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ABSTRACT
We present a new technique to examine the trade-off regions of a
circuit where its competing performances become “simultaneously
optimal”, i.e. Pareto optimal. It is based on circuit simulation, siz-
ing rules, which capture elementary topological and technological
constraints, and an advanced multicriteria optimization formulation
called normal-boundary intersection. We are able to efficiently cal-
culate a well-balanced discretization of a Pareto surface, identify
the active constraints, which prevent a further improvement, and
even rank these constraints in terms of stringency. Experimental
results demonstrate the efficacy and efficiency of the method and
its potential for topology selection and analog synthesis.

Categories and Subject Descriptors
B.8.2 [Performance and Reliability]: Performance Analysis and
Design Aids; B.7.2 [Integrated Circuits]: Design Aids—sim-
ulation; I.6.3 [Simulation and Modeling]: Applications; J.6
[Computer-Aided Engineering]: Computer-Aided Design

General Terms
Algorithms, Design, Performance

Keywords
analog circuits, Pareto optimality, normal-boundary intersection,
trade-off analysis, performance space exploration, topology selec-
tion

1. INTRODUCTION
Analog components play important roles in modern integrated

electronic systems. Signal conversion, clock generation, or data
acquisition are just a few examples. The design of digital circuits
takes great advantage of abstraction and therefore lends itself to au-
tomation. Analog components, in contrast, are heavily influenced
by nonlinear low-level physical effects, which has been a great ob-
stacle in their automated design. Therefore, in a system design, the
analog part is often a bottleneck, and improved development aids
are urgently needed.
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Analog design consists mainly of three steps: topology selection,
component sizing, and layout generation. In flat, as well as hier-
archical design, in a first step, circuit topologies have to be chosen
that are capable of satisfying given performance specifications. In a
second step, actual values have to be assigned to the circuit param-
eters, primarily the transistor widths and lengths. It is not before
this second step that the circuit performances such as DC gain of
an operational amplifier can be simulated. Yet, already in the first
step, a notion of the achievable circuit performances is necessary.
This paper aims at a closer integration of these two design steps.

In order to obtain a “meaningful” sizing, designers consider nu-
merous constraints, such as keeping transistors in saturation or
matching them. These requirements, which are usually not explic-
itly given, are called sizing rules. Only that fraction of the design
space, where all these rules are met, can be used for the optimiza-
tion of the circuit performances.

There is usually not a unique design that optimizes the per-
formances simultaneously. Instead, there is a trade-off situation,
where it is only possible to improve one performance at the cost of
another, which leads to the concept of Pareto optimality [1, 3]. In
the sizing step, this conflict is usually resolved by assigning weights
to the performances and combining them into a single optimization
objective. However, it is hard to anticipate how the weights affect
the selection of one particular solution. Therefore, knowledge of
the entire set of “equally optimal” points , i.e. of the Pareto optimal
front, would help to pick one distinct solution deliberately [8].

The calculation of trade-off curves has gained increased atten-
tion recently. The method presented in [4], which focuses on cir-
cuit sizing, relies on posynomial circuit models, which approximate
the circuit performances and are extremely fast to evaluate. There-
fore, a large number of sizings can easily be carried out in order
to find trade-off curves and the limiting sizing rules. In contrast,
the method of [7] is simulation-based but focuses on the numeric
modeling of the Pareto surfaces rather than on their efficient deter-
mination. The simulation-based evolutionary algorithm presented
in [2] results in high computational costs and cannot provide infor-
mation about the limiting sizing rules.

The present approaches have the drawbacks that they either suf-
fer from long simulation times and fail to classify the active sizing
rules or require approximate behavioral circuit models. Therefore,
in this paper, we suggest a technique that:
• works in a simulation-based environment for accuracy,

• keeps simulation costs low by a special optimization formulation
for well-directed searches in the performance space, and

• gains valuable design information from the limiting sizing rules.

The remainder of the paper is structured as follows: In Sec. 2,
we briefly summarize how sizing rules define the feasible parame-
ter space. Our multi-objective optimization technique is explained
in Sec. 3, whereupon in Sec. 4, we provide application examples.
Sec. 5 concludes this paper.
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2. FEASIBLE PARAMETER SPACE
Analog circuits are usually designed hierarchically: Individual

transistors form transistor pairs which constitute elementary build-
ing blocks such as current mirrors or differential pairs. These tran-
sistor pairs are combined again to obtain larger building blocks
such as cascode current mirrors. This combination of building
blocks is continued until the design is completed. The final circuit
has to satisfy all performance specifications, which are explicitly
given and concern the entire circuit.

