
Code Placement with Selective Cache Activity Minimization for
Embedded Real-time Software Design

Junhyung Um Taewhan Kim

CAE Center and SoC R&D Center Dept. of EECS and AITrc
System LSI Division KAIST, KOREA

Samsung Electronics, KOREA

Abstract – Many embedded system designs usually impose (hard)
read-time constraints on tasks. Thus, computing a tight upper bound
of the worst case execution time (WCET) of a software is a criti-
cally important, but difficult task. The difficulty arises particularly
when the code is executed on processors with cache-based memory
systems. In this paper, we propose a new code placement tech-
nique under cache activity consideration for real-time software de-
sign. Specifically, unlike the previous approaches which have tried
to minimize total cache misses, which is not necessarily the best
way to meet all timing constraints of tasks, we minimizes the cache
misses in a selective way for tasks according to the degree of tight-
ness (or urgency) of their timing constraints. Based on a concept of
selective cache activity minimization, we propose a new approach
which solves the code placement problem in two steps: (Step 1) We
transform the code placement problem into so called an interval se-
lection problem, which then we formulate into a 0-1 integer linear
programming (ILP); (Step 2) We apply an efficient approximation
algorithm, called Code-map, to solve the exact code placement
formulation obtained in Step 1.

1 Introduction
Embedded systems usually impose (hard) real-time constraints that
should be met for correct operations. Thus, improving the exe-
cution time of software and/or estimating a tight upper bound of
the worst case execution time (WCET) of software are critically
important in embedded system design. On the other hand, due to
the growing speed gap between memory and processor, and the so-
phisticated designs of memory hierarchy, lots of research efforts
have been devoted to the problems of improving and/or estimating
memory access latency for the software programs. One of the most
important, but hard, problems among them is an accurate estima-
tion/reduction of WCETs for programs that run on a cache-based
memory system. This is because there are no simple or direct ways
to control the occurrences of cache misses (thus to control the cache
reloading delays) to satisfy all timing constraints of the programs
(or events) in real-time embedded systems. It is generally accepted
that a careful placement of code to memory is one of effective ways
in reducing or controlling cache misses.

There are extensive research works which have addressed the
code placement problem in cache-based embedded real-time sys-
tem. The authors in [1, 2] proposed partitioned-cache structures so
that each partition assigned to a task can be used by the task ex-
clusively. Their objective of cache partitioning is to meet a certain
maximal cache miss count. Min and Hu [3] proposed a cache ar-
chitecture, called color-indexed, physically tagged cache architec-
ture, to minimize the number of cache misses. Bellas and Hajj [4]
proposed the use of an additional (small) cache, called L-cache, be-
tween the cache and central processing unit to minimize the energy
dissipation on cache. Li, Malik and Wolfe [5] proposed a method
for accurate modeling of cache activity for a given code placement
and computing a tight bound on WCET. They used an integer lin-

ear programming (ILP) for estimating WCET. Tomiyama and Ya-
suura [6] solved the code placement problem of minimizing the
number of cache misses by formulating it as an ILP problem. Liv-
eris et al. [7] proposed a code transformation technique based on
cache and code structures to predict the number of cache misses.
Parameswaran [8, 9] proposed an algorithm for placing code to
cache, from which he derived a mapping of code to memory. The
objective is to minimize the total latency of memory execution. Fi-
nally, Datta, Choudhury and Basu [11] solved the code placement
problem to satisfy all timing constraints of tasks by formulating it
into an 0-1 ILP. However, they did not consider the possibility of
code sharing among the tasks.

In this paper, we propose a new code placement and cache activ-
ity optimization approach to embedded real-time software design.
Specifically, unlike the existing approaches [3, 5, 6, 7, 8, 9, 11]
which tried to meet the timing constraints by using an estimation
of WCET with under/over-counted cache misses and/or by mini-
mizing total number of cache misses, we perform the code place-
ment so that the number of cache misses for each task is selec-
tively minimized according to the degree of tightness of its timing
constraint. The selective minimizations of cache misses does not
always imply a minimal total number of cache misses, but will di-
rectly lead to meet all timing constraints. Based on a concept of
selective cache activity minimization, we propose a new approach
that solves the code placement problem in two steps: (Step 1) We
formulate the code placement problem into a 0-1 integer linear pro-
gramming (ILP) using a concept called interval selection problem;
(Step 2) We then approximate the solution of the exact problem for-
mulation obtained in Step 1 by using an relaxation algorithm, called
Code-map;

2 Preliminaries
2.1 Target Cache Organization
We support direct mapped caches and set associative caches. As
an atomic structure to be used in cache activity analysis, we use
l-block [5] that represents a contiguous sequence of instructions
within the same block mapped to the same line in the instruction
cache.1 Each task (or job) consists of l-blocks each of which is a
unit to be loaded from the memory to the cache if an instruction
within it is to be executed. Consequently, all instructions within
an l-block will have the same cache hit/miss counts. The l-blocks
are of uniform size and their loading times from memory to cache
are identical. Note that when an l-block is requested, it should be
cached. That means it does not allow bypassing the caching. A
caching algorithm is faced with a sequence of execution of tasks.
Our objective is to take a full control of the behavior of instruction
cache through careful assignments of l-blocks of tasks to memory,

1A line can contain one or multiple instructions, and its size is given according to
the memory system used.

