
PERFORMANCE OPTIMIZATION OF LATENCY INSENSITIVE SYSTEMS THROUGH
BUFFER QUEUE SIZING OF COMMUNICATION CHANNELS�

Ruibing Lu and Cheng-Kok Koh

School of Electrical and Computer Engineering
Purdue University, West Lafayette, IN 47907-1285

�lur,chengkok�@ecn.purdue.edu

ABSTRACT

This paper proposes for latency insensitive systems a performance
optimization technique called channel buffer queue sizing, which
is performed after relay station insertion in the physical design
stage. It can be shown that proper queue sizing can reduce or even
completely avoid the performance loss due to imbalanced relay
stations insertion in reconvergent paths. Moreover, the problem
of queue sizing and placement of the additional buffers for max-
imum performance is formulated and studied to properly allocate
available chip areas in the layout to communication channels. An
algorithm based on mixed integer linear programming is proposed.
Experimental results show that queue sizing is effective in improv-
ing the performance of latency insensitive systems even under tight
area constraints. Moreover, the proposed algorithm is sufficiently
efficient in obtaining the optimal solution for systems of practical
sizes.

1. INTRODUCTION

As the system complexity increases, effective reuse of existing de-
signs or IP cores enables designing complex systems on a chip
(SoC) in reasonable time [1]. Reliable and high performance com-
munication links are typically required to stitch existing designs
or IP cores together. However, the delay of global interconnects
becomes the dominating factor of the system performance as the
device feature size continues to scale down to nanometer dimen-
sions. Due to the difficulty in accurately estimating the global in-
terconnect delay in early design stages, large numbers of timing
violations typically surface in the later physical design stages; de-
sign iterations are inevitable. In addition, with the increase of chip
size and the clock frequency, global interconnects may have delay
larger than clock period. In fact, the wire delay can be as long as
about five to ten clock cycles [2] in the near future. As a result,
it necessary to pipeline the signal transmission on global intercon-
nects. This further complicates the delay estimation of global in-
terconnects.

Interconnect planning [3, 4, 5] is proposed to better estimate
the interconnect delay by performing routing resource allocation
in early design stages. While these approaches can certainly im-
prove the accuracy of the interconnect delay estimation at early
design stages, they also pose tight constraints for the later logic
and physical designs. The failure to meet those constraints still
lead to design iterations.

Recently, a latency insensitive design methodology [6, 7], which
can tolerate the change of communication latencies in late design

�This work was supported in part by NSF CCR-9984553.

stages, has been proposed. A latency insensitive system (LIS) is
composed of a collection of circuit blocks that exchange data on
communication channels. [8] has presented an implementation of
such latency insensitive systems, in which relay stations can be
used to pipeline the communication channels with timing viola-
tions discovered in the physical design stage. Although the func-
tionality of a LIS is robust with respect of communication laten-
cies, the same is not necessarily true for the performance. The per-
formance analysis of LISs in [9] suggests that the system through-
put is only affected by relay stations in feedback cycles. However,
their analysis ignore the ‘back-pressure’ [10, 8], which is neces-
sary to establish fully reliable communications by informing the
source module to stop when the sink module cannot receive more
data. Clearly, LISs without back-pressure is much less robust than
those with back-pressure. The performance of LISs with back-
pressure is studied in [11]. The result shows that imbalanced relay
station insertion in re-convergent paths may also affect the perfor-
mance of LISs.

In this paper, we propose a new performance optimization
technique for LISs called “channel buffer queue sizing” , or simply
“queue sizing”, which is performed after relay station insertion in
the physical stages. We found that proper queue sizing can reduce
or even completely avoid the performance loss due to imbalanced
relay stations insertion in reconvergent paths. In other words, the
performance of LISs with back-pressure after proper queue sizing
can reach that of LISs without back-pressure. Moreover, we for-
mulate and study the problem of optimizing the performance of
LISs by allocating available chip areas in the layout to commu-
nication channels for buffer queues. An algorithm is proposed to
solve the problem by converting it to a mixed integer linear pro-
gramming (mixed ILP) problem. Experimental results show the
proposed algorithm is effective in obtaining the optimal solution
for systems of practical sizes.

2. BACKGROUND: LATENCY INSENSITIVE SYSTEMS

In the section, we briefly introduce latency insensitive design method-
ology and the performance analysis of LISs in [11].

