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Abstract

Memory access consumes a significant amount of energy
in data transfer intensive applications. The selection of a
memory location from a CMOS memory cell array involves
driving row and column select lines. A switching event on a
row select line often consumes significantly more energy in
comparison to a switching event on a column select line.
In order to exploit this difference in energy consumption
of row and column select lines, we propose a novel data
layout method that aims to minimize row switching activ-
ity by assigning spatially and temporally local data items
to the same row. The problem of minimum row switching
data layout has been formulated as a multi-way mesh par-
titioning problem. The constraints imposed on the problem
formulation ensure that the complexity of the address gen-
erator required to implement the optimized data layout is
bounded and that the data layout optimization can be ap-
plied to all address generator synthesis methods. Our ex-
periments demonstrate that our method can significantly re-
duce row transition counts over row major data layout.

1. Introduction

Memory access consumes a significant amount of en-
ergy in data transfer intensive applications [11], such as
video and image processing. Dynamic power dissipation
is significant in CMOS circuits, and therefore, behavioural
level energy minimization efforts often attempt to minimize
signal transition counts, particularly on high capacitance
nodes [8].

In order to minimize switching activity caused by mem-
ory access, it is necessary to have some knowledge about
the access sequences. For many application-specific inte-
grated circuits (ASICs), the access sequences are usually
known a priori. ASICs may also contain data dependent ac-
cess sequences. However, because the application is known,
statistical information can be collected about the pattern of
access. Information about the access sequences enable the

application of energy optimizations to ASICs which would
not be applicable to general purpose systems.

CMOS memory cell arrays are usually organized into
rectangular blocks of memory cells. The selection of a
memory location involves driving row, column and, in large
memories, block select signals. Signal transitions on high
capacitance select lines such as the row and block select
lines consume more energy in comparison to those on col-
umn select lines [4].

In this paper, we present a mesh partitioning approach
to minimizing the energy consumption of memory access
through data layout that minimizes row switching. A multi-
way graph partitioning approach to this problem has been
recently proposed [5]. The graph partitioning problem for-
mulation does not impose a structure on the optimized data
layout. Therefore, it is general and achieves good results
over a broad spectrum of access patterns. However, due to
the lack of structure of the optimized data layout, multi-way
graph partitioning approach suffers from two drawbacks.
One drawback is that it does not limit the complexity of
the resulting address generator. The other is that graph par-
titioning approach cannot easily be used with address gen-
erator synthesis methods which require address equations
expressed in terms of application specific units (ASUs) [7]
such as adders, multipliers and multiplexors. Mesh parti-
tioning problem formulation reported here imposes addi-
tional constraints on the graph partitioning approach so that
the complexity of the address generator is limited and row
minimization optimization can more easily be applied to
ASU type address generators.

Memory hierarchies that exploit data reuse can be used
to minimize memory access energy [12]. Data layout opti-
mizations are a complementary memory access energy re-
duction technique that can be applied together with other
optimizations such as memory hierarchy. In this paper we
also examine the interaction of data layout methods with
simple memory hierarchies.

The novel contributions of this paper are: (1) formula-
tion of the minimum row switching data layout problem as
a mesh partitioning problem, (2) evaluation of the quality
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of the solution, and (3) study of the interaction of memory
hierarchy with data layout methods.

This paper is organized as follows. Section 2 presents
some of the previous work in the area of memory access
energy minimization and data layout. Section 3 formulates
the minimum row switching problem as a mesh partition-
ing problem. Section 4 describes our mesh partitioning data
layout method. Section 5 introduces the interaction of mem-
ory hierarchy with mesh partitioning data layout. Section 6
reports and discusses experimental results and Section 7
contains conclusions and indicates some future work.

2. Previous Work

The relevant previous work address the problem of re-
ducing memory access energy in ASICs at the behavioural
level. Research on data layout are also briefly discussed.

In-place mapping attempts to reduce required memory
size by sharing physical memory locations amongst vari-
ables whose lifetimes do not overlap [10]. Smaller mem-
ories consume less energy per access compared to larger
memories [2]. Therefore, memory size minimization tech-
niques such as in-place mapping usually reduce energy con-
sumption. Minimizing the number of memory accesses
through, for instance loop transformations [11], can also re-
sult in lower energy consumption.