197

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ICCAD’03, November 11-13, 2003, San Jose, California, USA.
Copyright 2003 ACM 1-58113-762-1/03/0011 ...$5.00.

so that all the timing constraints of tasks are satisfied.2

For an Nway-way set-associative instruction cache, a cache that
can store up to s instructions is equally divided into m � s

Nway
dis-

joint partitions (i.e., m blocks or lines) with each storing up to Nway
instructions. Two addresses in memory are mapped to the identical
block in cache only if their index fields3 are identical. Note that
Nway

� 1 indicates a direct mapped cache and Nway
� s indicates a

fully associative cache. To maintain a high speed of cache, Nway is
usually a small number, and 1, 2 and 4-way caches are most com-
monly used.

���������������������������� ��	�	�		�	�	
�
�

�
�
������������������������
������������������������ ��������������

��
��������������������

������������������������ �������������������� ��������������������

��������������������

 � � � � !�!�!!�!�!"�"�""�"�"#�#�##�#�#$�$�$�$$�$�$�$%�%�%%�%�%
&�&�&&�&�&'�'�''�'�'(�(�((�(�()�)�))�)�)

��*�**�*�*�*+�+�+�++�+�+�+

,�,�,,�,�,-�-�--�-�-

.�.�..�.�./�/�//�/�/
0�0�00�0�01�1�11�1�12�2�22�2�23�3�33�3�3

4�4�44�4�45�5�55�5�5
6�6�66�6�67�7�77�7�7

8�8�88�8�89�9�99�9�9
:�:�::�:�:;�;�;;�;�;<�<�<�<<�<�<�<=�=�==�=�=>�>�>�>>�>�>�>?�?�??�?�?

@�@�@@�@�@A�A�AA�A�A

B�B�BB�B�BC�C�CC�C�C

D�D�D�DD�D�D�DE�E�E�EE�E�E�E F�F�FF�F�FG�G�GG�G�GH�H�H�HH�H�H�HI�I�II�I�I J�J�J�JJ�J�J�JK�K�K�KK�K�K�K

mapping
directed

S6 L M B8 N B5 N B6 OS4 S5 L M B5 N B7 N B8 N B6 OS4 L M B5 N B6 N B7 OS3 L M B7 N B2 N B3 OS2 L M B4 N B1 N B5 N B2 OS1 L M B1 N B2 N B3 N B2 O