In LISs, relay stations are used to partition and “pipeline” the
communication channels that have long interconnect delay. This
introduces different latencies to communication channels. To syn-
chronize the data, a circuit unit stalls when any of its input data is
not available, and in such a case, non-informative data is put on
the output ports of the stalled unit. After all non-informative data
are screened, the function of an LIS is equivalent to the original
one.

227

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ICCAD’03, November 11-13, 2003, San Jose, California, USA.
Copyright 2003 ACM 1-58113-762-1/03/0011 ...$5.00.

1

4

2

3

a

c

b

d

Circuit
block

Relay
station

Figure 1: A simple LIS.

Table 1: The behavior of a simple LIS

Cycle Circuit blocks/Relay stations Channel buffer queues
No. 1 2 3 4 � � � �

1 1 1 1 � � � � �
2 2 2 � 1 � 1 � �
3 3 � 2 2 2 2 � �
4 � 3 3 3 3 � � �
5 4 4 4 � � � � �

We define a channel as the interconnection between any two
consecutive circuit units (relay stations or circuit blocks). There-
fore, a communication link between two circuit blocks will be-
come ��� channels after inserting � relay stations. Each channel
in LISs has a buffer queue, which is used to store the data already
generated by the channel source unit, but not ready to be consumed
by the channel sink unit. In the LISs suggested in [11], a circuit
unit stalls if and only if either at least one of its input channels can-
not provide the required data, or at least one of its output channels
has a full buffer queue. For an LIS, the queue size of any channel
should be at least 1 in order to guarantee the correct system be-
havior. A channel queue, whose size is 1, is called a “minimum
queue”.

Figure 1 shows a simple LIS with three circuit blocks and one
relay station. All channels in this LIS use minimum queues. The
behavior of this simple LIS in the first five clock cycles is shown in
Table 1. In this table, a positive integer ‘�’ denotes the �-th infor-
mative data generated by the unit or the source unit of the channel.
‘� ’ indicates a non-informative data. Note that when circuit blocks
take (�-1)-th informative data from their input channels, they out-
put their �-th informative data to the output channels; relay stations
simply pass to its output channels what they take from their input
channels. The sequence of informative data and non-informative
data of produced by a unit is called a “progressive trace” [9].

In the first clock cycle, all circuit blocks produce their first in-
formative data, while relay stations can only stall. In clock cycle 2,
the input channel � of block 3 cannot provide any informative data,
so block 3 stalls. Therefore, the first informative data generated by
block 2 in channel � is not processed, and it is stored in the buffer
queue of channel �. As a result, channel � becomes full in the clock
cycle 2. In order to avoid the informative data loss due to queue
overflow, it requests the source block 2 to stall. Therefore, block 2
stalls in the third clock cycles. Similarly, the behavior of all units
can be acquired. From this example, we can see that the through-
put a LIS can be obtained through the simulation of progressive
traces.

In order to model the structure of LISs, two kinds of graphs,

v1

v6

v2

v
5

v3

v4

1

v7

v8

1

1

0

0
0

0 0

0

v1

v6

v2

v5

v3

v4

1

-1v7

v8

-1

1

1

-1

(a) lis-graph

(b) extended lis-graph

Relay StationCircuit Block

Channel Edge Mirror Edge

0

0

0

0

0 0 -1
0

0

0

0

0

0
0

Figure 2: An example lis-graph and extended lis-graph.

lis-graph and extended lis-graph, are defined as follows:

Definition 1 A lis-graph����	
	�� is a weighted connected di-
rected graph, where � is the set of all circuit units including orig-
inal circuit blocks and relay stations, ���	 ��� �
 refers to the
communication channel from unit �� to unit �� ,����	 ��� � ��	 ��,
and ����	 ��� is 1 if and only if the unit corresponding to �� is a
relay station.

Definition 2 The extended lis-graph����	
�	 ��� of an LIS is a
weighted connected directed graph acquired by adding into its lis-
graph����	
	��mirror edges ��� 	 ���with weight ��
���	 ����
����	 ��� for each edge ���	 ��� �
���.
���	 ��� is the queue
size of the communication channel ���	 ���.

Figure 2 shows an lis-graph and the corresponding extended
lis-graph. Note that for a minimum-queue channel, the channel
edge and the mirror edge have opposite weights in the extended
lis-graph. In the extended lis-graph of Figure 2, the queue size of
channel ���	 ��� is 2, and all other channels have minimum queues.

