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ABSTRACT 
We introduce a simple hierarchical design technique for using 
dynamic domino circuits to build high-performance self-timed 
data path circuits. We wrap the dynamic domino circuit in a 
wrapper that communicates using a request/acknowledge protocol 
and mediates the pre-charge/evaluate cycle of the dynamic logic. 
We apply standard bundled delay matching for completion 
detection but add an early completion feature that can signal 
completion if function validity can be determined from the output 
value. We call the resulting wrapper semi-bundled because of this 
early acknowledge. The circuit overhead required for this semi-
bundled feature is relatively small, but can provide measurable 
speedup in some situations. The technique is suitable for any 
dynamic logic family that has a pre-charge/evaluate cycle, and 
that produces monotonic output transitions. 

Categories and Subject Descriptors 
B.6.1 [Logic Design]: Design Styles – Combinational Logic, 
Sequential Logic.  

General Terms 
Performance, Design, Experimentation,  

Keywords 
Domino logic, self-timed circuits, asynchronous circuits 

1. INTRODUCTION 
If functional data path blocks are to be used in an asynchronous or 
self-timed system they should also use handshaking techniques to 
communicate with the other circuit blocks in the system. There are 
a variety of control protocols used in asynchronous or self-timed 
systems, but the most fundamental requirements for a self-timed 
data path element are that it know when to start executing its 
function, and that it report the completion of the function and the 
validity of the output values. It is this notification that the data 
path outputs are valid that makes them self-timed. [1,2]. 

In general, self-timed data paths generate a completion signal in 
one of two ways: using a matched bundling delay that mimics the 
expected delay in the circuit [3], or using a multiple-wires-per-bit 
scheme that allows the data itself to encode completion [4,5]. The 
communication protocol used to signal initiation and completion 
of the function is typically some variation on standard four-phase 
or two-phase request/acknowledge schemes. [6] 
Dynamic circuits such as domino, NP domino, DCVSL, etc. 
circuit styles, are widely used in high-performance systems [7,8]. 
However, the performance increase comes at a cost in design 
complexity and in sensitivity to electrical effects at the transistor 
level. Dynamic circuits generally use some sort of pre-
charge/evaluate protocol that is controlled by the system clock. In 
addition to increasing the design complexity to deal with the 
separate phases of execution, this can also add extra loading to an 
already problematic global clock signal. Clock gating to reduce 
power is also made more complex when using dynamic logic. 
From the point of view of using dynamic circuits in a self-timed 
system we need to control the pre-charge/evaluate cycle without a 
clock, generate completion signals, and provide whatever latching 
is required by the dynamic logic structure.  

2. SELF-TIMED WRAPPER 
We would like to leverage the advantages of dynamic data path 
circuits for use in self-timed systems by developing support 
circuits that provide the necessary completion detection and 
handshaking functionality. Our wrapper circuit provides three 
basic functions: 

1. Communication with the environment through the 
chosen handshake protocol  

2. Control of the pre-charge/evaluate cycle of the dynamic 
function block, and completion detection on the 
function.  

3. Latching the output data as appropriate 
Because our completion detection circuit falls somewhere 
between bundling and actual completion detection we call our 
wrapper “semi-bundled.”  A diagram is shown in Figure 1. 

2.1 Early Completion 
A critical feature of the wrapper is to provide completion 
detection so that the circuit can produce the required acknowledge 
signal. A simple matched bundling delay can provide an 
acknowledge signal that corresponds to the worst-case timing of 
the circuit. However, because of the output behavior of many 
types of dynamic logic we can do better than that in some cases.   
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Our wrapper assumes two properties of the dynamic circuits: that 
they have a reset phase where all outputs are reset to a known 
value (typically a pre-charge phase), and that the output 
transitions from the reset state are monotonic. Many dynamic 
logic families, domino and DCVSL to name only two, exhibit 
these properties. Assuming these properties of the logic, our 
wrapper can monitor the output signals and determine that a 
function is complete if it makes a transition. If no transition is 
seen at the output by the time the bundling delay expires, then we 
can assume that no transition will occur and that the logic is at its 
final value.  
Our wrapper includes both a measured early-completion circuit 
that watches the outputs of the evaluation network, and a matched 
worst-case delay that “times out” if none of the inputs will 
change. This is similar in spirit to other early, or speculative 
completion schemes that have been proposed in other types of 
self-timed systems [9,10].  

3. WRAPPER IMPLEMENTATION 
The wrapper circuit consists of 5 major sub-blocks: pre-
charge/eval signal generator (SBD_PC), worst-case matched delay 
(MDelay), pre-charge matched delay (MD_PC), asynchronous 
latch (SBD_latch), and completion signal generator (SBD_ACK). 
Except the SBD_latch, every block in the wrapper is built with 
either a generalized C-element (gC)[11] or domino logic. 