L 23 P 821 Q 0 P 2 R 14

L 23 P 221 Q 0 P 2 R 11

L 23 P 621 Q 0 P 2 R 13

B1
B2
B3

B1 B1 B1
B2 B2 B2 B2 B2 B2 B2

B3 B3 B3

M
B1 N B2 N B3 N B2 N B4 N B1 N B5 N B2 N B7 N B2 N B3 N B5 N B6 N B7 N B5 N B7 N B8 N B6 N B8 N B5 N B6 O

B2 B2
B4

B3

B1

B3 B3

S1 S2 S3 S6S5S4

B1

4 Q 0 P 2 R 3 11 Q 0 P 2 R 8 14 Q 0 P 2 R 10L 16L 12 P 6L 4 P 6

S1 S S2 S S3 S S4 S S5 S S6

B5
B6
B7
B4

B8

B5B5

B3
B2

B7

B5 B5

B7

B5 B5 B5 B5
B2 B6 B6
B3 B3 B7

B5
B6
B7 B7

B6
B5

B8
B6 B6

B8 B8 B8 B8

B5 B5 B5 B5 B5
B6 B6 B6

8 Q 0 P 2 R 6L 9 P 2 18 Q 0 P 2 R 11L 20 P 2

B1
B2
B3
B4
B5
B6
B7
B8

B1 B1 B1 B1 B1 B7 B7 B7 B7 B7 B7
B2 B2 B2 B2 B2 B2 B2

B3 B3 B3 B3 B3

M
B1 N B2 N B3 N B2 N B4 N B1 N B5 N B2 N B7 N B2 N B3 N B5 N B6 N B7 N B5 N B7 N B8 N B6 N B8 N B5 N B6 O

B2 B2
B4

B3

B1

B3
B5

B3
S1 S2 S3 S6S5

B3 B3
B5 B5

B6 B6
B5

S4

B5
B6

B8
B7

B6
B8
B6

B8
B6

B8
B6 B6 B6

B5 B5
B1 B7 B7 B7 B7 B7 B7

4 Q 0 P 2 R 3 8 Q 0 P 2 R 7 11 Q 0 P 2 R 8 14 Q 0 P 2 R 10L 16L 12 P 6L 9 P 4L 4 P 6 18 Q 0 P 2 R 12L 20 P 8

S1 S S2 S S3 S S4 S S5 S S6

B1
B2
B3

B1 B1 B1
B2 B2 B2 B2 B2 B2 B2

B3 B3 B3

M
B1 N B2 N B3 N B2 N B4 N B1 N B5 N B2 N B7 N B2 N B3 N B5 N B6 N B7 N B5 N B7 N B8 N B6 N B8 N B5 N B6 O

B2 B2
B1

S1 S2 S3 S6S5S4

B1

4 Q 0 P 2 R 3 14 Q 0 P 2 R 10L 16L 4 P 6

S1 S S2 S S3 S S4 S S5 S S6

B6

B8

B5B5
B2

B5 B5
B2 B6 B6
B3 B3

B5
B6 B6

B8
B6 B6

B8 B8 B8 B8

B5 B5
B6 B6 B6

B7

B4
B5

B4 B4 B4 B4

B1 B7 B7 B7

B4 B4

B7

B3 B3

B7

B3

B7 B7 B7

8 Q 0 P 2 R 5L 9 P 0 11 Q 0 P 2 R 7L 12 P 4 18 Q 0 P 2 R 13L 20 P 6

Violation!

Violation!

Satis f ied!

Placement 1

Placement 2

Placement 3

T
b U A random placement

T
d U A placement with selective cache miss minimization

S1

S3S2

S5

S6

Deadline : 16

Deadline : 24

Deadline : 24

Deadline : 5

Deadline : 9

cache

memory

Bx
Bx
Bx
Bx
Bx
Bx
Bx
BxDeadline : 17

T
a U Task graph, l-blocks, and cache

T
c U A placement with total cache miss minimization

Figure 1: Motivating examples.

2.2 Motivating Examples
Before presenting our main idea of solving the code placement
problem, we give a set of examples of code placement to illustrate
how code placement affects the behavior of cache activity and thus
the satisfiability of timing constraints of tasks. Suppose we want to
execute an embedded software with six tasks S1, S2, VWVWV , S6 where
the control/data dependencies among the tasks are shown on the
left side of Figure 1(a). Note that each task has its timing constraint
(i.e., deadline) to be met. For example, task S1 should finish its
execution by time 5. Further, each task consists of one or multiple
blocks as shown in the middle of Figure 1(a). For example, S1 is
composed of three blocks B1, B2 and B3 in which the execution or-
der for S1 is B1, B2, B3, and B2. Note that some blocks are shared
among tasks. For example, B1 is shared by S1 and S2. Now, sup-
pose we have a direct mapping cache which can store up to three
blocks and a memory with nine slots for storing the eight blocks,
as shown on the right side of Figure 1(a). We assume the cache
loading time is 0.2 unit of time.

The left side of Figure 1(b) shows an example of l-block place-
ment to memory when the execution schedule of tasks is given as
S1 X S2 X VWVWV X S6. (The corresponding sequence of block re-
quests is also shown in the figure.) The table in Figure 1(b) shows
the sequence of snapshots of cache corresponding to the sequence
of block requests. The blocks in circle represent the requested

2In this paper, we exclude the consideration of the behavior of data cache. In addi-
tion, in the rest of paper we simply use terms block or line to refer to an l-block.

3The least significant bits of the address of a line in memory form an index field,
and it can locate the partition of cache to which the line is supposed to be mapped. The
remaining bits form a tag field.

blocks for execution and the blocks with shade indicate occurrences
of cache miss. From the table, we can compute the time at which
each task’s execution is completed. For example, the completion
time for S2 is 1.0 Y 8+0.2 Y 7 (=9.4) because there are 8 times of
cache access in which 7 of them are cache misses. We can see
that the code placement in Figure 1(b) is not successful due to the
timing violation for task S2. One intuitive way of satisfying the tim-
ing constraints is to minimize the total occurrences of cache misses
[3, 6]. Figure 1(c) shows another sequence of snapshots of cache
with minimum total number of cache misses for the same execution
schedule of tasks in Figure 1(a). However, there is still a task with
timing violation even though the latency of the software is reduced
from 23.6 to 23.2. This example clearly indicates that minimizing
the number of cache misses is effective in improving system’s over-
all performance, but ineffective in real-time embedded computing
systems.

On the other hand, Figure 1(d) shows a sequence of cache snap-
shots other than that in Figures 1(b) and (c). It meets all the timing
constraints even with more cache misses than that of Figure 1(c).
This example implies that a selective minimization of cache misses
for tasks based on the degree of tightness (or urgency) of their tim-
ing constraints is essential to satisfy all timing constraints. (The
proposed approach based on this observation is described in sec-
tion 3.)

