
RTL Power Optimization with Gate-level Accuracy

 Qi Wang Sumit Roy
 Cadence Design Systems, Inc Calypto Design Systems, Inc

 555 River Oaks Parkway, San Jose 95125 2903 Bunker Hill Lane, Suite 208, SantaClara 95054
 qwang@cadence.com sroy@calypto.com

ABSTRACT
Traditional RTL power optimization techniques commit
transformations at the RTL based on the estimation of area, delay
and power. However, because of inadequate power and delay
information, the power optimization transformations applied at
the RTL may cause unexpected results after synthesis, such as
worsened delay or increased power dissipation. Our solution to
this problem is to divide RTL power optimization into two steps,
namely RTL exploration and gate-level commitment. During RTL
exploration phase potential candidates for applying some specific
RTL transformation are identified where high level information
permits faster and more effective analysis. These candidates are
simply “marked” on the netlist. Then during the gate-level
commitment phase when accurate power and delay information is
available, the final decision of whether accepting or rejecting the
candidate is made to achieve the best power and delay trade-offs.

1. INTRODUCTION
Power consumption has become an increasingly important
optimization metric in the design of microelectronic systems.
Power optimization can be achieved at different levels within a
design cycle, though it is well known that the higher the level of
abstraction where power optimization techniques are applied, the
higher the potential power savings[1,2].

Clock-gate transformation is probably by far the most commonly
used RTL power optimization technique[3]. In many design
situations, data is loaded into registers infrequently, but the clock
signal continues to switch at every clock cycle, driving a large
capacitive load. This makes the clock signal a major source of
dynamic power dissipation. Identifying periods of inactivity in the
registers and disabling the clock during those periods can save
significant amounts of power [1,3]. However, clock gating is
restricted to saving power on sequential elements only. Figure 1.1
shows a design where a register bank takes the result of the
multiplier only as its input. The power dissipated by the
multiplier is wasted during the cycle when the register bank is not
loading the data. Clock gating cannot be used for this problem
since it only reduces the power of the register bank. One solution
is to shut down the multiplier when its outputs are not used, as
shown by the two banks of shaded AND gates in the Figure 1.2.
This technique is known as operand isolation [5] or sleep-mode
optimization.

In Figure 1.2, the multiplier is called a sleep-mode candidate; the
signal e is called the enable signal for the sleep-mode candidate;
and the added logic of AND gates for turning off the multiplier
are called the sleep-mode logic. Sleep-mode transformation of a
given design involves the tasks of identifying the set of sleep-
mode candidates and the corresponding enables, and making a
decision on whether inserting the sleep-mode logic or not so that

power can be optimized under some constraints such as delay or
area.

2. Related Work
In [4], a control-signal gating technique is proposed to reduce the
switching activities on datapath buses. The idea is to use
observability don’t care conditions of buses to gate control signals
going to the bus driver modules so that the switching activity on
the module inputs does not propagate to the bus. Unlike the sleep-
mode transformation, the proposed method does not work for
datapath buses or modules which are not driven by registers. The
other problem of the method is that it computes observability
don’t care based on the structural netlist of a design, which may
be very expensive or even prohibitive on real designs with
intensive datapath elements.

 To the best of our knowledge, work of [5] presents the first
comprehensive approach that automates sleep-mode (operand
isolation) on RTL netlist. Unlike the work in [4], this paper
presents a complicated RTL power model to estimate the power
savings by introducing the sleep-mode logic. Additionally, rather
than using an existing signal for the enable signal for the sleep-
mode logic, a new function is used and computed by structural
analysis of the transitive fanout of a module.

The work of [6] is different from above introduced techniques in
that it achieves power saving by redesigning control logic to
reconfigure the existing datapath components under idle
conditions. The drawback of this technique is that it works well
on control-flow intensive designs but not on data-flow intensive
designs. Additionally, the technique may significantly change the
final netlist to reduce power. This may not be favored in real
industrial designs when power is a secondary optimization target
as compared to delay in most design situations.

All above solutions suffer from a common problem: committing
an optimization move at the RTL in hopes of saving power after
logic and physical optimization. It is well known that power
estimations at RTL can significantly differ from the real chip
power or even gate level power estimations [2,3]. Since there is
no accurate power and timing information available at RTL to
perform the correct trade-off, these solutions may end up

*
a

b

e

* a

b

e

 (1) (2)
Figure 1. A design (1) without sleep-mode (2) with sleep-
mode transformation.