It has been shown in [11] that the throughput of a LIS is at
most:

�����������
� ����

����
�� (1)

where �� is the set of all cycles in the extended lis-graph ��,
� ���� is the sum of edge weights of cycle ��, and ���� is the
number of edges in cycle ��.

� ����

����
is called the mean weight of cycle ��, or simply the cy-

cle mean, which is denoted as �����. The second part of Eqn. (1)
is the maximum cycle mean, denoted as ������, of the extended
lis-graph ��. The maximum cycle mean can be efficiently com-
puted through several algorithms [12], of which a widely used one
is Karp’s algorithm [13].

This result is consistent with that in [9], which is for LISs
without back-pressure, whose throughput is equal to ������. A
LIS without back-pressure can be viewed as a LIS with unlimited
queue size. For such a LIS, the weight of all mirror edges in the

228

extended lis-graph �� is ��. Therefore, ������ and ������ are
equal.

More important, experiments in [11] show that the through-
put upper bound is very ‘tight’. Simulation results of hundreds of
thousands of randomly generated LISs with different sizes indicate
that their actual throughputs are always equal to the corresponding
performance upper bounds. Hence, the throughput upper bound in
Eqn. (1) can be used to evaluate the performance of LISs.

3. CHANNEL BUFFER QUEUE SIZING

As the performance of an LIS is determined by the maximum cy-
cle mean of its extended lis-graph, the reduction of the maximum
cycle mean can lead to performance improvement. The weight
of a mirror edge decreases by � if the buffer queue size of cor-
responding channel increases by �. Therefore, the mean weight
of a cycle can always be reduced as long as the cycle includes at
least one mirror edge. If, after queue sizing, the mean weight of
any cycle with mirror edges is not bigger than the maximum cycle
mean, ������, of the lis-graph, ������ and ������ are equal. In
other words, the throughput of a LIS with limited queue sizes is
also affected only by relay station insertion in feedback cycles of
the system.

Consider the LIS shown in Figure 2. The following cycles
have positive mean weights in ��:

� �� � ���	 ��	 ��	 ��	 ��	 ���, ����� � ��� � ���

� �� � ���	 ��	 ��	 ��	 ��	 �		 ��	 ��	 ���,
����� � 	�
 � ��	��

� �� � ���	 ��	 �		 ��	 ���, ����� � ��� � ����

� �� � ���	 ��	 �		 ��	 ��	 ���, ����� � ��� � ����

� �� � ���	 ��	 ��	 ��	 ��	 ��	 ���, ����� � ��� � �����

Among them, �� is the only feedback cycle in the system, and
any of the other cycles includes at least one mirror edge. There-
fore, the throughput of the LIS can be improved from 0.6 to 0.75,
with proper queue sizing. For this purpose, the mean weight of
all these cycles must be less than or equal to 0.25. Therefore,
the related channels of mirror edges in cycle �� and �� should
increase their buffer queue size. Let us first consider ��, which
contains mirror edges ���	 ��� and ���	 ���. ����� becomes 0.2
if the queue size of either channel ���	 ��� or ���	 ��� increases
from 1 to 2. Assume queue size of channel ���	 ��� increases to 2.
Now ����� is 0.2. And �� becomes the cycle with the maximum
mean weight. ����� can be reduced to 0.25 if
���	 ��� increases
to 2. Hence, the throughput increases from 0.6 to 0.75 by adding
two additional buffers, one along ���	 ��� and one along ���	 ���.
However, if we increase the queue size of channel ���	 ��� by 1,
����� and ����� can be simultaneously reduced to 0.2 and 0.25,
respectively. In other words, by increasing only
���	 ��� by 1
while keeping other channels unchanged, we obtain the same per-
formance but with a lower cost. Clearly, a proper queue sizing
algorithm may reduce the additional area cost, and achieve better
performance at the same time.

The performance improvement of LISs through queue sizing
is limited by two factors: First, the maximum cycle mean of the ex-
tended lis-graph can never be smaller than that of the correspond-
ing lis-graph. Therefore, the maximum cycle mean of the lis-graph
gives a performance limit that buffer queue sizing can reach. Sec-
ondly, queue sizing is performed after the relay station insertion in
the physical design stage. Therefore, the system layout is almost

fixed at that time. The available chip areas for additional channel
buffers may pose stringent constraints for buffer queue sizing. A
candidate buffer region is typically shared by several channels; the
proper allocation of the available buffer areas to channels to max-
imize the performance is desirable. The formalization of and the
solutions to the buffer queue sizing problems for LISs are given in
the next section.