Most modern memory architectures are based on mem-
ory hierarchy [2]. Memory hierarchies consist of several
layers of memories. The lower layers consume less energy
per access than higher layers. Although, extra transfer are
introduced to copy data from higher layers to lower layers,
if there is sufficient temporal locality, energy is saved due to
the decrease in the number of accesses to higher layers [12].

For a given number of memory accesses energy can be
further minimized by address assignment that attempts to
minimize signal transition counts, particularly high energy
transitions on off-chip address busses [8].

Multimedia applications such as image and video pro-
cessing often organize data variables into d-dimensional ar-
rays, which are usually accessed through nested loops. d-
dimensional data array variables can be laid out in mem-
ory in various ways. Row major and column major layouts
are two linear mappings which are commonly used. How-
ever, non-linear mappings such as tile based mappings are
shown to, for example, improve cache reuse [3]. Tile based
mapping has also been applied to ASICs to minimize high
capacitance off-chip memory address bus activity [8].

Graph based techniques, such as the graph clustering
data layout technique reported in [9] for minimizing cache
conflicts, are traditionally only applied to scalar variables.
In [5] a graph partitioning data layout technique has been
applied to array data variables to exploit the fact that dif-
ferent select lines in a memory cell array consume different

amounts of energy. However, as pointed out in Section 1,
the technique reported in [5] has some drawbacks.

Our work reported in this paper extends the work in [5],
so that the row switching minimization optimization pro-
posed in [5] can be applied to any address generator archi-
tecture and that the complexity of the address generator re-
quired to implement the optimized data layout is bounded.
We also report results of a study on the interaction of data
layout techniques with memory hierarchy.

3. Problem Definition

The problem of minimizing activity on the row select
lines can be thought of as a problem of clustering the ac-
cessed data items such that the number of transitions be-
tween the clusters is minimized. The cluster size is no
greater than the number of memory columns and the num-
ber of clusters is equal to the number of memory rows.
We now define mathematically the minimum row switching
data layout problem as a mesh partitioning problem where
each point of the mesh corresponds to an array data vari-
able, and a weighted edge between two points indicates the
number of transitions between a pair of points.

Given an undirected edge-weighted mesh G(V;E),
where vertex set V = fviji = 0;1; : : : ;n� 1g is the set of
vertices, E is the set of weighted edges and positive inte-
gers p,q,m, and n where p�q� jV j and m�n = q , find p
subsets V0;V1; : : : ;Vp�1 of V such that:

1. [p�1
i=0 Vi =V and Vi\Vj = /0 for i 6= j

2. jVij � q for i = 0;1; : : : ; p�1

3. Partitions (subsets) form an m� n rectangle of points
on the mesh surface.

4. The cut size, i.e., the sum of weights of edges crossing
between subsets, is minimized.

4. Mesh Partitioning Data Layout Method

4.1 Assumptions

Assumptions 1- 6 are necessary for the problem formu-
lation and its solution. It is important to note that Assump-
tions 7- 11 are made to simplify the experiments and presen-
tation of the paper and can be relaxed. These assumptions
hold throughout this paper unless stated otherwise.

1. A signal transition on a row select line consumes more
energy than a signal transition on a column select line.

2. Reducing switching activity on high capacitance sig-
nals such as row select lines reduces energy consump-
tion.



for(i=1;i<S;i++)
   for(j=1;j<S;j++) {
     pred = 2*a[i-1][j-1] + a[i-1][j] + a[i][j-1];
     a[i][j] = a[i][j] - pred; }

Figure 1. Code segment from “compress"
benchmark

3. Every individual data item has been mapped to a loca-
tion in a physical memory but is not bound to a physi-
cal memory address.

4. There is no preference when switching from one row
to another in terms of energy consumption.

5. Address generators have not yet been synthesized.

6. Memory cell arrays are rectangular. p and q represent
the number of rows and the number of columns respec-
tively. w represents the width of a memory word. p
and q are known and p� q gives the total number of
locations of that cell array. p� q�w gives the total
capacity of the cell array in bits.