3 Code Placement for Selective Cache Activity Min-
imization

We propose an approach which solves the code placement problem
in two steps: (Step 1) We transform the problem into so called an
interval selection problem, which then we formulate into a 0-1 in-
teger linear programming; (Step 2) We approximate the solutions
to the exact formulation in Step 1 by proposing an algorithm called
Code-map.

3.1 The Problem Formulation
We formulate the code placement problem based on a concept called
interval selection. Note that for a sequence of l-block requests for
execution, a distinct l-block in the sequence can be requested more
than once. Let us examine, in the sequence, every interval between
two consecutive requests of the same l-block. From the results
of block placement to memory, we classify the intervals into two
types: on-intervals are the intervals during which the correspond-
ing l-block resides fully in the cache without any replacement by
another block. The intervals other than on-intervals are called off-
intervals. For example, the request intervals shown at the lower
part of Figure 2 depict the on-intervals and off-intervals for the se-
quence of block requests and block placement shown at the upper
part of Figure 2 where the symbols marked with ‘H’ represent the
time of block request, and the dashed and dotted lines represent the
on-intervals and off-intervals, respectively. It is clear that the more
the number of on-intervals is the less the number of cache misses is.
However, due to the limited cache capacity, a careful determination
of on-/off-intervals is necessary to satisfy all timing constraints of
tasks. We accomplish this by analyzing and describing the relations
between the on/off-interval selection and code placement using a 0-
1 integer linear programming formulation.

We define a number of notations and variables to be used in our
ILP formulation:

Z Ii
j : The j-th interval of block requests between two consec-

utive requests for block Bi. For example, in Figure 2, I2
1 (=

(2,4)) and I2
2 (= (4,8)) represent the first and second intervals

between consecutive requests for B2, respectively.

Z\[i
j : The length of Ii

j, which is defined to the number of block

requests within Ii
j except the first and the last requests of the

interval. For example, in Figure 2, [2
1 = 1 and [2

2 = 3.

198

�� 	�	�	�		�	�	�	
�
�
�

�
�
�
�� ��B1 B1 B1
B2 B2 B2 B2 B2

B3
B2 B2

B1

S1 S2 S6S5

B1 B5B5
B2

B5 B5 B5

B8
B6
B8 B8 B8 B8

B5 B5
B6 B6 B6

B4 B4 B4 B4

B1

B4 B4 B3 B3 B3

S1 S S2 S S4 S S3 S S5 S S6

B4

B5 B5 B5
B6 B7

B4
B7 B2 B2
B4 B4

B5
B2 B7 B7

B5 B5 B5 B5

I1
1

I2
1 I2

2 I2
3

I3
1

I5
1 I5

2 I5
3

I6
2I6

1

I7
1 I7

2

B2

B1

B3

B4

B5

B6
B7

B8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

S4 S3

block request steps

l � blocks

block request

on � interval
o f f � interval

S =
M
Bs

1 N Bs
2 N Bs

3 N Bs
2 N Bs

4 N Bs
1 N Bs

5 N Bs
2 N Bs

5 N Bs
6 N Bs

7 N Bs
7 N Bs

2 N Bs
3 N Bs

5 N Bs
7 N Bs

8 N Bs
6 N Bs

8 N Bs
5 N Bs

6 O

Figure 2: The derivation of on- and off-intervals.

Z si
j : The step number of the first block request performed

immediately before the execution of the first block request in
Ii

j.

Z ei
j : The step number of the first block request performed

immediately after the execution of the last block request in
Ii

j.

Z xi j : xi j
� 1 iff Ii

j is an on-interval, and xi j
� 0 iff Ii

j is an
off-interval.

Z yik : yik
� 1 iff block Bi is placed to the memory location of

address k.
Z Nmem, Ncache, Nblock, and Nrequest : Memory, cache sizes (in

terms of blocks), the number of distinct l-blocks to be placed,
and the total number of block requests.

The ILP formulation consists of three types of constraints: place-
ment constraint, cache size constraint and deadline constraint.

Placement constraint: The following two inequalities ensure that
every distinct l-block should be placed in memory, and every block
location of memory at address k can contain at most one l-block.

For each (distinct) block Bi, i � 1 � 2 � VWVWV Nblock, ∑Nmem
k � 1 yik

� 1 �
for each memory address k � 1 � 2 �WVWVWV Nmem, ∑Nblock

i � 1 yik
�

1 �
Cache size constraint: For each time of block requests in the ex-
ecution sequence of tasks, the number of blocks placed in cache at
that time is constrained by the cache size. We formulate the con-
straint by using a concept of setting on-/off-intervals. For the t-th
block request in the execution sequence, let A � t � ��� I i

j si
j
�

t
�

ei
j ! .

