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Abstract
This paper describes a design methodology for the estima-
tion of bus performance of a tuplespace for factory automa-
tion. The need of a tuplespace is motivated by the charac-
teristics of typical embedded architectures for factory au-
tomation.

We describe the features of a bus for embedded applica-
tions and the problem of estimating its performance, and
present a rapid prototyping design methodology developed
for a qualitative and quantitative estimation. The method-
ology is based on a mix of different modeling languages
such as Java, C++, SystemC and Network Simulator2
(NS2). Its application allows to estimate the expected per-
formance of the bus under design in relation to the devel-
oped tuplespace.

1 Introduction
Control applications for industrial automation traditionally
follows a hierarchical model, i.e., with slave devices or-
ganized around a master controller. Actuators and sensors,
for instance, are usually driven by control software running
on the master device. This inherently centralized mod-
els, however, lacks of flexibility: it typically requires re-
programming the master controller logic and the network
configuration when new devices must be added to the sys-
tem. Moreover, the master controller is a centralized failure
point so that special algorithms and recovery solutions have
to be implemented whenever a hierarchical model is used
for mission-critical application.

Nowadays, trends toward designing controls systems as
networks of “smart” devices have pushed towards a dis-
tributed approach, as opposed to the traditional master-
slaves architecture. Several are the reasons for this shift
of paradigm. Extensibility of a system is an essential fea-
ture: in complex control systems, it is commonplace to im-
plement new functionalities by adding new devices. Scal-
ability of performance is also a must: several instances of

the same device could be networked to achieve best perfor-
mance for a specific function. Finally, system redundancy
is often a requirement: for mission-critical applications we
may need to replicate some of the networked devices, and
need “smooth” algorithms to replace possible failure points
with their backups.

The use the tuplespace model [1] to connect devices in a
control system seems attractive but the available Java im-
plementations ([2], [3]) are not suitable for embedded net-
works made of low level/cost devices: most of them do
not support Java or they even do not rely on an operative
system endowed with a standard TCP/IP stack, making un-
feasible the adoption of well known frameworks.

In this work, we present a strategy for evaluating the in-
terconnection of heterogeneous devices and control appli-
cations using a tuplespace (“JavaSpaces-like”) application
middleware over a low cost high speed serial link used as
a substrate on which to internetwork. The tuplespace mid-
dleware provides a layer on which distributed applications
for control can be deployed, that includes: a discovery
mechanism for communicating entities, a common inter-
face schema language and repository, and an asynchronous
communication using a common data scheme (tuples).

The serial link (TpWIRE / 1-wire specification) provides
an ad-hoc channel for data communication suitable for
mid-bandwidth (up to 1Mbyte/s) interconnects in embed-
ded systems. TpWIRE has been used in the Exor Theseus
system ([4]) given its support to real time communications
and the required low cost to interconnect devices that are
neither “smart” nor powerful enough to implement other
standard protocols.

As an application of the proposed methodology, we have
evaluated the impact of the tuplespace communication
middleware by testing the communication between two Tp-
WIRE endpoints, with respect to some typical traffic pro-
files of a real-life environment.



2 Tuplespaces

The concepts of tuplespace was first developed as part of
the Linda System at Yale University in the 1980s ([5], [6]).
JavaSpaces ([2]), TSpaces ([3]) and Ruples ([7]) are all no-
table Java implementations of tuple spaces based on the
Linda concepts.

Tuplespaces are often described as globally shared, asso-
ciatively addressed memory space. The central concept of
a tuplespace is a set of agents communicating with other
agents by writing, reading and removing tuples (an ordered
set of typed values) in a universally visible repository (tu-
plespace). What makes the tuplespace model appealing
is that it replaces synchronous point to point communica-
tion with asynchronous (and anonymous) associatively ad-
dressed messaging, where the messages are kept in a per-
sistent message store. The basic element of a tuplespace
system is a tuple, which is simply a vector of typed values,
or fields. Tuples are associatively addressed via matching
with other tuples. A tuplespace is simply an unstructured
collection of tuples. Most tuplespace implementations pro-
vide both blocking and nonblocking versions of primitives
for writing, reading and removing a tuple from the space.
Moreover, primitives to support the “subscribe” (declare
the interest of an agent on some kind of tuples) and “notify”
(callback to subscriber) paradigm are usually provided.