7. Memory arrays have one read/write port.

8. The data access sequences are known.

9. Memory cells are accessed by activating row and col-
umn select lines. We ignore block select lines.

10. Each data array is assigned to a separate memory cell
array.

11. Data arrays are two dimensional.

4.2. Input

Input sequences contain symbolic addresses. A symbolic
address identifies a unique location within the memory cell
array but is not bound to any physical address. Symbolic
addresses also contain information about the array indices
of the data variables they represent. A sequence of these
symbolic addresses specify the access sequence (reads and
writes) to a single port of a memory cell array. The access
sequences can be extracted from an executable specification
, such as the one shown in Figure 1, or from a control/data
flow graph (CDFG) of the system.

4.3. Transition mesh

A d-dimensional data array can be described as an inte-
ger lattice of points in d-dimensional Euclidean space. Here
points of the lattice correspond to array data variables and

integer coordinates are array indices. An integer lattice is
often referred to as a mesh and so from here on we will refer
to it as such1. The input symbolic address sequence con-
tains information regarding transitions between symbolic
addresses. The mesh can be augmented with the transition
information by adding weighted edges between points. We
call this mesh which contains both the indices and the ac-
cess information of the array as the transition mesh for that
array. Figure 2(a) shows the transition mesh for the array
a[y][x] in the “compress” benchmark. The numbers on the
edges indicate the number of transitions between data vari-
ables.

4.4. Mesh partitioning

In mesh partitioning problem formulation the shape
and the size of the partitions is constant throughout the
mesh. One of the most regular ways of partitioning a
two-dimensional surface is to divide it up into rectangles.
Hence, the partitions are restricted to be of rectangular
shape. Each partition should fit in a memory row and there-
fore the size of the rectangle is fixed to q. So if q = 32, we
have 6 rectangular shapes to choose the one that produces
the minimal row transition count. If there are peripheral
rectangles which contain less than q mesh points, they are
laid out in row major or column major format. Note that
the number of search points is independent of the data array
size. The selection of the optimal rectangular shape is done
with exhaustive search, as the search space is very small
and increases very slowly with increasing number of mem-
ory columns.

For illustration purposes let us suppose that the array
a[y][x] is of size 4� 4 and is required to be mapped to a
memory with four columns (i.e., q = 4). The following
rectangular shapes are candidates: 1� 4, 2� 2 and 4� 1.
The three corresponding mesh partitionings are shown in
Figure 2 (b)-(d). Rectangle 1�4 produces a row transition
count (RTC) of 29 and rectangles 2� 2 and 4� 1 produce
RTCs of only 15. The rectangle 4� 1 would be chosen in
preference to the rectangle 2�2 as the former corresponds
to row major mapping and hence potentially simpler ad-
dress generation.

Once the optimal rectangle size has been chosen we still
do not have a mathematical layout function that maps data
variables from the array index space to the physical address
space. There are a number of ways to layout the data vari-
ables within the rectangles and the rectangles themselves.
As we aim to keep the layout function relatively simple we
restrict ourselves to row major and column major schemes
for data variables within the rectangles as well as for rectan-
gles themselves. This restriction produces four layout can-
didates. This type of layout has been variously referred to

1http://mathworld.wolfram.com/topics/DiscreteMathematics.html
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Figure 2. (a) Transition mesh for array a[y][x] in “compress" benchmark. Mesh partitions with a
rectangle size of (b) 1�4, (c) 4�1, and (d) 2�2.

as 4D [3] and tile based [8] in the literature.
When the rectangle size equals the number of columns,

as is the case here, the four tile based layout candidates all
produce the same number of row transitions. Therefore, the
data layout optimization needs not decide on the exact tile
based scheme. That decision can be left to address genera-
tor synthesis.

4.5. Output

The output of the method is a choice of four mathemati-
cal mapping functions from the data array index space to the
physical address space. Equation 1 defines one such map-
ping function and represents the case when rectangles are
mapped row major and elements within those rectangle are
mapped column major:

frc(y;x) = yK + xn� (K�1)(y mod n) (1)

Data arrays are of size K �K and rectangles are of size
m� n. Data array indices are represented by y and x. The
equation can be used as is shown for the special case when
m and n are integer multiples of K. When this is not the case
incomplete peripheral rectangles are row major (or column
major) mapped.