39

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ICCAD’03, November 11-13, 2003, San Jose, California, USA.
Copyright 2003 ACM 1-58113-762-1/03/0011 ...$5.00.

increasing the actual power or delay of the synthesized netlist.
Even if some provides capability to undo the transformations at
the end of the synthesis run[5], the optimizer has already spent a
lot of effort optimizing the wrong critical paths which are mostly
not reversible. This may cause extra long run time or, design with
worse power and timing compared to the one without applying the
RTL transformation.

In this paper, we present a novel solution to solve the above
problem. This unique approach consists of two steps, namely RTL
exploration and gate-level commitment. First, during RTL
exploration, we use the Control Data Flow Graph (CDFG)
generated from the RTL description of a design to identify all the
sleep mode transformation candidates, including the enable
signals for each candidate. The enable signal is computed by
performing behavioral level observability analysis (BLOA) on
CDFG, as to be described in Section 3. Since CDFG contains all
high-level information (control and data flow), we are able to
identify all possible sleep-mode transformation opportunities
presented in a design. More importantly, since the enable signals
are computed directly from the control flow, it eliminates the
concern that some enable signals may be synthesized into some
other logic during synthesis, thus losing the opportunity of any
possible transformations associated with the signal.

After identifying all the candidates, we mark the gate level netlist
to "remember" these potential transformations without altering the
data path or the control path of the design. Noticeably, because
the original data and control paths of the design are maintained,
the logic and timing optimization applied later will work on the
true critical path and no effort is wasted. After logic and timing
optimization has been completed, each "mark" of the potential
sleep mode transformation will be evaluated and committed or
removed to make sure it saves power without violating timing or
area constraints. This is referred as gate-level commitment in the
paper. It needs to be pointed out that because of the availability of
accurate power and timing information at this stage any decision
made at this point reflects the real status of the design. In addition
to the improved accuracy, the complexity of the algorithm is
significantly reduced since no complicated and error-prone RTL
power and delay models are required.

It needs to be noted that we are not proposing a new RTL power
transformation. Instead, we are proposing a new approach on how
to apply the RTL power transformation known as operand
isolation or sleep-mode transformation. With the separation of
RTL exploration and gate-level commitment, the proposed
approach takes the advantage of both rich control-data-flow
information at the RTL and the accurate power and delay
information at the gate-level so that the best possible power delay
tradeoff can be achieved. Our technique guarantees that a design
with sleep-mode transformations inserted has less power and same
or better timing compared to a design without the transformations
without significant run time overhead on the existing timing
optimization flow.

3. Behavioral Observability Analysis
Observability analysis in logic circuits has been widely used in
logic synthesis, test generation, and many other ECAD problems
[8]. In this section, we extend the idea of observability analysis to
the behavioral level description of a digital system, i.e. CDFG. It
is referred as behavioral level observability analysis (BLOA) for
the rest of the paper.

3.1 Introduction of CDFG
A CDFG is a graphical representation of the behaviors of digital
hardware. The graph is generated from hardware behavioral
description languages, such as Verilog or VHDL, and serves as an
interface to different RTL and architectural synthesis packages.
More details about CDFG can be found in [7].
A CDFG consists of nodes and directed edges. The nodes
represent operations in the behavioral description. The edges
model the transfer of values between the nodes, i.e. the result of
one operation (node) is passed to the argument of another one.
Every argument of an operation can be seen as an input port of the
corresponding node of the CDFG. Every result of an operation
can be seen as an output port of the corresponding node of the
CDFG. A token is defined as a single data value instance. There
are four major types of nodes.

