

Using Dynamic Domino Circuits in Self-Timed Systems
Jung-Lin Yang

Dept. of Electrical and Computer Engineering
University of Utah

Salt Lake City, UT 84112

jyang@cs.utah.edu

Erik Brunvand
School of Computing

University of Utah
Salt Lake City, UT 84112

elb@cs.utah.edu

ABSTRACT
We introduce a simple hierarchical design technique for using
dynamic domino circuits to build high-performance self-timed
data path circuits. We wrap the dynamic domino circuit in a
wrapper that communicates using a request/acknowledge protocol
and mediates the pre-charge/evaluate cycle of the dynamic logic.
We apply standard bundled delay matching for completion
detection but add an early completion feature that can signal
completion if function validity can be determined from the output
value. We call the resulting wrapper semi-bundled because of this
early acknowledge. The circuit overhead required for this semi-
bundled feature is relatively small, but can provide measurable
speedup in some situations. The technique is suitable for any
dynamic logic family that has a pre-charge/evaluate cycle, and
that produces monotonic output transitions.

Categories and Subject Descriptors
B.6.1 [Logic Design]: Design Styles – Combinational Logic,
Sequential Logic.

General Terms
Performance, Design, Experimentation,

Keywords
Domino logic, self-timed circuits, asynchronous circuits

1. INTRODUCTION
If functional data path blocks are to be used in an asynchronous or
self-timed system they should also use handshaking techniques to
communicate with the other circuit blocks in the system. There are
a variety of control protocols used in asynchronous or self-timed
systems, but the most fundamental requirements for a self-timed
data path element are that it know when to start executing its
function, and that it report the completion of the function and the
validity of the output values. It is this notification that the data
path outputs are valid that makes them self-timed. [1,2].

In general, self-timed data paths generate a completion signal in
one of two ways: using a matched bundling delay that mimics the
expected delay in the circuit [3], or using a multiple-wires-per-bit
scheme that allows the data itself to encode completion [4,5]. The
communication protocol used to signal initiation and completion
of the function is typically some variation on standard four-phase
or two-phase request/acknowledge schemes. [6]
Dynamic circuits such as domino, NP domino, DCVSL, etc.
circuit styles, are widely used in high-performance systems [7,8].
However, the performance increase comes at a cost in design
complexity and in sensitivity to electrical effects at the transistor
level. Dynamic circuits generally use some sort of pre-
charge/evaluate protocol that is controlled by the system clock. In
addition to increasing the design complexity to deal with the
separate phases of execution, this can also add extra loading to an
already problematic global clock signal. Clock gating to reduce
power is also made more complex when using dynamic logic.
From the point of view of using dynamic circuits in a self-timed
system we need to control the pre-charge/evaluate cycle without a
clock, generate completion signals, and provide whatever latching
is required by the dynamic logic structure.

2. SELF-TIMED WRAPPER
We would like to leverage the advantages of dynamic data path
circuits for use in self-timed systems by developing support
circuits that provide the necessary completion detection and
handshaking functionality. Our wrapper circuit provides three
basic functions:

1. Communication with the environment through the
chosen handshake protocol

2. Control of the pre-charge/evaluate cycle of the dynamic
function block, and completion detection on the
function.

3. Latching the output data as appropriate
Because our completion detection circuit falls somewhere
between bundling and actual completion detection we call our
wrapper “semi-bundled.” A diagram is shown in Figure 1.

2.1 Early Completion
A critical feature of the wrapper is to provide completion
detection so that the circuit can produce the required acknowledge
signal. A simple matched bundling delay can provide an
acknowledge signal that corresponds to the worst-case timing of
the circuit. However, because of the output behavior of many
types of dynamic logic we can do better than that in some cases.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
GLSVLSI’03, April 28-29, 2003, Washington, DC, USA.
Copyright 2003 ACM 1-58113-677-3/03/0004…$5.00.

253

Our wrapper assumes two properties of the dynamic circuits: that
they have a reset phase where all outputs are reset to a known
value (typically a pre-charge phase), and that the output
transitions from the reset state are monotonic. Many dynamic
logic families, domino and DCVSL to name only two, exhibit
these properties. Assuming these properties of the logic, our
wrapper can monitor the output signals and determine that a
function is complete if it makes a transition. If no transition is
seen at the output by the time the bundling delay expires, then we
can assume that no transition will occur and that the logic is at its
final value.
Our wrapper includes both a measured early-completion circuit
that watches the outputs of the evaluation network, and a matched
worst-case delay that “times out” if none of the inputs will
change. This is similar in spirit to other early, or speculative
completion schemes that have been proposed in other types of
self-timed systems [9,10].