3.1 Pre-charge/Evaluation Signal (SBD_PC) 
SBD_PC generates the control signal to the Domino evaluation 
network to tell when to evaluate and when to pre-charge (Figure 
2). Our wrapper uses the incoming request signal to start the 
evaluation cycle, but then initiates pre-charge as soon as possible 
by looking at function completion and latch-completion rather 
than waiting for the falling handshake transition. The output of 
this block (PC) will be set to high as long as the request signal 
from the environment has been pulled up to ‘1’. This puts the 
domino function block into evaluation mode so that it can start to 
compute outputs through its evaluation network. Once the 
evaluation network’s result is latched, PC will be pulled down to 
‘0’ putting the domino function block into pre-charge mode.   

3.2 Delay Circuits (MDelay, MD_PC) 
There are two places in the wrapper that require delays: the 
matched delay for the worst-case evaluation time for the domino 
function block (Mdelay), and the matched delay to model the time 

it takes to pre-charge the domino function block (MD_PC). Both 
of these delays are asymmetric: they want to delay one edge (we’ll 
call this the triggering edge) but not the other (the reset edge). It is 
also desirable to use a circuit that provides a controllable and 
substantial delay in a small circuit area.  

One design for such a delay uses a tunable buffer circuit. This 
circuit, shown in Figure 3 uses transistors N2 and P2 as variable 
resistors. They must always be on to maintain correct operation of 
the controllable inverter, but by using a reference voltage they can 
provide a variable amount of current-limiting resistance. Using 
PSPICE with models for the TSMC 0.25um/2.5V CMOS 
technology we can delay the rising/falling edge from between 1 to 
3 FO4 delays using a single stage tunable buffer. However, deep-
sub-micron processes with sub-1V power supplies will make 
designing and predicting delays much more difficult. Future SBD 
circuits will have to address this delay issue.  

Another issue for the delay circuits in our wrapper is that they be 
asymmetric. In order to provide a delay for the triggering edge, 
but not for the reset edge, a fast-reset buffer can be used. Figure 4 
shows one circuit for a fast-reset buffer. This circuit will reset the 
buffer chain in parallel during the time when the REQ signal is 
low, thus providing for a much shorter delay on the reset edge 
through the buffer chain than for the triggering edge. For small 
delays this may not be an issue, but for longer delays a fast-reset 
buffer can make a significant difference for the non-delayed edge.  
The MDelay block (Figure 5) is used to postpone the rising edge 
of the request signal for the matched (worst-case) delay of the 
domino function block. However, the falling edge should 
propagate to its output (MD_ACK) without any additional delay. 
The “Worst-case Matched Delay” is implemented as a delay chain 
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Figure 1 Semi-Bundled Delay Structure 
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Figure 2: SBD_PC transistor-level implementation 
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Figure 3:  Tunable buffer 
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of the type described above. The MD_PC pre-charge delay is 
designed in a similar way 

3.3  Asynchronous Latch (SBD_latch) 
The SBD_latch block contains 2 sub-blocks: a positive edge 
triggered D flip-flop (PETDFF) and latch completion detection 
circuitry. This asynchronous latch is used only to generate a 
pipeline stage or at an SBD component boundary. It is not 
required for every SBD block.  The PETDFF is implemented as a 
standard TSPC latch.  
The completion detection technique for this flip flop is simply to 
monitor the values of input and output of the device. If the output 
(Dout) has the same value as the input (Din), we assume that the 
result is latched safely and the completion detection circuitry will 
be pulled high with quickly. Under such conditions there is no 
need to postpone the acknowledgement to account for the TSPC 
clock-to-latch propagation delay.  

3.4 Completion Signal (SBD_ACK) 
The SBD_ACK is the final stage of our SBD handshaking 
wrapper. Its output ACK provides two important functions in the 
four-phase handshake with the rest of the self-timed system: the 
rising edge of ACK tells when the evaluated result of the domino 
functional block is valid, and the falling edge indicates that a new 
request can be issued. The transistor-level implementation is 
shown in the Figure 6. 

4. DESIGN EXAMPLE 
We use an extensible self-timed adder design as an example of 
using the SBD wrapper circuit with domino function blocks. This 
adder is meant only to demonstrate the use of the wrapper on a 

measurable circuit, not to be compared with state of the art 
addition circuits.  

4.1 Top-level Block Diagram 
Figure 7 shows a 12-bit self-timed adder built from three-bit adder 
blocks (ADD3) and three-bit plus-1 blocks (INC3). The ADD3 
blocks compute a three-bit addition in a single domino gate. The 
INC3 blocks at the bottom of the figure use a chain of domino 
gates to generate the carry signal based on the results of the 
ADD3  blocks at the top.  In this block diagram we show a four-
stage design but the circuit is easily extended to make larger 
adders.  Aside from its use as an example of the SBD wrapper this 
is the main advantage of this adder architecture. Each of the sub-
blocks in Figure 7 is built using our SBD wrapper and a domino 
function block.  
Using this design structure we can chain as many stages (ADD3 + 
INC3) as needed to form a larger self-timed adder. Note that there 
is no dependence between ADD3 components. Thus, all ADD3 
components can compute simultaneously when the request signal 
arrives. The INC3 blocks generate a rippled carry output. The 
worst-case delay is thus one stage of ADD3 and the total delay of 
the INC3 chain. The delay of the INC3 chain varies according to 
the data. The collected latch-acknowledge signals (LACK) from 
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Figure 4:  Fast-reset buffer 
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Figure 5: MDelay transistor-level implementation 

s
P1

ACK

EREQ

s

N2

$G_DGND

s
P2 $G_DGND

s
P3

$G_DPWR

s
P4

PCd

LACK'
s

N1

 