2.1 Applicability to factory automation

The concept of tuplespaces has several interesting applica-
tions in the context of factory automation:

• Scalability of systems. A tuplespace is a very ro-
bust and reliable mechanism for parallel and dis-
tributed applications. Since the communication is
asynchronous and anonymous, a variable number of
agents can work together on a task. Applications fol-
lowing the “producer/consumer” pattern may partic-
ularly benefit from this model. For instance, let us
assume an heterogenous network where nodes with
different performance are mixed. If we identify as
“producers” a set of agents (e.g., low performance
nodes with no FPU support) putting in the tuplespace
a vector of data and requiring for their Fast Fourier
Transform computation (the required service) and as
“consumers” (e.g., high performance nodes with FPU
support) a set of agents able to easily handle these
requests, the overall system performance are clearly
proportional to the number of consumers. In gen-
eral, the system performance can be scaled to deploy
cost/effecting embedded solutions for factory automa-
tion.

• Support to system extensions. Tuplespaces usually
support a “service discovery” mechanism. Devices

exporting a service (“consumers” in the previous ex-
ample) do register themselves into the service discov-
ery subsystem. On joining the tuplespace, devices
that need to use a service (“producers” in the previ-
ous example) query the discovery subsystem to locate
the service and employ it. In this way, the system
can inherently support the dynamic addition/removal
of components (extensions) without requiring central-
ized control (and consequently re-programming or re-
configuring).

• Fault tolerant systems. Some applications need to
guarantee tolerance to the failure of some of their
components. As an example, let us consider an ac-
tuator controlling a device made redundant as in Fig-
ure 1. An algorithm for detecting the failure of an
actuator and getting the backup operating could move
along following steps:

1. At system startup, the control agent puts a tuple
in the space requiring an actuator agent to start.
It waits to start the control loop until the tuple is
removed from space.

2. At system startup, the various actuator agents
try to remove that tuple. Just one of them will
succeed1, and it will set its state to operating.
The others will set their states to backup.

3. The operating actuator starts to execute its pro-
gram semantics. On each tick, it also writes a tu-
ple into the space signaling its state (something
like: operating OK).

4. On each tick, the backup actuator tries to re-
move the state tuple written by its dual. If the
operation fails, the recovery procedure begins:
the backup actuator changes its state to operat-
ing and starts executing the actuator program se-
mantics.

The tuplespace paradigm offers the significant advantage
of an abstraction of the communication infrastructure. In
heterogenous environments such as factory automation ap-
pliances where most of the devices adopt proprietary proto-
cols and data format, programmers dealing with the design
of the agent(s) responsible for the control loop can focus on
handling tuples from/to the “controlled environment” (i.e.
sensors, actuators, etc), rather than facing directly the de-
tails of the underlying communication.

Indeed, the use of tuplespaces does not come for free:
the overhead of passing messages through the tuplespace
may dramatically impact the overall performance wherever
bandwidth is limited.

1In a tuplespace, the timestamp on each tuple determines a total order
relation.
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Figure 1. Redundant Actuators to Provide Backup in

Case of Failure.

This raises the issue of developing an estimation method-
ology that allows to estimate the behavior of a link and the
bandwidth required to support passing of latency-sensitive
events (as in the case of factory automation appliances)
through the tuplespace.

3 TpWire Architecture
This section describes the TpWIRE (Theseus Pro-
grammable Wires) bus and its potential scalability that
will be investigated with the proposed rapid prototyping
methodology.

3.1 Specification of 1-wire
A TpWIRE network is a daisy chain network with one
Master and one or more Slaves as shown in Figure 2.
The Master is responsible for initiating all communications
over the network. Slaves can communicate with the Mas-
ter only, but not between them. The Network requires one
single-ended signal for the interconnection between net-
work nodes (Master or Slaves) over short distances, while
in the case of long distances a different signal is required.