3. WRAPPER IMPLEMENTATION
The wrapper circuit consists of 5 major sub-blocks: pre-
charge/eval signal generator (SBD_PC), worst-case matched delay
(MDelay), pre-charge matched delay (MD_PC), asynchronous
latch (SBD_latch), and completion signal generator (SBD_ACK).
Except the SBD_latch, every block in the wrapper is built with
either a generalized C-element (gC)[11] or domino logic.

3.1 Pre-charge/Evaluation Signal (SBD_PC)
SBD_PC generates the control signal to the Domino evaluation
network to tell when to evaluate and when to pre-charge (Figure
2). Our wrapper uses the incoming request signal to start the
evaluation cycle, but then initiates pre-charge as soon as possible
by looking at function completion and latch-completion rather
than waiting for the falling handshake transition. The output of
this block (PC) will be set to high as long as the request signal
from the environment has been pulled up to ‘1’. This puts the
domino function block into evaluation mode so that it can start to
compute outputs through its evaluation network. Once the
evaluation network’s result is latched, PC will be pulled down to
‘0’ putting the domino function block into pre-charge mode.

3.2 Delay Circuits (MDelay, MD_PC)
There are two places in the wrapper that require delays: the
matched delay for the worst-case evaluation time for the domino
function block (Mdelay), and the matched delay to model the time

it takes to pre-charge the domino function block (MD_PC). Both
of these delays are asymmetric: they want to delay one edge (we’ll
call this the triggering edge) but not the other (the reset edge). It is
also desirable to use a circuit that provides a controllable and
substantial delay in a small circuit area.

One design for such a delay uses a tunable buffer circuit. This
circuit, shown in Figure 3 uses transistors N2 and P2 as variable
resistors. They must always be on to maintain correct operation of
the controllable inverter, but by using a reference voltage they can
provide a variable amount of current-limiting resistance. Using
PSPICE with models for the TSMC 0.25um/2.5V CMOS
technology we can delay the rising/falling edge from between 1 to
3 FO4 delays using a single stage tunable buffer. However, deep-
sub-micron processes with sub-1V power supplies will make
designing and predicting delays much more difficult. Future SBD
circuits will have to address this delay issue.

Another issue for the delay circuits in our wrapper is that they be
asymmetric. In order to provide a delay for the triggering edge,
but not for the reset edge, a fast-reset buffer can be used. Figure 4
shows one circuit for a fast-reset buffer. This circuit will reset the
buffer chain in parallel during the time when the REQ signal is
low, thus providing for a much shorter delay on the reset edge
through the buffer chain than for the triggering edge. For small
delays this may not be an issue, but for longer delays a fast-reset
buffer can make a significant difference for the non-delayed edge.
The MDelay block (Figure 5) is used to postpone the rising edge
of the request signal for the matched (worst-case) delay of the
domino function block. However, the falling edge should
propagate to its output (MD_ACK) without any additional delay.
The “Worst-case Matched Delay” is implemented as a delay chain

Traditional Bundled-data Structure

Matched Delay

Max. Pre-Charge
Time

ACK
Allowed

REQ

ACK

PC

Primary Outputs

Primary Inputs
Functional

Block
(Dynamic CL)

Semi-Bundled
Delay (SBD)

Wrapper

D
om

in
o

O
ut

pu
ts

REQ

Matched
Delay

Matched
Delay

Semi-Bundled Delay Structure

PC

Delay Line

Functional
Block

(Static CL)
Primary Inputs Primary Outputs

ACKREQ

ACK

REQ

ACK

Early
Completion

Figure 1 Semi-Bundled Delay Structure

Gnd
s P3

s

N2

weak

s

N1

INV

PC

Gnd

LACK

EREQ

s

P1

s P2

Vdd

Figure 2: SBD_PC transistor-level implementation

Vdd

Gnd

s

N2

OUT

cv dd

IN

s

N1

s

P2

s

P3

s

P1

cgnd

s

N4

Gnd

Vdd

Figure 3: Tunable buffer

254

of the type described above. The MD_PC pre-charge delay is
designed in a similar way

3.3 Asynchronous Latch (SBD_latch)
The SBD_latch block contains 2 sub-blocks: a positive edge
triggered D flip-flop (PETDFF) and latch completion detection
circuitry. This asynchronous latch is used only to generate a
pipeline stage or at an SBD component boundary. It is not
required for every SBD block. The PETDFF is implemented as a
standard TSPC latch.
The completion detection technique for this flip flop is simply to
monitor the values of input and output of the device. If the output
(Dout) has the same value as the input (Din), we assume that the
result is latched safely and the completion detection circuitry will
be pulled high with quickly. Under such conditions there is no
need to postpone the acknowledgement to account for the TSPC
clock-to-latch propagation delay.