The address generator synthesis can select which one of
the four mapping functions to use. Address generator im-
plementation and optimization for 4D [3] or tile based map-
ping [8] has been reported in the literature.

5 Interaction of Data Layout with Memory
Hierarchy

The array a[y][x] in Figure 1 is accessed through a two
level nested loop structure. The access pattern and the data
reuse can be described in several ways. We will describe
the access pattern by defining a basic shape of access on

the index space. In the inner most loop of the “compress”
code segment, 5 accesses are made to a[y][x] and the basic
shape for these 5 accesses is a 2�2 square on the array in-
dex space. The basic shape moves horizontally to the right
by one unit for every iteration of the inner loop. The basic
shape moves down vertically by one for every iteration of
the outer loop. There is significant data reuse in this access
pattern when a[y][x] is traversed horizontally as well as ver-
tically. The temporal locality in the horizontal direction is
higher than in the vertical direction because the time dis-
tance between consecutive accesses to the same data vari-
ables is much shorter in the horizontal direction. Of the four
data variables accessed by each successive iteration of the
inner loop two have just been accessed in the previous iter-
ation. These two data variables can be kept in two registers
for use in the following iteration rather than to be fetched
again from the memory (The assumption is keeping them in
two registers consumes less energy than fetching them from
a memory cell array.).

The introduction of this simple memory hierarchy alters
the access sequence to the memory which stores the data
array a[y][x]. Figures 3 (b) and 3 (a) show the transition
meshes for a[y][x] access sequence with and without the
memory hierarchy respectively. The impact of this transfor-
mation of the transition graph/mesh, as a result of memory
hierarchy, on data layout schemes will become apparent in
Section 6.2.

6 Experimental Results

6.1 Mesh Partitioning Data Layout

We performed experiments on several memory access
sequences to evaluate our mesh partitioning data layout
method. The total number of row transitions caused by the
memory accesses was used as an energy consumption met-
ric. A row transition in a larger memory may consume more
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Figure 3. Transition meshes for the memory
containing the array a[y][x] in “compress" (a)
without (b) with memory hierarchy.

energy than a row transition in a smaller memory. However,
in our experiments row transition counts are not weighted to
take account of the memory size.

Memory access sequences used for our experiments
were obtained from the following examples: Compress,
Gauss-Seidel formula (GSR), Lowpass, Successive Over
Relaxation (SOR)[8] and two dimensional Convolution
(Conv), separable Discrete Cosine Transform (DCT) [1].
Some of the examples contain several data arrays, exhibit-
ing different access sequences. From such examples we
have manually selected the data array with the most number
of accesses for our experiments. For simplicity, two dimen-
sional data arrays in our examples are K�K square arrays.
We varied the data array dimension K from 10 to 1000 at in-
tervals of 10 (16 to 1000 at intervals of 8 for DCT) and stud-
ied the effects on the row transition count when the arrays
are mapped with different mapping schemes to memory cell
arrays with different numbers of columns.

Table 1 shows the average percentage reductions in row
switching achieved through mesh partitioning data layout
over row major and graph partitioning [5] layouts when
the data arrays are mapped to a memory with 32 columns
(q= 32). Average reductions of 19-74% are achievable over
row major mapping. The average reduction over graph par-
titioning data layout vary between -7% to 5%. The structure
of the solution imposed by the mesh partitioning data lay-
out works quite well on most of our examples which exhibit
rectangular basic shapes. SOR access pattern has a plus-
shaped basic shape, therefore graph partitioning data layout
performs better for this example.

6.2. Interaction of Data Layout with Memory Hier-
archy

We performed experiments on several memory access
sequences to investigate the impact of memory hierarchy
on several data layout methods. For each of the access
sequences, we manually introduced a simple register level
memory hierarchy layer between the computation units and

Avg. % reduc. Avg. % reduc.
Example over row major over graph part.