a) Operation nodes: Operations can be arithmetic, like +,-,×, ÷,
or Boolean, like ∧ , ∨ , or can be more complex functions or an
instantiation of another graph, which models the procedures and
functions in the behavioral specification. The graphical
representation of an operation node nop with input edges i0 to ik-1
and output edges o0 to oj-1 is shown in Figure 2.a. The node
performs the operation defined by nop on the data values of the
input edges and transfer the result to all output edges.
b) Branch nodes: A branch node has two input ports, a control
port and a data port, and at least one output data port. Based on
the value of token on the control port, one and only one output
port is selected and the token on the input data port is passed to
the selected output port. The graphical representation of a branch
node nbranch with input data edge i and input control edge c and
output edge o0 to oj-1 is shown in Figure 2.b. For example, if the
data value on the control edge c is 0, then the data value on the
input edge i is transferred to the output edge o0.
c) Merge nodes: Merge nodes are dual to branch nodes. A merge
node has one output data port, one input control port and several
input data ports. It passes the token on one input data port,
selected by the value of the token on the control port, to the
output port. The graphical representation of a merge node nmerge
with input data edges i0 to ik-1 and input control edge c and output
edge o which is shown in Figure 2.c. For example, if the data
value on the control edge c is 0, then the data value on the input
edge i0 is transferred to the output edge o.
d) Construct nodes: These are special nodes, which only serve the
purpose to generate tokens to control the branch and merge nodes.
It has one input data port and at least one output control ports.
Only one output port is selected to pass the token from the input
port according to the value of the token. The graphical
representation of a merge node is shown in Figure 2.d.

 (a) (b) (c) (d)
Figure 2. CDFG nodes. (a) Operation node (b) branch node

(c) merge node (d) construct node.

nop

i0 i1 … ik-1

 o0 o1 … oj-1

ncons

 i

 o0 o1 … oj-1

 nbranch

 i

 o0 o1 … oj-1

c
 nmerge

 i0 i1 … ik-1

 o

c

40

Other types of nodes include input, output, register and constant
nodes. Every graph requires at least one input node and one
output node. Constant nodes are nodes which generate a constant
data value at their single output port. Input, output and register
nodes correspond to input, output ports and registers of the design
represented by the CDFG respectively.

3.2 Observability of CDFG Nodes and Edges
A token in a CDFG is the counterpart of a signal in a logic circuit.
In the rest we refer to the behavioral level observability analysis
as the token observability analysis on CDFG.
Definition 1: token observable condition (TOC) of an edge eij,
denoted by TOC(eij), is the condition under which the token on
that edge can be observed at one or more output nodes of a
CDFG.
Definition 2: node observable condition (NOC) of a node ni,
denoted by NOC(ni), is the condition under which the token on
any output edge of the node can be observed at one or more
output nodes of a CDFG.
Given a CDFG, the TOC and NOC for all edges and nodes can be
computed by traversing the graph from the output nodes to the
input nodes and applying appropriate Boolean operations. Let ∧ ,
∨ , and ′ denote the Boolean AND, OR, inversion operations
respectively. For each different type of node, the TOCs of all
edges and NOCs of all nodes are computed as follows.
1) Output nodes: By definition, for an output node nout with input
edge i,
 NOC(nout) = 1 , TOC(i) = 1
2) Operation nodes: For an operation node nop such as the one in
Figure 2.a with input edges of i0, …, ik-1 and output edges of o0,
…, oj-1, we have

NOC(nop) = TOC(o0) ∨ TOC(o1) ∨ … ∨ TOC(oj-1)
TOC(ip) = NOC(nop), ∀ p ∈ {0, 1 , … , k-1}

For the sake of TOC/NOC analysis, input and construct nodes are
treated the same as operation nodes.
3) Branch nodes: For a branch node nbranch as shown in Figure
2.b, with input data edge of i and input control edge of c and
output edges of o0, …, oj-1, we have

NOC(nbranch) = TOC(o0) ∨ TOC(o1) ∨ … ∨ TOC(oj-1)
TOC(c) = NOC(nbranch)
TOC(i) = (c0 ∧ TOC(o0)) ∨ (c1 ∧ TOC(o1)) ∨ … ∨

 (cj-1 ∧ TOC(oj-1))
where cp, ∀ p ∈ [0,j-1] is a Boolean encoding of the variables for
the value of the token at the control port to select output port p.
For example, if the token on c is two bit wide (c= c1c0) and output
port 2 is selected, i.e. c is (10) in binary, then the condition to
select a port is c1 ∧ c0′.
4) Merge nodes: For a merge node nmerge as shown in Figure 2.c,
with input data edges of i0, …, ik-1 and input control edge of c and
output edge of o, we have

NOC(nmerge) = TOC(o)
TOC(c) = TOC(o)
TOC(ip) = cp ∧ TOC(o), ∀ p ∈ [0,k-1]

The definition of cp is the dual to that described for branch nodes,
i.e. the condition under which the input port p is selected by nmerge
to pass the token to the output port.
As in [5], to avoid the computational complexity we assume the
NOC of a register node to be 1. In other words, we do not analysis
observabilities across register boundary.