4. MAXIMUM PERFORMANCE BUFFER QUEUE
SIZING AND PLACEMENT

We study the following buffer queue sizing problem:
Given:

� a latency insensitive system ����	
	��,

� a set of available candidate buffer regions ��,

� the capacity������ of each candidate buffer region ��� � ��,

� the mapping of channels to candidate buffer regions,
�

 � ��; i.e., ���� � ���, for some � �
 and
��� � ��.

Find the number of additional buffers ���� for each channel � �
,
such that

1. �������	
�	 ���� is minimized;

2.
�

	���

��
���� � ������, 	��� � ��.

Note that the queue sizes of all channels are equal to 1 before the
queue sizing; therefore, the queue size
��� is equal to ���� � �
for any channel � after queue sizing.

4.1. Mixed ILP formulation

We first study the properties of directed graphs whose maximum
cycle mean is not larger than certain value ��.

Theorem 1 The mean weight of any cycle in a direct graph
���	
	�� is not larger than �� if and only if there is a function
�
 � � �, such that������� � �����������, 	����	 ��� �
,
where � is the set of all real numbers.

Proof: The proof for the sufficient condition is trivial. The nec-
essary condition is proved by providing an algorithm to find such
a function ����. Construct a graph ���� �	
�	 ��� by augment-
ing � with a new vertex � and new edges ��	 ���	� � � , i.e.,
� � � �
 ���,
� �

 ���	 ���	� � � �. Moreover, ����� �
���� � �� if � �
, otherwise ����� � �. Clearly each cycle
in �� corresponds to exactly a cycle in �, because the new ver-
tex � in �� does not have any incoming edge. Note that the mean
weight of a cycle in �� is decreased by �� compared to that of
the corresponding cycle in �. Since the mean weight of any cycle
in � is less than or equal to ��, the mean weight of any cycle in
�� is not larger than 0, in other words, graph �� does not has any
positive cycle. Therefore, we can perform a single source longest
path algorithm for graph �� with source vertex being �. Let ����
be equal to the longest distance from � to vertex � for each � � � .
For any edge ����	 ��� �
, ����� and ����� are the lengths of the
longest paths in graph �� from � to �� and �� , respectively. The
path from �� to ��, then to �� through edge ����	 ��� is also a path
from �� to �� , whose length is less than or equal to the longest
path length from �� to �� . Therefore, ����� � ����� � �����, or
����� �� � ������ �����, 	����	 ��� �
. �

229

Now we return to the problem of buffer queue sizing. Any ex-
tended lis-graph is a directed graph, for which Theorem 1 holds.
Before the problem of maximum performance queue sizing/placement
is studied, we first consider a related problem, in which the perfor-
mance constraint is given, and the objective function is to mini-
mize the total number of additional buffers. Such a problem is
called the ‘Minimum Cost Buffer Queue Sizing/Placement Prob-
lem’. The min-cost queue sizing/placement problem can be for-
mulated as following:

Minimize :
�

��

���� 	

subject to:

������ ����� � ����� �
�
���	 (2)

������ ����� � ���� � ������ �����	 (3)

	����	 ��� �
	�

	���

��

���� � ������	 	���	� ��	 (4)

where ����	
	�� is a lis-graph, ����� � �	 	�� � �	

���� � ��	 	����	 ��� �
�

Note that �� is the set of non-negative integers. ���� refers to
the additional number of buffers of channel �. Constraints (2) and
(3) can be viewed as the constraints for the channel edge and mir-
ror edge in the extended lis-graph corresponding to edge � in lis-
graph ����	
	��, respectively. Based on Theorem 1, the maxi-
mum cycle mean of the extended lis-graph is not larger than �����
if and only these two sets of constraints can be satisfied. The target
throughput of the LIS is �� �����. Constraint 5 guarantees that the
placement of the additional channel buffers does not cause over-
flow violations. Therefore, the mixed-ILP problem is equivalent
to the min-cost queue sizing/placement problem.

The mixed-ILP formulation for min-area queue sizing is very
efficient because it has only �
� integer variables, �� � real vari-
ables, and �� � �
� � ����� constraints for an LIS ����	
	��.