Compress 58.10 4.63
Conv 19.45 4.17
DCT 74.79 0.02
GSR 43.56 4.66
Lowpass 45.78 4.46
SOR 46.36 -7.01

Table 1. Average reductions in row transi-
tion count for mesh partitioning data layout
(q=32).

Avg. % reduc. in RTC
row major graph part. mesh part.

Example mh none mh none mh

Compress 3.1 56.3 79.0 58.1 74.9
Conv 8.3 15.9 82.0 19.4 77.0
DCT 0.0 74.8 74.8 74.8 74.8
SOR 0.0 59.9 67.0 46.4 46.4

Table 2. Reduction in row transition count
(RTC) over row major data layout and no mem-
ory hierarchy(q=32 and mh = with memory hi-
erarchy).

the memory, and compared the resulting RTCs to the origi-
nal RTCs.

The second column of Table 2 shows the average reduc-
tion in RTC as a result of the introduction of memory hi-
erarchy when arrays are row major mapped to memories
with 32 columns. The second column of Table 3 shows the
same information when memories containing the data have
34 columns. One can observe from these results that mem-
ory hierarchy alone can reduce RTC significantly depending
on the access pattern (e.g. DCT) and the memory configu-
ration (e.g. q=34) for row major data layout.

Columns 3 to 6 in Table 2 and Table 3 record the per-
centage reductions in RTC over row major layout and no
memory hierarchy, for graph partitioning and mesh parti-
tioning data layouts, in the presence and absence of memory
hierarchy. As a general rule transition graphs/meshes which
have low connectivity (few edges) and low total number of
transitions (low total edge weights) give low RTCs when
partitioned. Memory hierarchy usually removes edges from
the transition graph/mesh and thereby make the graph/mesh
more disjoint. A graph/mesh partitioning heuristic will usu-
ally find better (more disjoint) partitions on a graph/mesh
which is itself more disjoint.



Avg. % reduc. in RTC
row major graph part. mesh part.

Example mh none mh none mh

Compress 2.9 57.6 79.6 44.1 67.5
Conv 8.0 16.6 82.6 20.3 77.1
DCT 68.1 28.8 79.6 -3.0 4.2
SOR 0.0 51.4 67.9 26.0 29.8

Table 3. Same as Table 2 but for q=34 (mh =
with memory hierarchy).

The DCT access sequence shows no improvement in
RTC when memory hierarchy optimizations are applied
together with graph partitioning data layout when q=32.
However, when q=34 the improvement is as significant as
that for the “Conv” access sequence. DCT naturally has a
lowly connected graph. However, the introduction of the
memory hierarchy reduces the total number of transition by
a factor of about 8. Given a certain access pattern there will
be certain sizes of partitions for which it will be necessary
to cut edges with large weights. In these cases simply re-
ducing the total number of transitions can reduce RTC.

Mesh partitioning data layout shows similar behaviour
to graph partitioning data layout for DCT when q = 32 ,
“compress” and “Conv”. However they differ significantly
for DCT when q = 34 and SOR. Unlike, graph partitioning
data layout, mesh partitioning data layout has fixed bound-
ary vertices. Therefore, mesh partitioning data layout will
only benefit from memory hierarchy if there is a reduction
in the number of neighbours and transitions into and out of
these vertices.

7. Conclusion and Future Work

In this paper we have presented a new approach for en-
ergy efficient data layout through minimization of mem-
ory row switching. Row transition counts for many com-
monly found access sequences in multimedia applications
can be significantly reduced over row major mapping with
our method.

The mesh partitioning data layout method is directly
applicable ASU type address generator synthesis tech-
niques [7] as well as those that require an expanded address
sequence [6]. Energy consumption in the address genera-
tors was not considered in this work.

Furthermore, the method presented can be extended
to data dependent memory access sequences through the
use of statistical methods for construction of the transition
mesh. Our method can be easily extended to more complex
memory organizations [4] that use block select lines in ad-

dition to row and column select lines by first assigning data
variables to blocks and then to rows.

Our experimental results also show that memory hierar-
chies usually improve the effectiveness of both graph and
mesh partitioning data layout methods at minimizing row
transition counts over simple layouts such as row major.
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