3.3 Computation of TOC/NOC
Computing TOC/NOC requires Boolean operations. A common
way to perform Boolean operations is to use BDD (Binary
Decision Diagram [9]). The problem of this approach is that BDD
is not robust enough to handle large Boolean functions.
In this section, an efficient and yet simple approach to compute
TOC/NOC of a CDFG is proposed. The idea of the approach is
the separation of traversing CDFG and computing TOC/NOC.
Instead of building a BDD for the TOC/NOC of each edge and
node, a logic network is constructed whenever a Boolean
operation is required to compute the TOC/NOC. The logic
network is then optimized using traditional logic optimization
techniques such as algebraic transformations [8], to obtain the
optimized Boolean function of the TOC/NOC. The
transformations used in the optimization process are chosen to be
simple enough so that computing TOC/NOC will be almost
invisible to the overall optimization flow. This method is ideal for
the front-end RTL synthesis tool where a CDFG is translated into
a gate level netlist and there exists a one-to-one correspondence
between the objects of a CDFG and the objects of the logic
network. The method is best explained by an example.

In Figure 3, the CDFG of a simple digital system is shown. As
stated above, after a gate level netlist is generated from this
CDFG, there is an one-to-one correspondence between the objects
of CDFG and the objects of the generated logic network. For
example, let a be the corresponding signal for node N1 and b be
the corresponding signal for node N10 in the netlist. We will
explain the computation of TOC for edges E1 and E2 in Figure 4.
The computation starts from the output nodes using the formulas
in the Section 3 depended on the type of the node visited. It is
easy to see the TOC of edges E8 and E7 is simply logic 1, as
highlighted in Figure 4. For edge E6, the TOC is the Boolean
AND of the TOC of E7 and the variable of the control port of the

clk

N2 N3 N4 N1

N5
N8

N9

 N10

N11

N12

N13

N14

 N15

 N16
output

register

 construct

 2

 ==
 *

 +

construct
 E1 E2

 E3

E4

 E5

 E6

 E7

 E8

 in1 in2 cmp en

Figure 3. An example CDFG

41

node N14 which is the same as the variable at the output port of
construct node N1. Therefore in Figure 4 the AND gate c is
constructed whose output represents the TOC of E6. Similarly, the
TOC of edge E5 is the AND of TOC of edge E6 and the variable
of the control port of node N13. The AND gate d is created for the
TOC of edge E5. The process continues until the edges E1 and E2
are reached. As shown in Figure 4, the output of the AND gate e
represents the TOC of edges E2 and E1. After applying simple
logic optimizations, the TOC of edges E1, E2 and E3 is simply
the AND of a and b. Note that only a single traversal from the
output nodes to the inputs is required to compute the TOCs of
these edges. The complexity of the algorithm is O(|V|+|E|) where
V and E are the number of nodes and edges of a CDFG
respectively. In our experience, the number of nodes and edges of
a CDFG is much less than those of the corresponding structural
netlist. As a result, the proposed technique for TOC/NOC
computation is extremely fast even for very big state-of-art digital
designs.

4. Proposed Sleep-mode Transformations
As described earlier, the proposed sleep-mode transformation
consists of two steps, namely RTL exploration and gate-level
commitment.

4.1 RTL Exploration
The application of BLOA techniques introduced in Section 3 to
sleep-mode transformation is straightforward. The corresponding
logic of an operation node is a perfect candidate for sleep-mode
transformation where the computed TOC/NOC can be used to
generate the corresponding enable signal. Nodes with TOC equal
to 1 can not be candidates for sleep mode transformation because
the outputs of the corresponding logic block are always
observable. During the exploration phase, a complete BLOA is
performed on the CDFG. Operation nodes with NOC not equal to
1 are selected as candidates. These candidates are then “marked”
on the gate-level netlist. No actual implementation is performed in
this phase. Commitment of these transformations is delayed after
gate-level optimization has been done where accurate power and
timing information is available.
For example, BLOA analysis of the design shown in Figure 3
finds that under the condition of a& b the outputs of the multiplier
(node N5) are not used, where a and b are the signals in the netlist
corresponding to the condition represented by construct node N1
and N10 respectively. The netlist of the design after RTL
exploration is shown in Figure 5. Compared to the normal netlist
after RTL synthesis, the RTL sleep-mode explored netlist has two
new inserted modules called SleepModeModule, one in front of
each multiplier input. The inserted modules have following
characteristics. First the data bus is a feed-through within the
module. Second, within the SleepModeModule,, there is another
module called SleepModeControlModule. It contains the complex

enable function for the sleep-mode candidate. In this case, it is the
AND function of a and b. There exists a one-to-one
correspondence between the input pins of the
SleepModeControlModule and the input ports of the
SleepModeModule, but they are not connected.