Yet, there are additional requirements on the basic building
blocks, which can be interpreted as technological and topological
design specifications. For example, a current mirror does not work
properly unless its transistors operate in saturation. These require-
ments are usually not explicitly given but reflect design knowledge.
For design automation purposes, however, these specifications have
to be stated explicitly. This can be done by means of sizing rules,
which are frequently mentioned in literature [4, 6, 9].

A systematic way to automatically set up these rules for a given
circuit was presented in [6]: In a first step, the basic building blocks
of a circuit are identified hierarchically based on a flat schematic.
In a second step, generic sizing rules are instantiated and assigned
to the actual transistors. Three categories suffice to fully classify a
sizing rule:

1. Geometric / Electrical: Geometric sizing rules directly refer to
transistor geometries. Electrical rules need to be evaluated based
on circuit simulations.

2. Function / Robustness: Functional rules have to be met uncon-
ditionally in order to allow a building block to fulfill the desired
function. Robustness rules account for global and local varia-
tions in the manufacturing process and the operating conditions.

3. Inequality / Equality: Inequality sizing rules require that electri-
cal or geometric circuit quantities exceed or remain below cer-
tain limits. Equality rules exist only for geometric quantities.
Since they are given as explicit algebraic equations, they can be
used to reduce the dimension of the design space.

After the parameter space reduction on the basis of geometric
equality sizing rules, the remaining parameters have to satisfy a
number of inequalities, which are either explicitly given as alge-
braic expressions or require circuit simulation.

Beyond the sizing rules as described above, there are two more
categories of constraints that further cut down the feasible param-
eter space: First of all, there are lower and upper bounds on ev-
ery single geometric transistor parameter. The lower bounds are
given by the employed CMOS technology. The upper ones can be
chosen by the designer and make sure that no component becomes
excessively large. Since these bounds on the different parameters
are mutually independent, they define a hyperbox in the parameter
space, and are therefore called box constraints. They guarantee that
the feasible parameter space is a bounded region.

Furthermore, if a number of performances are to be optimized,
there are usually specifications on the remaining performances. Al-
though these upper and/or lower bounds obviously cannot be de-
rived from a topological analysis of a circuit, they have the same
appearance as electrical inequality sizing rules. Therefore, they can
be treated in the same way mathematically.

In summary, the allowed parameter values p have to satisfy the
sizing rules, the box constraints, and the performance specifica-
tions, which after elementary algebraic transformations can all be
expressed as a vector inequality constraint c(p) ≥ 0 1. Conse-
quently, the feasible parameter space P can be written as

P = {p | c(p) ≥ 0} . (1)

1In this paper, regular lower case letters denote scalars. Vectors are
written in bold lower case. Matrices are bold capitals.

A circuit sizing is considered feasible if and only if it satisfies (1).
Note that P is given by the topology and the technology. This space
defines the degrees of freedom for any performance optimization.
Consequently, an accurate description of P is crucial to a trustwor-
thy exploration of the performance space.

3. TRADE-OFF CALCULATION

3.1 Problem Formulation
Formally speaking, the circuit performances f are functions of

the designable circuit parameters p: f=f(p). This nonlinear map-
ping can be evaluated using circuit simulations. The discussion
of sizing rules showed that only a fraction of the entire parameter
space leads to technically meaningful sizing results. As depicted in
Fig. 1, the feasible parameter space P ⊂

� m has an image F ⊂
� n

in the performance space with

F = {f | f = f(p)∧p ∈ P} , P = {p | c(p) ≥ 0} . (2)

In most cases, there are more parameters than performances, i.e.
m > n. The boundary of F is denoted as ∂F .