That is, A � t � is the set of all intervals within which the t-th block
request occurs. Then, we define I Set � A � t �"� N � be the collection of
subsets of A � t � where the size of each subset is exactly N. For exam-
ple, in Figure 2, A � 5 � = � I1

1 � I2
2 � I3

1 ! , I Set � A � 5 �#� 3 � �$�%� I1
1 � I2

2 � I3
1 !&! ,

and I Set � A � 5 �#� 2 � �'�&� I1
1 � I2

2 ! � � I1
1 � I3

2 ! � � I1
1 � I3

1 !%! .
Suppose that we use Nway-set associative cache mapping. Then,

at each t-th block request, t � 1 � 2 �WVWVWV , the number of intervals in
A � t � that can be on-interval and whose corresponding blocks can be
placed to the memory location of the same set-address must be no
more than Nway. This constraint is expressed as follows: For each t-
th block request, t � 1 � 2 �WV VWV Nrequest , for each memory’s set-address
s � 1 � 2 �WVWVWV)(Ncache

Nway * , and for each element R + I Set � A � t �#� Nway , 1 � ,
∑

Ii
j - R

� xi j , ∑.
k: k / s mod 0 Ncache

Nway 1
yik � � 2 V Nway , 1

where the inequality violation occurs when the blocks correspond-
ing to the intervals in R (i.e., all Nway , 1 intervals, thus Nway , 1
distinct blocks) were all in cache at the time when t-th block re-
quest occurs and further they were mapped to the same set-address
in cache.

Furthermore, if we consider the case that the block (say Bv)
requested at the t-th block request is to be placed to a memory lo-
cation of set-address s, the number of intervals in A � t � that can be
on-interval and whose corresponding blocks can be placed to the
memory locations of set-address s must be no more than Nway 2 1.
This constraint is expressed by: For each t-th block request, t �
1 � 2 � VWVWV Nrequest , for each set-address s � 1 � 2 � VWVWV3(Ncache

Nway * , and for

each element R + I Set � A � t �#� Nway � ,
∑

Ii
j 4 R

5
xi j 6 ∑7

k: k 8 s mod 9 Ncache
Nway :

yik ; 6 ∑7
k: k 8 s mod 9 Ncache

Nway :
yvk < 2 = Nway >

where the inequality violation occurs when the blocks correspond-
ing to the intervals in R (i.e., all Nway intervals, thus Nway distinct
blocks) were mapped to the same set-address in cache and further
they were all in cache at an instance of time after when the t-th
requested block is load into cache.

Delay constraint: For the simplicity of description, we assume that
we have scaled the block access time to 1 unit of time, the block
reloading time to α unit of time, and the deadline of task Sk to Dk
units of time. Then, for each task Sk , k � 1 � 2 � VWVWV , the total block
reloading time executed immediately before the completion of task
Sk (which is α V #cache misses) should not exceed Dk 2 Ck . This
constraint is expressed by: For each task Sk , k � 1 � 2 � V VWV ,

α V#� ∑
Ii

j -@? Ii A
j A :ei A

j ACB Ck D
� 1 2 xi j �E� � Dk 2 Ck �

3.2 The Proposed Approximation Technique
The optimization problem is, for the set of intervals I j

i derived from
a given sequence of block requests, to determine which intervals
should be on-interval and which intervals should be off-interval
so that the total number of off-intervals is as small as possible
while meeting all timing constraints. Solving the problem is then
equivalent to solving the problem of minimizing the quantity of
∑Ii

j
� 1 2 xi j � and satisfying all the inequalities for the placement,

cache size and delay constraints in our 0-1 ILP formulation.
Our key idea in our approximation technique, called Code-

map summarized in Figure 3, is that we relax the constraint that
all variables (i.e., xi j and yik) in the ILP formulation should be ei-
ther 0 or 1 and nothing else. By relaxation, we mean the variables
to have any fractional value in between 0 and 1, in addition to 0 or
1. Consequently, Code-map uses an efficient LP (linear program-
ming) formulation to approximate the exact solution of the ILP for-
mulation. From the LP solution obtained, which might be far from
feasible solutions, we derive a solution, which is much less far from
feasible solutions, by selecting and setting the most “promising”
variable to 0 or 1. Then, in the next iteration we generate another
LP formulation for the code placement with the preservation of the
values of the variables that were set in the prior iterations, and select
the next “promising” variable from the solution of LP formulation
and set it to 0 or 1. We repeat this process until all the variables are
determined to either 0 or 1.

The variable to be selected and set with 0 or 1 at each iteration
is the one with the largest value among

� xi j 2 x̄ �EF ∑.
xi j

� xi j 2 x̄ � 2 �G� yik 2 ȳ �EF ∑.
yik

� yik 2 ȳ � 2 (1)

where x̄ and ȳ are the averages of the values of xi j and yik variables
in the LP solution that have not been set to 0 or 1 during the previous
iterations.