The SleepModeModule serves as the “mark” for the candidate of
sleep-mode transformation, which is the multiplier in this case.
Note that even though the multiplier hierarchy may be dissolved
during synthesis, the “mark” for the sleep-mode candidate will be
preserved, because the SleepModeModule is not dissolved, which
could be easily done. The SleepModeControlModule serves as the
vehicle to remember the enable logic for this candidate. The one-
to-one correspondence imposed by pin names between the input
ports of the SleepModeModule and inputs of the
SleepModeControlModule is required during the committing
phase where the enable logic is actually connected. Because no
extra load is added to the control and the data path, the critical
path of the original design will be preserved. As a result, the later
logic and timing optimization will be able to focus on the real
critical path and optimize the netlist as if no sleep-mode
transformations are performed. Therefore, as long as the sleep-
mode candidates are not committed, there is no concern that the
they may cause new timing violations when the original design
meets timing after logic and timing optimization. Another
advantage of the technique is that it allows only a portion of the
enable function to be used as the enable logic for the sleep-mode
candidate during the gate-level commitment phase, known as
partial sleep-mode committing.

4.2 Gate-level Commitment
After logic and timing optimization, a decision to commit each
individual candidate is made based on whether or not the power is
reduced without violating the timing constraints. The algorithm is
shown in Figure 6. First, we sort all sleep mode candidates based
on the potential power savings. The commitment starts from the
sleep-mode candidate which has the biggest potential power
savings. Then for each selected candidate, the input ports of
SleepModeModule and the input pins of
SleepModeControlModule that have the same name are
connected. The actual gating logic is inserted and an incremental
power and timing analysis is performed. If the gate level

Figure 4. Compute TOC for edges of CDFG in Figure 3.

c
d e

1

a

b

E8,E7

E6 E5,E4

E3,E2,E1

in2

a

b

 SleepControlModule_0

*

in1

SleepModeModule_1

 SleepControlModule_1

a
b

a
b

Figure 5. Netlist after RTL sleep-mode exploration for
the multiplier of the example in Figure 3.

42

commitment succeeds at step 3, then it is called fully committed.
That is, whatever candidates and enable logic identified at RTL is
fully committed to save power without violating timing
constraints. For example, to fully commit the sleep-mode modules
inserted in Figure 5, we can simply connect the control portion of
the circuit within the SleepModeModule and insert AND gates on
the data signals, as shown in Figure 7.

4.3 Gate-level Partially Committing
However, the full commit may cause new timing violations. For
example, let’s assume that after fully committing all sleep-mode
modules, the path from b to the second input of multiplier violates
timing constraints, as highlighted in Figure 7. To avoid the newly
introduced timing violation, one solution is to completely remove
the sleep-mode logic at input in2 of the multiplier, but doing this
will significantly limit the power reduction that can be achieved.
A much better solution is to partially commit the sleep-mode

enable logic by executing steps 3 through 5 (in Figure 6). In this
example, we know that the enable logic for this candidate is a&b.
This means that either a or b can also be used as the enable logic.
Since we do not want b to be part of the enable function because
of timing violation, we can use a as the enable logic for input bus
in2. In other words, by removing the input of b from the original
enable function, the new enable function is reduced from a&b to
a. Note that partial commitment is possible because the enable
logic and the inputs for each sleep mode candidate are separately
derived during RTL synthesis and preserved after logic and timing
optimization. As shown in Figure 6, the partial committing loop
stops when the enable logic cannot be reduced further. The partial
commitment capability of the proposed approach differs
significantly from the traditional approach where, if a sleep mode
transformation violates timing constraints, it is completely
removed. Our approach provides a much larger scope to perform
power delay trade-offs.
Finally, if committing a sleep-mode candidate causes power
increase or timing violation even after partial committing, we can
simply un-commit the sleep-mode candidate by removing all
inserted logic on the control and data path, and then dissolve the
inserted hierarchical modules.