The mixed-ILP formulation for maximum performance queue
sizing/placement can be obtained by a slight change to the previous
formulation:

Minimize : �� 	

subject to:

������ ����� � �
� � ����	

������ ����� � ���� � �
� � �����	

	����	 ��� �
	�

	���

��

���� � ������	 	��� � ��	

where ����	
	�� is a lis-graph, ����� � �		�� � �	

���� � ��	 	����	 ��� �
�

Note that �� is a real variable in the mixed-ILP formulation.
Moreover, it is also the objective function to be minimized because
the throughput is � � ��.

4.2. Binary Searching for maximum performance queue siz-
ing/placement

The mixed-ILP formulations for min-cost queue sizing/placement
and maximum performance queue sizing/placement have the same

number of constraints (� � �
�� ����) and almost same number
of variables ((�� � � �
�) v.s. (�� � � �
� � �)). However, our
experiments show that the maximum performance queue sizing is
much slower. One possible reason is that, for the maximum perfor-
mance queue sizing/placement, the objective function is real, not
integer. The ILP solver may spend a lot of time for very marginal
improvement of the objective function, which may not be impor-
tant in practice.

In order to improve speed of the maximum performance queue
sizing, we propose an algorithm based on binary search for the
lowest feasible value of the maximum cycle mean of the extended
lis-graph. For each target maximum cycle mean �����, min-area
queue sizing is performed to check if the target is feasible. The
structure of the proposed algorithm is as follows:

INPUT: lis-graph ����	
	���,
Set of candidate buffer regions ��,
Capacity function ������	 	��� � ��,
Channel-to-buffer-region function����	 	� �
	
Performance precision ��
�.

OUTPUT: �� .
��	�� � ������� ��	
�	 ����;
��	�� � �������	
	���;
����� � �

�
	��;

while (��	�� � �
�
	�� � ��
�)

Perform min-cost queue sizing/placement with
target maximum cycle mean �����;

if ����� is feasible, ��	�� = �����;
else ��	�� = �����;
����� � ���	�� � �

�
	�����;

end while
�� = ��	��;

END
���� ��	
�	 ��� is the extended lis-graph acquired by setting the
size of all channel queues to 1. ��
� is a pre-set value to control
the of the computed ��.

5. EXPERIMENTAL RESULTS

We evaluate our formulation and algorithm for the maximum per-
formance buffer queue sizing on a set of LISs with various num-
bers of circuit blocks from 20 to 200, which we believe are rep-
resentative of the problem sizes of current and near future SoC
designs. The communication channels among units are randomly
generated. For each circuit block, we also assume that there is
a candidate buffer region with a capacity of 2 buffers in the lay-
out. A candidate buffer region is shared by all the fan-in chan-
nels of the block corresponding to this region, because the buffer
queues are placed near the sink blocks of channels as suggested
in [11]. The performance precision ��
� is set to be 0.003
for all experiments. We use the non-commercial LP/ILP solver
lp solve [14] to solve the mixed ILP problems. After buffer queue
sizing/placement is performed, the performance of each system
is verified through the simulation of the system with sized buffer
queues. All the experiments are performed on a computer with a
1.8GHz PENTENIUM 4 processor and 256M memory.

The correctness of the formulation and algorithm are verified
by our experiments because the performance obtained from simu-
lation is always equal to the performance computed by the queue
sizing algorithm. Part of the experimental results are shown in Ta-
ble 2. In the table, ��� refers to the throughput of LISs with
minimum buffer queues, i.e., � � ������� �; ��� is the perfor-

230

Table 2: Experimental Results
Num. of Num. of Num. of

Name Blocks Channels Relay Stations ��� ��� ��� ��� ����
(s)
LIS01 20 72 21 0.36 0.50 0.50 5 0.1
LIS02 40 188 33 0.38 0.50 0.46 5 0.5
LIS03 60 242 59 0.33 0.46 0.44 7 1.1
LIS04 80 307 59 0.40 0.53 0.52 16 2.3
LIS05 100 286 56 0.46 0.67 0.57 17 26.5
LIS06 120 413 74 0.44 0.55 0.55 18 13.1
LIS07 150 721 152 0.33 0.45 0.45 19 17.4
LIS08 170 755 95 0.33 0.44 0.44 35 72.6
LIS09 190 759 81 0.50 0.60 0.60 18 1067
LIS10 200 797 79 0.44 0.59 0.59 32 7427

mance of LISs with unlimited queue size, i.e., �� ������. Here,
�� and ���� are the lis-graph and the extended lis-graph, respec-
tively. ��� is the maximal throughput computed by the queue
sizing algorithm as well as the throughput obtained from the sim-
ulations. ��� is the total number of additional buffers to achieve
the maximum throughput. ����
 is the time spent by the algorithm.

