn(0)2
. (21)

We hence obtain a single analytical expression relating the oscil-
lator’s phase noise PSD to that of the driving noise processes. It
is observed that the equivalent baseband PSD Sx,k(ω) is that of the
filtered averaged input noise signal εn(t). The filter is a first-order
low-pass filter with a DC gain and corner frequency that depend on
the properties of the input noise process.

It is important to remind that (21) is only valid when the term
Rx,k(ω) in (19) can be neglected. A practical criterion for delim-
iting those noise sources for which this is satisfied is given by the
inequality

κε2Sn(0)τnoise �
2

k2ω2
0

. (22)

Observing (22), it is seen that the approximation (21) breaks down
when either the noise strength ε, the normalized input noise PSD
DC-level Sn(0) or the noise time constant τnoise grow large. Put
differently, (21) breaks down when the input noise grows strong or
when it varies very slowly over time.

As a final note: if we consider the asymptotic behavior of (21)
for ω becoming large, i.e. for ω > ε2k2ω2

0Sn(0)/2, then we obtain

Sx,k(ω) ≈ ε2k2 ω2
0

ω2 Sn(ω) . (23)

This expression is consistent with the well-known 1/ω2 and 1/ω3

characteristics for respectively white input noise (Sn(ω) ∼ 1) and
1/ f input noise (Sn(ω) ∼ 1/ω). It is readily shown that the asymp-
tote (23) corresponds with the one presented in [3]. The same holds
for the asymptotic behavior as ω → 0. Also, for a white noise
input, the expression (21) becomes exact and coincides with the
Lorentzian spectrum discussed in [3, 4].

5. NUMERICAL PHASE NOISE
SPECTRUM COMPUTATION

When the noise level ε gets large or when the noise is of a slow-
varying type, i.e. when (22) is no longer satisfied, the approxima-
tion (21) is no longer valid. This especially holds true for small fre-
quency offsets. Situations like this may arise in dealing with 1/ f
input noise processes. For such cases, we propose the numerical
computation of the residual term Rx,k(ω) in (19) in order to obtain
a more accurate result. The procedure to do so goes as follows:

1. In (20), evaluate the terms in the square brackets and fit them
using complex exponential basis functions, i.e. find a set of
Am ∈C and zm ∈C such that

rx,k(τ) = ε2

(

k2ω2
0

2
Sn(0)

)2

e−ε2vk(τ)

−ε2
(

dvk

dτ

)2
e−ε2vk(τ) (24)

+
d2vk

dτ2

(

e−ε2vk(τ)−1
)

= ∑
m

Amezmτ.

Use of an exponential fit helps avoiding trouble that arises due
to truncating the numerical evaluation of rx,k(τ) to a finite win-
dow of time. The right-hand side sum of exponentials always
provides a smooth extrapolation towards infinity.

2. Substitute the exponential fit (24) back into (20). It is then
straightforward to obtain

Rx,k(ω) =
2

k2ω2
0

Z ∞

0
rx,k(τ)cos(ωτ)dτ

= − 2
k2ω2

0
∑
m

Am
zm

ω2 + z2
m

. (25)

In what follows, we provide some details on how the procedure
above is implemented. Focus is given to the case where the input
noise process n(t) is a combination of white and 1/ f noise.

5.1 Modeling the input noise process
In order to evaluate rx,k(τ), we need a set of models that allow

capturing input noise behavior. In what follows, we assume the
—normalized— input noise process n(t) to be a combination of
white and 1/ f (flicker) noise. The autocorrelation function of such
a noise process can be modeled as

Φn(τ) = δ(τ)+2 f1/ f E1(γ |τ|) . (26)

where E1(t) =
R ∞

1
(

e−zt/z
)

dz represents the exponential integral.
The meaning of the parameter γ will be made clear soon. The first
term in (26) is a Dirac Delta function capturing white noise effects
while the second term represents the autocorrelation function of the
stationary 1/ f noise model presented in [2, 3]. Furthermore, f1/ f
is the input noise 1/ f corner frequency, i.e. the frequency (in Hz)
beyond which the PSD of the 1/ f input noise drops below the white
noise level. The autocorrelation function (26) corresponds to the
PSD