3.4 Completion Signal (SBD_ACK)
The SBD_ACK is the final stage of our SBD handshaking
wrapper. Its output ACK provides two important functions in the
four-phase handshake with the rest of the self-timed system: the
rising edge of ACK tells when the evaluated result of the domino
functional block is valid, and the falling edge indicates that a new
request can be issued. The transistor-level implementation is
shown in the Figure 6.

4. DESIGN EXAMPLE
We use an extensible self-timed adder design as an example of
using the SBD wrapper circuit with domino function blocks. This
adder is meant only to demonstrate the use of the wrapper on a

measurable circuit, not to be compared with state of the art
addition circuits.

4.1 Top-level Block Diagram
Figure 7 shows a 12-bit self-timed adder built from three-bit adder
blocks (ADD3) and three-bit plus-1 blocks (INC3). The ADD3
blocks compute a three-bit addition in a single domino gate. The
INC3 blocks at the bottom of the figure use a chain of domino
gates to generate the carry signal based on the results of the
ADD3 blocks at the top. In this block diagram we show a four-
stage design but the circuit is easily extended to make larger
adders. Aside from its use as an example of the SBD wrapper this
is the main advantage of this adder architecture. Each of the sub-
blocks in Figure 7 is built using our SBD wrapper and a domino
function block.
Using this design structure we can chain as many stages (ADD3 +
INC3) as needed to form a larger self-timed adder. Note that there
is no dependence between ADD3 components. Thus, all ADD3
components can compute simultaneously when the request signal
arrives. The INC3 blocks generate a rippled carry output. The
worst-case delay is thus one stage of ADD3 and the total delay of
the INC3 chain. The delay of the INC3 chain varies according to
the data. The collected latch-acknowledge signals (LACK) from

s

P1

s

N2

Vdd

IN OUT

Gnd

Vdd

s

P2 s

P3

Gnd

Vdd

s

N3

REQ

s

N1

Figure 4: Fast-reset buffer

MD_ACK

Vdd

s

P2

Gnd

Ev en-Stage Inv erter Chain

1 2

s

P1

s

N2

s P3

Din_bREQ

Figure 5: MDelay transistor-level implementation

s
P1

ACK

EREQ

s

N2

$G_DGND

s
P2 $G_DGND

s
P3

$G_DPWR

s
P4

PCd

LACK'
s

N1

Figure 6: SBD_ACK transistor-level implementation

ACK

PC

REQ

Co

Co So[2:0]

S[2:0]

a[2:0]

b[2:0]

Semi-Bundled
Delay (SBD)

Wrapper

3-bit Half Adder
(Single-rail Domino)

4.5 ~ 6.5
FO4 Delays

ACKL

PC

ACK

S[2:0]

S[2:0]L

S[2:0]

CoL

Co’L

CoACK

Ci
Ci’

Co

Semi-Bundled
Delay (SBD)

Wrapper

3-bit INC
(Single-rail S[2:0],
Dual-rail Co/Co’)

A
C

K
1

C
o 1

S[
2:

0]
1

Co1

A
C

K
2

C
o 2

S[
2:

0]
2

A
C

K
N

C
o N

S[
2:

0]
N

Ci

A
CK

L1

S[
2:

0]
L1

A
CK

L2

S[
2:

0]
L2

A
C

K
L

N

S[
2:

0]
LN

a[N-1:0]
b[N-1:0]

REQ

ACK

Con

3-bit Half Adder
SBD Component

3-bit Half Adder
SBD Component

3-bit Half Adder
SBD Component

3-bit INC
SBD

Component

3-bit INC
SBD

Component

3-bit INC
SBD

Component

Figure 7: 12-bit Self-Timed Adder Example

255

the INC3 blocks determine when the final carry has been
computed.