A communication cycle begins by sending a TX frame
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Figure 2. TpWIRE Network

from the Master towards all Slave nodes (Table 1). Only
the selected Slave executes the TX frame command, and
it replies by sending an RX frame to the Master. If any
Slave responds within an expected time period, or an error
occurs during the receive of TX or RX frames, the Mas-
ter resends the TX frame a predetermined number of times
before signaling an error. If a broadcast node is selected,

all Slaves execute TX frame command and none of them
replies. Each time a RX frame passes through the Slave (or
a Slave generates it), the interrupt bit in RX frame is set if
the Slave has a pending interrupt.

The TX frame consists of 16 bits; a start bit (always ’0’),
three command bits CMD[2:0], eight data bits DATA[7:0]
and four CRC bits CRC[3:0]. For write commands
DATA[7:0] contains a valid data value, while for read com-
mands it is ignored. CRC is calculated over CMD[2:0] and
DATA[7:0] using the x

4 + x + 1 polynomial.

0 CMD[2:0] DATA[7:0] CRC[3:0]

Table 1. TX frame format

Each Slave automatically resets itself if no valid TX frame
has been received within the Slave reset timeout period.
Reset timeout period is fixed to 2048 bit periods of the cur-
rently programmed communication speed. When activated,
reset stays active 33 bit periods.

A node ID identifies uniquely each node (Slave) in the net-
work. A network can have up to 127 nodes (node ID 0
to 126). The 128th node is the virtual, broadcast, node
(node ID 127). It is used to access all nodes simultane-
ously. Each node has two node addresses. The first node
address enables access to the memory and memory mapped
I/O register set. The second node address enables access to
the system register set: command, flags, DMA counter and
SPI.

The RX frame (Table 2 consists of 16 bits: start bit (al-
ways ’0’), interrupt bit INT, type bits TYPE[1:0], data bits
DATA[7:0] and CRC bits CRC[3:0]. INT bit is set if one or
more Slaves through which RX frame passed (including the
Slave that generated the RX frame) has pending interrupts.
DATA[7:0] hold valid data for response on ”Data register
read” and ”Flags/SPI register read” commands. DATA[7:0]
hold node ID and DATA[0] holds interrupt status (set if the
Slave has pending interrupts) for response to all other com-
mands. CRC is calculated over TYPE[1:0] and DATA[7:0]
using the x

4 + x + 1 polynomial.

0 INT TYPE[1:0] DATA[7:0] CRC[3:0]

Table 2. RX frame format

3.2 TpWIRE Scalability
The performance of the TpWIRE bus can be scaled with
respect to the application requirements by increasing the
number of lines from the 1-wire to a n-wire architecture.
These enhanced architectures could be used in two differ-
ent ways:

• One line is used to communicate with the Master,
while the other lines are used to parallel transmit data;



• Each line is used to implement one 1-wire bus, thus
having n parallel 1-wire transmissions.

The performance of these improved buses must be esti-
mated in relation to the network traffic produced by a tu-
plespace middleware. To this purpose, a rapid prototyping
methodology is required to perform this analysis avoiding
useless time-consuming implementations.

4 Rapid Prototyping Methodology
This section describes the rapid prototyping methodology
used for the evaluation of bus performance.

4.1 Tuplespace Infrastructure
Our implementation of the tuplespace middleware is based
on the JavaSpaces technology [2]. As for other space-
based technologies, JavaSpaces provides a mechanism for
sharing objects between Java-based network resources, and
it works as a virtual space (memory) accessible to both
providers and requesters of remote objects. This allows
the components of a distributed application to send and re-
ceive messages in the form of objects through the space.
Each space takes care of all the details of the communica-
tion, such as synchronization or persistence.

According to the JavaSpaces terminology, a JavaSpaces
server holds entries. Technically, an entry is a typed group
of objects, expressed as a class that implements the En-
try interface. The distributed programming environment
is composed of one or more clients that communicate with
the JavaSpaces server through the Java Remote Method In-
terface (RMI). Figure 3 shows the conceptual interaction
between a Java client and a JavaSpaces server.

We have realized an implementation of our target system in
Java for its rapid prototyping. The name of the space server
class is SpaceServer. The Java prototype has been im-
plemented naturally without using existing Java services:
in this realization the Space Server communicates with the
clients through Java RMI.
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Figure 3. JavaSpaces Client-Server Interaction.