The example in Figure 4 shows the steps of procedure by Code-
map for the task schedule in Figure 1(a). Figure 4(a) shows the
variables xi j and yik, and the intervals corresponding to the task
schedule. Figure 1(b) shows the values of variables obtained from
the LP formulation. Note that the values of variables xi j were all 1

199

Code-map: Code mapping for selective cache miss minimization
repeat

�
� Generate the exact 0-1 ILP and approximate it using

the proposed relaxed LP;� Select a variable among xi j , yik with the largest
value of Eq.(1);� Set the value of the selected variable to 0 or 1 by rounding;�

until (all variables are set to 0 or 1)

Figure 3: The procedure of Code-map.

��

��

��

��������������������
	�	�		�	�		�	�		�	�	
�
�

�
�

�
�
������������������������������������
��

������������������������������������ ��������������������
��������������������

��������������������
��

������������������������������

��

��

 � �

!�!�!

"�"�"�"

#�#�#�#

$�$�$�$

%�%�%�%

&�&�&

'�'�'

(�(�(

)�)�)
��*�**�*�*�**�*�*�**�*�*�*
+�+�++�+�++�+�++�+�+

,�,�,

-�-�-

.�..�..�./�//�//�/
0�00�00�01�11�11�1

2�2�2�2

3�3�3�3

4�44�44�45�55�55�5

6�6�6�6

7�7�7�7

8�8�8

9�9�9:�:�::�:�::�:�::�:�:
;�;�;;�;�;;�;�;;�;�;

<�<�<�<<�<�<�<<�<�<�<=�=�=�==�=�=�==�=�=�=

>�>>�>>�>?�??�??�?

@�@�@

A�A�A

B�B�B�BB�B�B�BB�B�B�BC�C�C�CC�C�C�CC�C�C�C

D�D�D�DD�D�D�DD�D�D�DD�D�D�D
E�E�EE�E�EE�E�EE�E�E

F�F�F�FF�F�F�FF�F�F�FG�G�G�GG�G�G�GG�G�G�G

H�H�H�HH�H�H�HH�H�H�HI�I�II�I�II�I�I J�J�J

K�K�K

.

B1B1
B2

B7

B6

B4

B3

B1

B3

B1
B2
B3
B4
B5
B6
B7
B8

B1
B2
B3
B4
B5
B6
B7
B8

B5

B8

y1 N 1y2 N 1y3 N 1 y6 N 1y7 N 1y8 N 1y9 N 1
y4 N 2y5 N 2y6 N 2y7 N 2y8 N 2y9 N 2

y1 N 3y2 N 3 y4 N 3y5 N 3y6 N 3y7 N 3y8 N 3y9 N 3
y1 N 4y2 N 4y3 N 4y4 N 4y5 N 4y6 N 4y7 N 4y8 N 4y9 N 4
y1 N 5y2 N 5y3 N 5y4 N 5y5 N 5y6 N 5y7 N 5y8 N 5y9 N 5
y1 N 6y2 N 6 y5 N 6y6 N 6y7 N 6y8 N 6y9 N 6
y1 N 7y2 N 7

y4 N 1

y5 N 7y6 N 7y7 N 7y8 N 7y9 N 7
y1 P 8y2 N 8y3 N 8y4 N 8y5 N 8y6 N 8y7 N 8y8 N 8y9 N 8