4.2 PSPICE Simulation
 We simulated this 12-bit self-timed SBD adder in PSPICE using
TSMC 0.25um 2.5V CMOS models. Each ADD3 component has
its own domino SBD wrapper and completes its task in 1465ps to
1741ps (~ 17 FO4). This delay consists of the domino function
evaluation delay, register (latch) delay, and handshaking
overhead. The delay variation is small because the ADD3’s
Domino logic core takes only 470ps to 680ps of calculation time
(~5 FO4). The overhead due specifically to the wrapper circuit
(that is, additional overhead not found in a standard domino
version) is around 450-500ps, or around 5 FO4 delays in this
technology. High-performance microprocessors use more than 20
FO4 delays between latches [8] indicating that our ADD3
functional block is perhaps too small to be compared directly with
realistic data path circuits. Larger domino circuits would suffer
less overhead penalty from the SBD wrapper. However, it does
demonstrate that dynamic domino circuits can be used in a
straightforward way in self-timed designs.
A purely static design for exactly the same circuit using a full P-
type pull-up stack and N-type pull-down stack with the same
output latch and the same bundling delay margins simulates at
1915ps. So, even with the overhead of the wrapper circuit and the
relatively small size of the domino function block, the domino
version runs about 10% faster than the static version. Larger
differences would be expected for larger domino function blocks.
We use a modified SBD wrapper for building the INC3 block.
The critical input signal for an INC3 block is the carry out from
the previous stage. Thus, we implement the carryout signal as a
dual-rail domino circuit for easier completion detection. The other
signals are still are implemented as single-rail. Using a dual-rail
signal for the carryout allows faster INC3-chain completion by
removing the output latch and by distributing the early–
completion detection circuits in the INC3 chain.
Not surprisingly, the delay variation versus the wrapper overhead
is much better for the INC3 chain than for a single ADD3 circuit.
The domino function blocks in the INC3 circuits chain together
directly with no latch overhead in the individual stages. The 12-
bit SBD INC component simulation evaluates between 860ps and
1460ps. The worst-case only happens when all INC3 blocks need
to wait for the carryout from the previous stage. If any
intermediate carry out completes earlier, the worst-case carry
chain will break and the 12-bit INC also completes earlier.
This extensible adder example demonstrates two ways to use the
SBD wrapper with domino function blocks. You can use either an
SBD wrapper with an output latch for each function block and
achieve deep pipelining at the expense of extra overhead, or you
can use the SBD wrapper for completion detection without the
output latches and let the domino function blocks chain together
as a larger circuit.

5. CONCLUSIONS
We have shown a simple wrapper circuit that can make high-
performance dynamic-logic function blocks usable in a self-timed
system. The wrapper presents a standard self-timed req/ack
protocol at its interface, and implements pre-charge/evaluate
sequencing, variable-time completion detection, and possibly
output latching for the dynamic function block inside the wrapper.

The completion detection operates by either directly sensing the
completion of the dynamic function block or by a matched delay.
Because this has the potential to signal completion earlier than a
purely bundled delay we call this approach Semi-Bundled Delay
(SBD).
An SBD wrapper is suitable for any dynamic logic family that
include a pre-charge phase that sets the outputs to a known level
and has monotonic output behavior. Specifically we have shown
an example using wrapper circuits around dynamic domino
function blocks. The wrapper circuits themselves are either
generalized C-elements or domino circuits. For the simple ADD3
circuit the overhead due to the wrapper itself is about 5 FO4
delays. Including this overhead, the domino circuit is about 10%
faster than a fully static version of the circuit. Larger differences
can be expected for more complex domino function blocks.
Of course, there are many other choices for implementing the
wrapper itself. We have also designed and simulated DCVSL
circuits for the wrapper, and are exploring domino function blocks
that look more like finite state machines than just simple
combinational functions.
Semi-bundled wrapper circuits allow a designer to take advantage
of high-speed dynamic data path circuits that can be used with any
self-timed or asynchronous design style that relies on an explicit
completion signal.

6. REFERENCES
[1] Scott Hauck. Asynchronous design methodologies: An

overview. Proc. of the IEEE, 83(1):69-93, January 1995.
[2] Charles L. Seitz. Self-timed VLSI systems. In Charles L.

Seitz, editor, Proceedings of the 1st Caltech Conference on
Very Large Scale Integration, pages 345-355, Pasadena, CA,
January 1979. Caltech C.S. Dept.

[3] Ivan E. Sutherland. Micropipelines. Communications of the
ACM, 32(6):720-738, June 1989.

[4] Tom Verhoeff. Delay-insensitive codes--an overview.
Distributed Computing, 3(1):1-8, 1988.

[5] Jens Sparsø and Steve Furber, editors. Principles of
Asynchronous Circuit Design: A Systems Perspective. Kluwer
Academic Publishers, 2001.

[6] Erik Brunvand, Steven Nowick, and Kenneth Yun. Practical
advances in asynchronous design and in asynchronous-
synchronous interfaces. In Proc. ACM/IEEE Design
Automation Conference, pages 104-109, 1999.

[7] Neil Weste and Kamran Eshraghian. Principles of CMOS
VLSI Design. Addison-Wesley Publishers, 1993.

[8] David Chinnery and Kurt Keutzer. Closing the Gap Between
ASIC & Custom. Klewer Academic Publishers, 2002.

[9] Mark E. Dean. STRiP: A Self-Timed RISC Processor
Architecture. PhD thesis, Stanford University, 1992.

[10] S. M. Nowick. Design of a low-latency asynchronous adder
using speculative completion. IEE Proceedings, Computers
and Digital Techniques, 143(5):301-307, September 1996.

[11] Kenneth Y. Yun. Automatic synthesis of extended burst-mode
circuits using generalized C-elements. In Proc. European
Design Automation Conference (EURO-DAC), pages 290-
295, September 1996

256

	Main Page
	GLSVLSI'03
	Front Matter
	Table of Contents
	Author Index