4.2 Tuplespace in a Hardware Context
The basic Javaspaces semantics does also apply to our con-
text, where some of the participants of the distributed appli-
cations may be hosted by hardware devices. In particular,

our objective is to access a space server from client appli-
cations hosted on Theseus boards.

To achieve this, it is necessary in our case to translate the
prototype Java client into C++, to allow its execution on the
Theseus boards, which do not support a Java Virtual Ma-
chine. This issue poses the problem of how to interface the
Java Space Server with a C++ application. This is solved
as shown in Figure 4. A Java/socket wrapper is introduced
on the server side. Unix sockets are thus used to connect
the board with the host running the space server.
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Figure 4. Board-Space Server Interface.

Using sockets, communication between the client and
the SpaceServer relies on TCP-IP for information ex-
change and in particular, XML is used to represent data
entries. RMI is still used inside the server, this time to in-
terface the server with the Java/socket wrapper.

4.3 Network Infrastructure Integration

The use of sockets to connect a client to the space server
implies the use of TCP-IP as a protocol, and then the use
of the Ethernet as physical medium. This configuration has
several advantages, mainly because of its natural software
abstraction (i.e., UNIX sockets).

When connecting several clients with a server, however,
we have to consider, as in our target application, that each
client represents a board. In these cases, the connection
of several boards with the server through a TCP-like net-
work may not the best choice, for several reasons. First,
the cost of such a connection may be too high; in fact, it
would require the presence of active device (e.g., switches)
which may not be amortized in some low-cost applications.
Second, in some industrial applications (e.g., where some
of the devices mounting the boards are moving or hardly
accessible), it may not be feasible to setup a complete net-
work infrastructure.

For these reasons, the Theseus boards used in our im-
plementation support a more efficient type of connection
which is more suitable for low-bandwidth and low-cost ap-
plications than TCP-IP. This connection is realized through
a fully programmable multimode bus TpWIRE described in
the previous section. The boards come with the TpWIRE



default configuration consisting of a 1-wire serial bus that
allows to daisy chain other boards.

Unlike TCP-IP, however, that has a natural simulation sup-
port through the sockets API, the simulation of a TpWIRE
connection requires the development of this specific sim-
ulation support. Rather than writing a custom simulation
engine, we have used the Network Simulator 2 (NS-2) [9]
framework to simulate the TpWIRE connection between a
client and the space server.

NS-2 is a discrete event simulator that provides support for
the simulation of an IP-based protocol stack, in which a
number of network and data-link protocols are available.
NS-2 is part of the Virtual Inter Network Testbed (VINT)
collaborative research project aiming at generating a set of
network simulation tools to be used especially in the design
and deployment of new wide area Internet protocols.

The NS-2 architecture provides easy extension to the users.
Network configurations are specified in NS-2 via pro-
grammable composition, where configurations are speci-
fied through a script. To this purpose, NS-2 presents a
two-layer programming model. The simulator kernel is
implemented in C++; conversely, simulations are defined,
configured, and controlled by a NS-2 simulation program
written in a TCL-like scripting language. Thanks to this
approach it is possible to clearly separate the simulation
runs from the actual simulator, its design, maintenance, ex-
tensions and debugging.

Since NS-2 does not provide TpWIRE support, we have
implemented the TpWIRE protocol model into NS-2.
Technically, it has implemented by defining a new agent
object TpWIRE Agent; nodes on the bus are connected
through a link, using the TpWIRE bandwith and th relative
real-time specifications. Agents build TX and RX packets
(see Section 3) and put them on the link. The master slave
has also been implemented in TpWIRE agent.

Resorting to NS-2 rather than a custom C++ software
model of TpWIRE is justified by the many features offered
by NS-2, in particular, the possibility of generating various
traffic workloads that can be used to separately validate the
model before putting it on-field.

The use of NS-2 poses however the issue of the software in-
terface between the C++ client on the board, and the space
server. Figure 5 shows the resulting software architecture
of the client-server connection.

The TpWIRE bus has been implemented using two Sys-
temC [10] nodes, one for the client side and the other for
the server side, that communicate with NS-2 using standard
UNIX shared memory. The SC1 SystemC process commu-
nicates with the C++ client, executed on the Theseus board.
The communication is realized through an interface based
on the remote debugging features of gdb [11]. The use

of SystemC allows to realize and integrated cosimulation
scheme, where the HW (written in SystemC) is seamlessly
integrated with the instruction set simulator (gdb). Further
technical details can be found in [12].