B1
B2
B3
B4
B5
B6
B7
B8

y5 N 1
y1 N 2y2 N 2

B8

B7

B6

B5

B4

y3 N 2

y4 N 6

y3 N 3

y3 N 6

B3

y3 N 7

B2

y4 N 7

B1

Request Interval

1

1

1

1 1

111

1

1

1

1

1

block requests

I1
1

I2
1 I2

2

I5
1 I5

2 I5
3

I6
1 I6

2

I8
1

Request Interval

1

1 1

1 1 1

1

1

1

1

0 P 9
0 P 8

Request Interval Memory layout

B1
B2
B3
B4
B5

B7
B8

0 P 0 0 P 0 0 P 0 0 P 0 0 P 0 0 P 0

0 P 0

0 P 0
0 P 0
0 P 0 0 P 0

0 P 0 0 P 0

0 P 0
0 P 0

0 P 0
1

0 P 0
0 P 0
0 P 0
0 P 0
0 P 0
0 P 0

0 P 0 0 P 0
0 P 0 0 P 0

0 P 0
0 P 0 0 P 0
0 P 0 0 P 0 0 P 0

0 P 0

0 P 0
0 P 0
0 P 0

0 P 0 1

0 P 0

0 P 0 0 P 0 0 P 0

0 P 0
0 P 0

0 P 0

0 P 0

0 P 0
0 P 0

0 P 0
0 P 0
0 P 0 0 P 0

0 P 0
0 P 0

0 P 0

0 P 0
0 P 0 0 P 0

0 P 0 0 P 0
0 P 0
0 P 0

0 P 0
0 P 0

1

1

B1

B3

B2

B6
B4

B8

0 P 0

0 P 0
0 P 0

B6

1

1 1

1 1 1

1

1

1

block requests

I1
1

I2
1 I2

2
I3
1

I5
1 I5

2 I5
3

I6
1 I6

2

I8
1

I2
3

I3
1

I7
1 I7

2

B7

B5

1

1

1

1

0 P 0
0 P 0

I2
3

I7
1 I7

2

x1 N 1
x2 N 3x2 N 2x2 N 1

x3 N 1
x5 N 1x5 N 2x5 N 3
x6 N 1x6 N 2
x7 N 1
x8 N 1
Request Interval Memory layout

Memory layout

0 P 7 0 P 2 0 P 1 0 P 0 0 P 0 0 P 0 0 P 0 0 P 0 0 P 0
0 P 1 0 P 2 0 P 2 0 P 2 0 P 1 0 P 1 0 P 0 0 P 1 0 P 0
0 P 0
0 P 0
0 P 0
0 P 1
0 P 0
0 P 0

0 P 0
0 P 2
0 P 1
0 P 3
0 P 0
0 P 0

0 P 4
0 P 4
0 P 0
0 P 3
0 P 0
0 P 0

0 P 2
0 P 1
0 P 2
0 P 3
0 P 2
0 P 0

0 P 2 0 P 1 0 P 1 0 P 0 0 P 0
0 P 0 0 P 2 0 P 0 0 P 1 0 P 0
0 P 3 0 P 0 0 P 3 0 P 0 0 P 1
0 P 0 0 P 0 0 P 0 0 P 0 0 P 0
0 P 0 0 P 3 0 P 3 0 P 2 0 P 0
0 P 0 0 P 2 0 P 6 0 P 1 0 P 1

Memory layout

0 P 0 0 P 0 0 P 0 0 P 0 0 P 0 0 P 0
0 P 2

0 P 0
0 P 0
0 P 0

0 P 0
0 P 0
0 P 0 0 P 0

0 P 0 0 P 0

0 P 0
0 P 0

1

0 P 0
0 P 0
0 P 0
0 P 0
0 P 0
0 P 0

0 P 0 0 P 0
0 P 4
0 P 1
0 P 1

0 P 0
0 P 20 P 2

0 P 2
0 P 6 0 P 0

0 P 0

0 P 5
0 P 2
0 P 2
0 P 1

0 P 0

0 P 5
0 P 4
0 P 1
0 P 0

0 P 0 0 P 0
0 P 5
0 P 0
0 P 1
0 P 3
0 P 1

0 P 0
0 P 1
0 P 0
0 P 0
0 P 4

0 P 40 P 2

0 P 3 0 P 3
0 P 0
0 P 0

0 P 0
0 P 0
0 P 0
0 P 00 P 0

0 P 3
0 P 0
0 P 2

M
a O xi j , yik variables and intervals for the examples in Figure 1(d)

M
b O After the first iteration

M
c O After the second iteration

M
d O Final results

M
e O On-/off-intervals from (d)

Figure 4: An example illustrating the procedure by Code-map.

to satisfy the objective in LP formulation: min � ∑Ii
j
� 1 2 xi j � . Then,

according to the Eq.(1), we select variable y1 L 1 and set to 1, which
tells that block B1 is placed to the memory location of address 1,
as indicated in Figure 1(b). The result for the LP formulation of
the second iteration of Code-map is shown in Figure 1(c) where
y3 L 3 is selected and set to 1. By repeating this process, we have the
result for the final LP formulation, as in Figure 1(d), from which
we determine that the on-intervals are I1

1 , I2
1 , I2

2 , VWVWV I7
1 and I8

1 (i.e.,
x1 L 1 � x2 L 1 � x2 L 2 � VWVWV � x7 L 1 � x8 L 1 = 1), and the rest are off-
intervals.

4 Experimental Results
We tested our algorithm on a set of randomly generated testcases
and SPEC95 benchmark programs to demonstrate the effectiveness
of the strategy of selective cache-miss minimization. We com-
piled the benchmarks using the MIPS-like PISA processor instruc-
tion set in SimpleScalar 2.0 [12] tool set. We generated traces for
the benchmarks using SimpleScalar 2.0 [12] with default config-
uration on SunUltra II-server(version 2.6). In addition, we parti-
tion them considering dependency between traces to solve this by
LP/ILP solver. We perform the cache simulation using a Pentium-
4 500MHz Linux machine with 1 GB Memory. Further, we used
ILOG CPLEX 7.0 [13] to solve the LP formulations. We set the
delay of accessing a block from cache is 0.2 time unit and the delay
of cache reloading is 0.04 time unit. To impose tight deadlines to
tasks, we set the deadline of each task to Ntot V � 1 , δ � where Ntot
is the total number of blocks in tasks and δ is a random number in
between 0.01 and 0.1.