Sn(ω) = 1+ f1/ f
2π
|ω|

(

1− 2
π

arctan
(
∣

∣

∣

γ
ω

∣

∣

∣

)

)

. (27)

From this expression for Sn(ω), it is observed that the parameter γ
represents the frequency whereby, for ω → 0, the 1/ f noise char-
acteristic goes over into a flat one with Sn(0) = 1+4 f1/ f /γ.

5.2 Fitting rx,k(τ)
Given the noise model, we compute rx,k(τ) for τ ∈ [0,τc]. To do

so, we solve (14) for vk(τ) and dvk/dτ and substitute the results
in (24). Furthermore, τc is the time for rx,k(τ) to become suffi-
ciently small. Typical values for τc tend to be proportional to the
time constant τnoise characterizing the input noise. Having com-
puted rx,k(τ), we determine the coefficients Am and the exponents
zm of the exponential fit in the right-hand side of (24) using a Han-
kel Total Least Squares (HTLS) algorithm [9]. The algorithm takes
a set of N equidistant samples rx,k(nτc/(N − 1)) as an input and
produces the desired Am and zm. The number of samples N is deter-
mined by the maximum frequency ωFIT ≈ 2πN/τc for which one
wants the spectrum of the fit to correspond with the actual spectrum
F
{

rx,k(τ)
}

= k2ω2
0Rx,k(ω). This choice is driven by the require-

ment that
∣

∣Rx,k(ω)
∣

∣� |Sn(ω)| for ω > ωFIT . Experiments show
this to be satisfied for ωFIT larger than the corner frequency of the
denominator in (21), or

ωFIT ≈ 2π
N
τc

∼ ε2 k2ω2
0

2
Sn(0) . (28)

With (27) this implies that N ∼ ε2k2ω2
0

f1/ f τc
γ . Hence, as γ grows

small, N grows large. Since the complexity of the HTLS algo-
rithm roughly grows with N3, a lower bound is imposed on γ by
reasons of limiting computational complexity. Typically, however,
this bound is low enough to yield valuable results on the shape of
an oscillator’s phase noise spectrum.
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Figure 1: Phase noise spectrum Sx,1(∆ f ) around carrier fre-
quency. The spectrum is shown for different values of γ. The
upper figure shows the entire spectrum while the lower figure
zooms in on the close-in phase noise characteristic.

6. RESULTS
The algorithm above was implemented in Matlab and takes 15-

30 seconds to execute on a Pentium IV. All tests were accomplished
for a noise strength ε =

√
1e−19. Furthermore, the autocorrela-

tion function of the normalized input noise n(t) was modeled as
in (26) with f1/ f = 50kHz. The oscillation frequency was set to
f0 = 1GHz. The numbers above roughly result in a phase noise
spectrum valued −130 dBc/Hz at 1MHz and with a 1/ f 3 corner
frequency at 50kHz.

Fig. 1 shows Sx,1(∆ f ), modeling the phase noise spectrum near
the oscillation frequency f0. This spectrum was computed for val-
ues of γ ranging from 0.5 Hz to 5 kHz. Here, γ is the low-frequency
corner in the input noise 1/ f PSD modeled by the second term
in (27). As can be seen, for small values of γ, the very close-in
phase noise spectrum flattens and there is a steep edge making the
transition from the DC-level to the traditional 1/ f 3 −1/ f 2 charac-
teristic. The corner of this edge is, for this example, located near
300 Hz. For frequency offsets beyond 1 kHz, the spectrum assumes
a 1/ f 3 shape. Furthermore, as γ decreases, the close-in phase noise
characteristic shows a dropping DC-level and an increasing corner
frequency. With regard to these observations, elementary theoreti-

cal considerations have lead us to believe that the DC-level keeps
dropping in a manner that becomes proportional to |ln(γ)| while the
corner frequency increases like |ln(γ)|.