The results show that the buffer queue sizing is effective in
improving the throughput of LISs. For the majority of the tested
cases, the performance achieved is near that of the system with un-
limited queue size. In addition, the additional area cost to achieve
such a performance improvement is low. More important, the im-
provement is achieved under stringent constraints, which requires
the number of additional buffers in all fan-in channels of a block to
be at most 2. Therefore, we believe that our proposed formulation
and algorithm can be effective in the physical design stages when
the area constraints are tight. Moreover, the run time of the pro-
posed algorithm is fast for LISs with practical sizes even though it
is not a polynomial-time algorithm. The results also show that the
run time may increase dramatically as the problem size increases.
We believe that approximate ILP algorithms, instead of an exact
ILP solver for the optimal solutions, should be used for even larger
problems.

6. CONCLUSION

We propose a performance optimization technique, channel buffer
queue sizing, for latency insensitive systems. The problems of
queue sizing and placement of additional buffers are formulated as
mixed ILP problems. An mixed ILP-based algorithm is proposed
for solving the maximum performance queue sizing/placement prob-
lem. Experimental results show that queue sizing is an effective
method to improve the system performance, and the ILP-based al-
gorithm is adequately fast for latency insensitive systems of prac-
tical sizes.

7. REFERENCES

[1] J. Cong. Challenges and opportunities for design in-
novations in nanometer technologies. In Frontiers
in Semiconductor Research: A Collection of SRC
Working Papers. Semiconductor Research Corporation,
http://www.src.org/prg mgmt/frontier.dgw, 1997.

[2] D. Matzke. Will physical scalability sabotage performance
gains? IEEE Computer, 8:37–39, September 1997.

[3] Ralph H. J. M. Otten and Robert K. Brayton. Performance
planning. Integration, the VLSI Journal, 29:1–24, 2000.

[4] J. Cong. An interconnect-centric design flow for nanometer
technologies. Proc. of the IEEE, 89:505–528, April 2001.

[5] Ruibing Lu and Cheng-Kok Koh. Flip-flop and repeater in-
sertion for early interconnect planning. In Design, Automa-
tion and Test in Europe Conference, page 690, 2002.

[6] L. P. Carloni, K. L. McMillan, and A. L. Sangiovanni-
Vincentelli. Theory of latency-insensitive design. IEEE
Trans. on Computer-Aided Design of Integrated Circuits and
Systems, pages 1059–1076, September 2001.

[7] T. Chelcea and S. M. Nowick. Robust interfaces for mixed-
timing systems with application to latency-insensitive proto-
cols. In Proc. Design Automation Conf, 2001.

[8] L. P. Carloni, K. L. McMillan, A. Saldanha, and A. L.
Sangiovanni-Vincentelli. A methodology for correct-by-
construction latency insensitive design. In Proc. Int. Conf.
on Computer Aided Design, pages 309–315, 1999.

[9] L. P. Carloni and A. L. Sangiovanni-Vincentelli. Perfor-
mance analysis and optimization of latency insensitive sys-
tems. In Proc. Design Automation Conf, pages 361–367,
2000.

[10] L. P. Carloni and A. L. Sangiovanni-Vincentelli. Coping with
latency in SoC design. IEEE Micro, Special Issue on Systems
on Chip, 22(5), Sep/Oct 2002.

[11] Ruibing Lu and Cheng-Kok Koh. Performance analysis
and efficient implementation of latency insensitive systems.
Technical Report TR-ECE03-06, School of Electrical &
Computer Engineering, Purdue University, March 2003.

[12] A. Dasdan and R. K. Gupta. Faster maximum and mini-
mum mean cycle algorithms for system performance anal-
ysis. IEEE Trans. on Computer-Aided Design of Integrated
Circuits and Systems, 17, 1998.

[13] R. M. Karp. A characterization of the minimum cycle mean
in a digraph. Discrete Math., 23:309–311, 1978.

[14] ftp://ftp.es.ele.tue.nl/pub/lp solve/.

231

	Main Page
	ICCAD03
	Front Matter
	Table of Contents
	Author Index