5. Flow Integration and Implementation
The proposed RTL power optimization technique can be
seamlessly integrated into any existing design flow. The RTL
exploration can be added at the end of normal RTL synthesis, and
the gate-level commitment can be added after timing optimization
completes. Existing flow needs no modification to apply the
technique. More importantly, the separation of RTL exploration
from gate-level eliminates possible iterations between the RTL
and the gate level that can occur in traditional approaches. In
traditional approaches, it is possible that timing constraints can
not be met even by undoing all the sleep-mode transformations
after gate level optimization, because they may have shifted the
critical paths. This is not a problem for the proposed technique
because the decision for commitment of a candidate is delayed
until the circuit has been optimized for timing. At this stage, the
accurate power and delay estimation can be easily obtained from
the gate level power and timing analysis engine. As a result, each
commitment makes sure that it saves power without violating
timing constraints. The delay of the circuit after gate-level
committing is guaranteed to be no worse than the delay of the

SleepModeModule_0

SleepModeModule_1

in1

in2

a

b

*

Figure 7. Netlist after gate-level sleep-mode full
commitment for the example in Figure 5.

Partially
committing

 Fully

 committing

Y

Y

N

N

 1. Connect Inside of
 SleepModeModule

2. Insert AND gates

 3.
 Power saved and
 timing met?

 4.
Is enable logic
 reducible?

6. Remove all inserted
logic and hierarchies

5.Reduce enable logic
to improve timing

 7. Stop

Figure 6. Gate level sleep-mode commit algorithm.

RTL elaboration

sleep-mode exploration

pre-placement gate level optimization

sleep-mode commitment

physical synthesis

place & route

 Figure 8. Flow integration

43

circuit before committing. Finally, since the decision of sleep-
mode commitment is delayed to gate-level, it eliminates the need
for complicated and generally inaccurate RTL power and delay
models [5].

The proposed algorithm is implemented in Cadence PKS/LPS
5.0 release [10]. As shown in Figure 8, the standard flow consists
of blocks with no shades and the sleep-mode flow includes the
two shaded boxes. The flow starts from the RTL of a design.
During RTL exploration, sleep-mode logic is inserted but not
fully connected. After normal flow of pre-placement timing and
datapath optimization, including resource sharing and operator
merging [10], it then starts the gate-level commitment phase of
the sleep-mode transformation. This is done before the physical
placement of the design. The reason we do not perform the
commitment phase after placement because the commitment phase
may introduce a significant amount of new logic which could
cause the incremental placement failure. The sign-off quality
power and timing analysis engine provided by PKS are used to
compute the power and delay (Step 3 of Figure 6) accurately in
the commitment phase. More specifically, after insertion of the
gating logic (Step 2 of Figure 6), the PKS/LPS incremental power
and timing analysis engine is used to obtain the accurate power
and delay information to compare it with the power and delay
information before the transformation. If power is reduced and
delay is not worsened, the sleep-mode transformation will then be
accepted and committed into the netlist. Otherwise, the sleep-
mode logic is removed. In other words, the delay and power
penalty due to the inserted gating logic is considered during the
commitment phase.

6. Experiment Results
Six industrial circuits were chosen for experiments. Design 4 is a
microprocessor, Design 5 and 6 are communication chips. The
types of the rest circuits are unknown. All designs except Design
6 have customer provided test benches, which were used to
simulate the circuit to get the switching activities for power
analysis. For Design 6, random input patterns were used to
simulate to obtain the switching activities for power analysis.
Table 1 shows the characteristics of each design. The column Inst
shows the number of instances of the design. The columns Slack
and Tot. Pow are the slack and power dissipation of the design
after normal synthesis and optimization. The last column DP
Power shows the total data-path component power and its
percentage of the total power in column Tot. Pow. Since sleep-
mode transformations target only for power optimization on these

blocks, in the experiment, we only use the power of these blocks
to show the power savings of the proposed technique.

The experimental results are shown in Table 2. Column SM cand.
shows the number of sleep-mode candidates identified during
RTL exploration. The second column CPU shows the run time
increase in percentage of sleep-mode RTL exploration compared
to that of normal RTL elaboration. The results show that the RTL
exploration is very efficient and introduces almost no additional
computation time. Column SM comm. shows the number of
sleep-mode candidates committed in the gate-level commitment
phase. Column Slack shows the slack after gate level
optimization. Column Pow. Saved shows the total power saved as
a percentage of the datapath power, as shown in Column 5 in
Table 1. The last column shows the CPU run time of the gate-
level commitment as a percentage of the total run time of the
normal gate level optimization.