Figure 6: SBD_ACK transistor-level implementation 
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Figure 7: 12-bit Self-Timed Adder Example 
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the INC3 blocks determine when the final carry has been 
computed.  

4.2  PSPICE Simulation 
 We simulated this 12-bit self-timed SBD adder in PSPICE using 
TSMC 0.25um 2.5V CMOS models.  Each ADD3 component has 
its own domino SBD wrapper and completes its task in 1465ps to 
1741ps (~ 17 FO4). This delay consists of the domino function 
evaluation delay, register (latch) delay, and handshaking 
overhead. The delay variation is small because the ADD3’s 
Domino logic core takes only 470ps to 680ps of calculation time 
(~5 FO4). The overhead due specifically to the wrapper circuit 
(that is, additional overhead not found in a standard domino 
version) is around 450-500ps, or around 5 FO4 delays in this 
technology.  High-performance microprocessors use more than 20 
FO4 delays between latches [8] indicating that our ADD3 
functional block is perhaps too small to be compared directly with 
realistic data path circuits. Larger domino circuits would suffer 
less overhead penalty from the SBD wrapper. However, it does 
demonstrate that dynamic domino circuits can be used in a 
straightforward way in self-timed designs.  
A purely static design for exactly the same circuit using a full P-
type pull-up stack and N-type pull-down stack with the same 
output latch and the same bundling delay margins simulates at 
1915ps. So, even with the overhead of the wrapper circuit and the 
relatively small size of the domino function block, the domino 
version runs about 10% faster than the static version. Larger 
differences would be expected for larger domino function blocks. 
We use a modified SBD wrapper for building the INC3 block. 
The critical input signal for an INC3 block is the carry out from 
the previous stage. Thus, we implement the carryout signal as a 
dual-rail domino circuit for easier completion detection. The other 
signals are still are implemented as single-rail. Using a dual-rail 
signal for the carryout allows faster INC3-chain completion by 
removing the output latch and by distributing the early–
completion detection circuits in the INC3 chain.  
Not surprisingly, the delay variation versus the wrapper overhead 
is much better for the INC3 chain than for a single ADD3 circuit. 
The domino function blocks in the INC3 circuits chain together 
directly with no latch overhead in the individual stages. The 12-
bit SBD INC component simulation evaluates between 860ps and 
1460ps. The worst-case only happens when all INC3 blocks need 
to wait for the carryout from the previous stage. If any 
intermediate carry out completes earlier, the worst-case carry 
chain will break and the 12-bit INC  also completes earlier. 
This extensible adder example demonstrates two ways to use the 
SBD wrapper with domino function blocks. You can use either an 
SBD wrapper with an output latch for each function block and 
achieve deep pipelining at the expense of extra overhead, or you 
can use the SBD wrapper for completion detection without the 
output latches and let the domino function blocks chain together 
as a larger circuit.  

5. CONCLUSIONS 
We have shown a simple wrapper circuit that can make high-
performance dynamic-logic function blocks usable in a self-timed 
system. The wrapper presents a standard self-timed req/ack 
protocol at its interface, and implements pre-charge/evaluate 
sequencing, variable-time completion detection, and possibly 
output latching for the dynamic function block inside the wrapper. 

The completion detection operates by either directly sensing the 
completion of the dynamic function block or by a matched delay. 
Because this has the potential to signal completion earlier than a 
purely bundled delay we call this approach Semi-Bundled Delay 
(SBD).  
An SBD wrapper is suitable for any dynamic logic family that 
include a pre-charge phase that sets the outputs to a known level 
and has monotonic output behavior. Specifically we have shown 
an example using wrapper circuits around dynamic domino 
function blocks. The wrapper circuits themselves are either 
generalized C-elements or domino circuits. For the simple ADD3 
circuit the overhead due to the wrapper itself is about 5 FO4 
delays. Including this overhead, the domino circuit is about 10% 
faster than a fully static version of the circuit. Larger differences 
can be expected for more complex domino function blocks.   
Of course, there are many other choices for implementing the 
wrapper itself. We have also designed and simulated DCVSL 
circuits for the wrapper, and are exploring domino function blocks 
that look more like finite state machines than just simple 
combinational functions.  
Semi-bundled wrapper circuits allow a designer to take advantage 
of high-speed dynamic data path circuits that can be used with any 
self-timed or asynchronous design style that relies on an explicit 
completion signal.  
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