Table 1 shows comparisons, in terms of the number of tasks

#tasks with timing violation improv.(%) over
program cache-miss-min [6] code-map cache-miss-min

2-way 4-way 2-way 4-way 2-way 4-way

COMPRESS95 713 603 629 553 11.8 8.3
GCC 3419 3241 3008 2901 12.0 10.5
GO 3688 2302 2335 1034 36.7 55.1
LI 3425 1629 3007 1026 12.2 37.0

M88KSIM 2310 1997 2055 1593 11.0 20.2
PERL 2593 2190 3459 1839 48.7 16.0
avg. 16.7 24.5

Table 1: Comparisons of results for benchmark examples.

with timing violation, of the code placements produced by cache-
miss-min (the total cache miss minimization by [6]) and our code-
map (the selective cache miss minimization). We use 16 Kbyte 2-
way/4-way associative instruction cache with 32-byte lines. For a
cache replacement policy in cache-miss-min, we used LRU strat-
egy in the experiments. In addition, we partitioned each benchmark
program to roughly 5000 tasks. Overall, code-map reduces the
number of tasks with timing violations by 16.7% and 24.5% over
that by [6] when 2-way and 4-way associative caches, respectively.

5 Conclusion
In this paper, we proposed a new code placement approach that is
suitable for embedded hard read-time software design with cache-
based memory system. Our key feature is that, unlike the previous
approaches which have tried to minimize total cache misses, which
is not necessarily the best way to meet all timing constraints of
tasks, we minimizes the cache misses in a selective way for tasks
according to the degree of tightness or urgency of their timing con-
straints. Based on a concept of the selective cache activity mini-
mization, we solved the code placement problem by decomposing
it into two subproblems: (1) A translation of the problem into an in-
terval selection problem and an exact problem formulation by a 0-1
ILP; (2) An efficient approximation of the ILP, called Code-map.

Acknowledgment This work was supported by the Korea Science
and Engineering Foundation (KOSEF) through the Advanced In-
formation Technology Research Center(AITrc).

REFERENCES
[1] D. B. Kirk, “SMART (Strategic Memory Allocation for Real-Time Cache De-

sign,” Proc. of 10th Real-Time System Symp., 1989.
[2] J. Liedtke, H. Hartig, and M. Hohmuth, “OS-Controlled Cache Predictability

for Real-Time Systems,” Proc. of Real-Time Technology and Application Sympo-
sium, 1997.

[3] R. Min and Y. Hu, “Improving Performance of Large Physically Indexed Caches
by Decoupling Memory Addresses from Cache Addresses,” IEEE Trans. on
Computers, Vol.50, No.11, 2001.

[4] N. E. Bellas and I. N. Hajj, “Architectural and Compiler Techniques for Energy
Reduction in High-Performance Microprocessors,” IEEE Trans. on VLSI Sys-
tems, Vol8, No.3, 2000.

[5] Y.-S. Li, S. Malik and A. Wolfe, “Performance Estimation of Embedded Software
with Instruction Cache Modeling,” Proc. ICCAD, 1995.

[6] H. Tomiyama and H. Yasuura, “Optimal Code Placement of Embedded Software
for Instruction Cache,” Proc. EDAC, 1996.

[7] N. Liveris, N. D. Zervas, D. Soudris, and C. E. Goutis, “A Code Transformation-
Based Methodology for Improving I-Cache Performance of DSP Applications,”
Proc. DATE, 2002.

[8] S. Parameswaran, “Code Placement in Hardware Software Co-synthesis to Im-
prove Performance and Reduce Cost,” Proc. DATE, 2001.

[9] S. Parameswaran and J. Henkel, “I-CoPES: Fast Instruction Code Placement for
Embedded Systems to Improve Performance and Energy Efficiency,”

Proc. ICCAD, 2001.
[10] P. Jain, S. Devadas, D. Engels, and L. Rudolph, “Software-assisted Cache Re-

placement Mechanisms for Embedded Systems”, Proc. ICCAD, 2001.
[11] A. Datta, S. Choudhury and A. Basu, “Using Randomized Rounding to Satisfy

Timing Constraints of Real-Time Preemptive Tasks,” Proc. ASPDAC, 2002.
[12] D. Burger, T.M. Austin, The SimpleScalar Tool Set, Version 2.0, TR No. 1342,

University of Wisconsin-Madison CSD, June 1997.
[13] http://www.ilog.com

200

	Main Page
	ICCAD03
	Front Matter
	Table of Contents
	Author Index