The area increase due to the final inserted sleep-mode modules are
not shown because the maximum area overhead among all designs
is less than 1%. Since the proposed method will not modify the
original timing path after RTL exploration and the commitment of
each sleep-mode logic is delayed after timing optimization, the
timing optimization will work as if there is no sleep mode logic
inserted. The target slack of gate level optimization for each
design is 0. For designs with negative slack in Table 1, the final
slack after gate level commitment is not worse than that in Table
1. For designs with positive slack in Table 1, the final slack is
smaller but not less than 0 after the gate level commitment. The
power savings can be achieved strongly depend on the timing
constraints, the switching activities of the enable function, and the
power dissipation of the data path blocks. For example, in Design
2, most of the sleep-mode candidates are not committed at the
gate level because the probabilities of enable signals are close to 1
which leaves little room for power savings. For Design 6, most of
the sleep-mode candidates are not committed due to the tight
delay constraint.

As a comparison we did another set of experiments. In these
experiments, after RTL exploration, we simply map the netlist
without any other optimization and commit the sleep-mode
candidates based on the power and delay information obtained at
this level. This is similar to the traditional approach [5] where the
sleep-mode transformations are committed based on RTL power
and delay estimation. The results are shown in Table 3. The
column SM inserted shows the number of sleep mode logic
inserted. The column slack shows the slack after timing
optimization. The column power saved shows the datapath power
saved in percentage compared to the netlist without any sleep-

 Slack Tot. Pow. DP Power
RTL

Exploration Gate-level commitment

Inst.

(ns) (mW) (mW) (%)
SM

cand. CPU
SM

Comm
Slack
(ns)

Pow.
Saved CPU

D. 1 6474 2.64 0.56 0.18 32.1% D. 1 26 0.6% 18 0.75 8.11% 16.3%
D. 2 7461 1.35 6.87 1.82 26.6% D. 2 87 0.2% 4 1.24 1.10% 6.4%
D. 3 26786 0.15 9.78 4.82 49.3% D. 3 125 1.8% 45 0.01 13.60% 20.0%
D. 4 25434 0.24 15.21 1.45 9.5% D. 4 26 0.3% 14 0.24 3.00% 4.1%
D. 5 65533 0.00 237.85 51.41 21.6% D. 5 28 2.7% 21 0.00 6.62% 14.7%
D. 6 325216 -0.37 19.76 4.32 17.3% D. 6 1602 1.9% 18 -0.36 4.31% 23.5%

Table 1. Designs used for experiments Table 2. Experimental results with proposed method

44

mode inserted, column 5 of Table 1. The column of CPU
overhead is the ratio of the total CPU time of this experiment to
the CPU time using the proposed technique. Compare the Table 2
and 3 we can see that for Design 1, 2 and 4, the results are very
similar. However, the results of Design 3, 5 and 6 from Table 2
are much better than those from Table 3. For example, for Design
6 in Table 3, a lot of sleep mode candidates are committed based
on the inaccurate power and delay information. Unfortunately, it
was found during timing optimization that most of the inserted
sleep-mode logic become part of the timing critical paths and
significantly worsen the performance of the design. Therefore the
timing optimization spends significantly more run time and gate
resources to improve the slack. As a result, the final design
consumes more power than the one without the sleep-mode
transformations and misses the timing target. Overall, for Design
6, the proposed method achieved 4.3% power savings with no
degradation of circuit delay and the traditional method produced a
final netlist with more power, worst delay and ran twice slower.

To show the robustness of the proposed technique in terms of
achieving best power delays trade-offs, we select Design 6 to run
gate-level commitment with different and relaxed timing
constraints. The result is shown in Table 4. Each row shows the
experimental results with different set of timing constraints. Row
1 shows the results with the original timing constraints. Rows 2 to
4 show the results with the relaxed timing constraints. The column
Relaxed constr. shows the degree of the relaxation of timing
constraints in percentage. It can be seen that, for Design 6 when
the timing constraint is relaxed, more sleep-mode candidates can
be committed at the gate level and significant more power
savings, as much as 45%, can be achieved. The results show that
the achievable power savings of the proposed technique are
mostly bounded by the timing constraints and the switching
activities of the enable signals. The lower the activities of the
enable signals and the looser the timing constraints, the more
power reduction can be achieved. Given the specified timing
constraints, the proposed technique will apply the sleep-mode
transformations to save the most power without worsening the
timing.