On the space server side, the SC2 process communicates
with the space server using UNIX sockets as described in
Figure 4. Internally to the host running the space server,
the communication between the server and the Java/socket
wrapper is RMI-based as usual.
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Figure 5. Board-Space Server Interface.

5 Bus Performance Estimation
In this section we estimate the impact of the tuplespace
communication middleware at the “application” level, by
analyzing the communication between two TpWIRE end-
points, with respect to some typical traffic profiles. The
exploration of this “application” level is made possible by
the the proposed prototyping methodology; by itself, NS-
2 would allow to simulate the lower communication levels
only.

Before measuring the tuplespace performance, we have to
validate the NS-2-TpWIRE implementation. In order to
compare with the real TpWIRE computation, an exact mea-
surement is possible by using the NS-2 real-time scheduler.
Under this operating mode, NS allows to tie events execu-
tion of the simulation kernel to real time. The test has been
implemented by using the TpWIRE configuration, shown
in Figure 6, consisting in a node, named Slave1, that com-
municates with another node, Slave2. We plugged a Con-
stant Bit Rate (CBR) traffic generator on the Slave1 node
to send a 1 byte packet to the agent object that receives
the data on the Slave2 node. We then computed the time
between the first transmission of data by the CBR and the
time when the transmission is finished. The difference be-
tween the two times represents the exact number of clock
cycles used by the TpWIRE protocol to transmit the data
from Slave1 to the Slave2.
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Figure 6. NS-2 scheme for TpWIRE model validation.

Using the same setup, we have calculated the real TpWIRE
throughput, through the TpWIRE communication channel
implemented in the Theseus system. Notice that this sys-
tem ([13]) is currently provided only with the 1-wire im-
plementation of TpWIRE .

TpWIRE sec Num. Frame

TpICU/SCM20 2.9 10000
NS-2 8.6

TpICU/SCM20 28.9 100000
NS-2 86.0

TpICU/SCM20 287.8 1000000
NS-2 860.0

Table 3. Validation NS2-TpWIRE .

From these results we derived a “scaling factor” used to un-
derstand how close to reality is the NS-2-TpWIRE model
for timing-accurate measurements to be used in our co-
simulation environment.

C++ Client CBR

Slave2Slave1

Master

NS2 - TpWIRE

JavaSpave
Server

Receiver

Slave4Slave3

Figure 7. TpWIRE configuration.

After this first analysis we calculated the impact of tu-
plespace communication middleware on the TpWIRE bus,
when data are exchanged through the NS-2-TpWIRE
model. The case study, shown in Figure 7 includes a C++
client, attached on the Slave1, that communicates with the
JavaSpace Server on the Slave3 node, where a CBR at-
tached on the Slave2 node increases the traffic on the bus
by communicating with a receiver modelled on the Slave4
node. The traffic profiles applied to the tuplespace is repre-
sented by primitives for writing and removing entries from
the space server. The C++ client executes a write-entry op-
eration on the space; later on, a take operation is executed
by the C++ client, which removes the entry just written
from the space only if the entry lifetime is not out-of-date.

By increasing the traffic on the communication channel
through the increase of the CBR value, the take opera-
tion does not positively result (returning the entry from the
space), after a measured threshold of data traffic between
the TpWIRE nodes (see Table 4). A potential 2-wire im-
plementation of the TpWIRE can almost double the perfor-
mance of the implemented 1-wire bus.

CBR 1-wire 2-wire

0 B/s 140s 116s
0.3 B/s 151s 122s
1 B/s Out of Time 129s

Table 4. Estimation of the impact of tuplespace commu-

nication middleware on TpWIRE . Lease Time = 160s

In conclusion, the proposed rapid prototyping methodol-
ogy, based on a combination of Java/C++/NS-2, allows to
qualitatively and quantitatively estimate the performance
of a low cost embedded bus, such as TpWIRE bus, in
a complex tuplespace middleware. This estimation gave
enough information to plan the complete development of
the bus and the tuplespace.
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