The low frequency corner appearing in Fig. 1 makes good sense
when considering the fact that the total energy contained under-
neath the —normalized— spectrum Sx,1(∆ f ) equals 1, i.e.

Z +∞

−∞
Sx,1(∆ f )d∆ f =

1
2π

Z +∞

−∞
Sx,1(ω)dω = 1 . (29)

If, for a given ∆ fc,

Sx,1(∆ fc) ≈ ε2 f 2
0

∆ f 2
c

Sn(∆ fc) (30)

holds valid, it is readily shown that

1 =
Z +∞

−∞
Sx,1(∆ f )d∆ f ≥ ε22

f 2
0

∆ fc
Sn(∆ fc) . (31)

This implies that the validity of (30) must break down before the
right-hand side of (31) exceeds 1. Assuming this to happen for a
frequency ∆ fc below f1/ f , it then holds that ∆ fc ≥ ε f0

√

2 f1/ f . For
our example, this yields ∆ fc ≥ 100Hz which is in agreement with
the results in Fig. 1.

7. CONCLUSIONS
This paper has presented a generalized semi-analytic method for

computing oscillator phase noise spectra, including the details very
close to the oscillation frequency. The method is based on a general
relation between the oscillator phase noise spectrum and the input
noise characteristics. For weak input noise processes that vary suf-
ficiently fast over time, this relation reduces to a single analytic
expression. For cases that do not satisfy the above conditions, the
relation is, in part, evaluated numerically using exponential data fit-
ting techniques. Phase noise spectra as computed for a combination
of white and 1/ f input noise show a close-in phase noise spectrum
that flattens near the oscillation frequency with a steep edge mak-
ing the transition to the traditional 1/ f 3−1/ f 2 characteristic. This
behavior, however, typically occurs for very small frequency off-
sets. For large frequency offsets, the phase noise spectrum assumes
the well-known 1/ f 3 −1/ f 2 characteristic.

8. REFERENCES
[1] M. Keshner, “1/ f Noise”, In Proc. of the IEEE, vol. 70, nr. 3,

pp. 212-218
[2] F.X. Kaertner, “Analysis of White and f−α Noise in Oscillators”, In

Int. J. Circuit Theory Appl., vol. 18, pp 485-519, 1990
[3] A. Demir, “Phase Noise in Oscillators: DAEs and Colored Noise

Sources”, In Proc. IEEE/ACM ICCAD, pp. 170-177, San Jose, 1998
[4] A. Demir, A. Mehrotra and J. Roychowdhury, “Phase Noise in

Oscillators: A Unifying Theory and Numerical Methods for
Characterization”, In IEEE Trans. Circ. and Syst.–I, vol. 47, no. 5,
pp. 655-674, May 2000

[5] A. Hajimiri and T.H. Lee, “A General Theory of Phase Noise in
Electrical Oscillators”, In IEEE J. Solid-State Circ., vol. 33, no. 2, pp.
179-194, February, 1998

[6] P. Vanassche, G. Gielen and W. Sansen, “On the Difference Between
Two Widely Publicized Methods for Analyzing Oscillator Phase
Behavior”, In Proc. IEEE/ACM ICCAD, Session 4A, San Jose, 2002

[7] J.A. Mullen and D. Middleton, “Limiting Forms of FM Noise
Spectra”, In Proc. of the IRE, vol. 45, no. 6, pp. 874-877, June, 1957

[8] D. Middleton, Statistical Communication Theory, Peninsula
Publishing, Los Altos, California, 1987

[9] S. Van Huffel, C. Decanniere, H. Chen and P. Van Hecke, “Algorithm
for Time-Domain NMR Data Fitting Based on Total Least Squares”,
In Journal of Magnetic Resonance A, vol. 110, pp. 228-237, 1994.

250


	Main Page
	ICCAD03
	Front Matter
	Table of Contents
	Author Index