7. Conclusion and Future Work
In this paper we propose a new approach to apply known RTL
power optimization technique to achieve the best possible power
delay trade-offs. The concept of breaking the optimization into
two steps, i.e. RTL exploration and gate-level commitment, has a
lot of advantages over traditional techniques as shown in the
experimental results. First, it has little impact on the normal logic
and timing optimization because all sleep-mode modules inserted
after RTL exploration preserve the original connectivity and loads
of the data and control paths of the design. Therefore the run time
and final slack of timing optimization are the same as if there is no
sleep-mode logic inserted. This makes the proposed technique
very practical for current main stream design methodology where
the first design target is timing and power is normally a secondary
concern. Secondly, since the committing of the sleep-mode is
delayed until the design is timing optimized, accurate power delay
trade-off can be achieved given the exact timing and power
information available at that point. Finally it has the capability of
partial committing of the sleep-mode modules which leads to a
much larger solution space being explored to achieve the optimal
power and delay trade-off. Overall, no iteration between RTL and
gate-level optimization required to achieve timing closure and
save power when using the proposed technique. The experimental
results show that the proposed method can achieve meaningful
power savings with no impact on existing normal timing
optimization at all where the traditional methods may produce a
design with worse timing and power and longer run time.

Currently we are working on apply the same concept to other RTL
power transformations such as clock gating.

8. REFERENCES
[1] A.P. Chandrakasan and R. W. Brodersen, “Low Power Digital
CMOS Design”, Kluwer Academic Publishers, 1995.
[2] K. Keutzer and P. Vanbekergen, “The Impact of CAD on the
Design of Low Power Digital Circuits”
[3] M. Pedram, “Power Minimization in IC Design: Principles and
Applications,” ACM Transactions on Design Automation of
Electronics Systems, January 1996, Vol 1-1, pp. 3-56.
 [4] H. Kapadia, L. Benini, and G. De Micheli, “Reducing Switching
Activity on Datapath Buses with Control-Signal Gating”, IEEE
Journal of Solid-State Circuits, Vol. 34, No. 3, March 1999, pp. 405-
414.
[5] M. Munch, and et. al., “Automating RT-Level Operand Isolation
to Minimize Power Consumption in Datapaths”, Proceedings of
Design and Test Automation Conference in Europe.
[6] S. Dey and et. al., “Controller-Based Power Management for
Control-Flow Intensive Designs”, IEEE Trans. on Computer-Aided
Design of Integrated Circuits and Systems, Vol. 18, No. 10, October
1999, pp. 1496-1508.
[7] J. van Eijndhoven, G. de Jong, and L. Stok. The ASCIS data flow
graph: semantics and textual format. Technical Report EUT-Report
91-E-251, Eindhoven University of Technology, Eindhoven,
Netherlands, June 1991.
 [8] De Micheli. Synthesis and Optimization of Digital Circuits.
McGraw-hill, Inc., 1994.
 [9] R. Bryant. Graph-based algorithms for boolean function
manipulation. IEEE Transactions on Computers, C-35(8):677-691,
Aug. 1986.
[10] Cadence Low Power Synthesis (LPS) User’s Guide for
Cadence PKS.

SM

Inserted
Slack
(ns)

power
saved

CPU
overhead

D. 1 26 0.25 6.43% 0.98
D. 2 8 1.12 1.10% 1.01
D. 3 76 -0.21 -1.35% 1.63
D. 4 18 0.24 3.00% 0.96
D. 5 28 -0.78 2.10% 1.57
D. 6 853 -1.56 -11.56% 2.10

Table 3. Results of committing candidates at RTL

 Relaxed constr. SM Inserted power saved
not relaxed 0% 18 4.3%
relaxed 1 25% 281 38.3%
relaxed 2 50% 511 43.0%
relaxed 3 100% 673 45.3%

Table 4. Results of Design 6 with relaxed timing constraints

45

	Main Page
	ICCAD03
	Front Matter
	Table of Contents
	Author Index