Usually, the design goal is to simultaneously obtain values for
a number of circuit performances that can be considered optimal
in some sense, while, at the same time, sizing rules, performance
specifications, and box constraints have to be met. Such a multi-
objective or multicriteria optimization problem can be stated as

“optimize”
p

f(p) =




f1(p)
f2(p)

...
fn(p)


 s.t. c(p) ≥ 0 ; n ≥ 2 . (3)

It is rarely possible to find a set of parameters that optimizes all
performances at the same time. Instead, there is usually a trade-off
situation where it is only possible to improve one performance at
the cost of another. This leads to the concept of Pareto optimality
[1, 3, 8].

Without loss of generality, in the remainder of this paper, opti-
mization means minimization. In multi-objective optimization, a
vector a = [a1a2 . . .an]

T 2 is considered more optimal than a vector
b = [b1b2 . . .bn]

T if it dominates b:

a ≺ b :⇔ ∀
i∈{1,2,...,n}

(ai ≤ bi)∧ ∃
i∈{1,2,...,n}

(ai < bi) . (4)

A vector f∗ 3 is Pareto optimal within F if it is nondominated:

¬ ∃
f∈F

f ≺ f∗ . (5)

In Fig. 1 point f� is dominated, but all the points on the arc be-
tween f∗a and f∗b are nondominated. This portion of the boundary
∂F denoted as ∂F ≺ is called Pareto optimal front. This part of
F is especially interesting to a designer since it characterizes the
ultimate performance capability of a topology and the trade-offs
involved. The points f ∈ ∂F ≺ are also called efficient points. Our
goal is to compute ∂F ≺ efficiently.

f�P

∂F

f∗a
F

f(·) F ⊆
� nP ⊆

� m

∂F ≺ f∗b

Figure 1: Feasible performance space F with Pareto optimal
front ∂F ≺

2The superscript T identifies a transposed vector.
3Symbolic superscripts are used to mark special vectors.
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3.2 Common Solution Methods
In practical problems, it is normally not possible to obtain a de-

scription of the entire Pareto optimal front in closed form. Instead,
this region has to be approximated by a number of points. To cal-
culate them, the multi-objective optimization problem (3) is usu-
ally transformed into a single-objective optimization formulation,
which is then repeatedly solved.

3.2.1 Scalar Cost Function
One way to turn (3) into a single-objective optimization problem

is to combine all objectives into one by means of a scalar cost func-
tion s :

� n 7→
�

. In the simplest and most common implementation
of this idea s is a weighted sum:

min
p

s(f(p)) = wT · f(p) s.t. c(p) ≥ 0 ;

w = [w1w2 . . .wn]
T

, ∀
i∈{1,2,...,n}

wi > 0 . (6)

This approach is illustrated in Fig. 2, where two contour lines of
s(f) are shown. The solution f∗ is where such a line is tangential
to ∂F ≺. The orientation of the contour lines is determined by the
weight vector w. It can be shown that, for a convex Pareto optimal
front, every efficient point is the solution of a problem according to
(6) with a proper weight vector w.

∂F

fb

fa

f∗

s(f) = const.

w
.

∂F ≺

Figure 2: Weighted sum: efficient point f∗ according to (6)

Yet, the weighted sum method has two major drawbacks. As
shown in the left part of Fig. 3, an even distribution of the weight
vector w does not yield evenly spread Pareto points. Instead, they
cluster in regions with strong curvature, which are typical of ill-
conditioned technical problems. Additionally, the method is not
able to detect all points on nonconvex Pareto fronts. In the right
part of Fig. 3, the points on the arc between f3 and f2 would not
be obtainable using the weighted sum method. Other approaches
employing a scalar cost function basically have the same problems.

fb

fa

fb

fa

f3

f2
w

w

Figure 3: Weighted sum drawbacks: clustering and nonde-
tectable efficient points in nonconvex regions

3.2.2 Objectives as Constraints
A different method to obtain a scalar optimization problem is to

turn all objectives but one into constraints [7]:

min
p

f j(p) s.t. ∀
i∈{1,2,...,n}\{ j}

fi ≤ fi,max ∧ c(p) ≥ 0 ;

j ∈ {1,2, . . . ,n} . (7)

Here, the optimization is controlled by varying the maximum val-
ues of the n–1 performance constraints fi,max. In contrast to the
weighted sum method, this approach also yields the efficient points
in nonconvex parts of the Pareto optimal front as shown in Fig. 4,
left. In fact, the constraint method does not yield any dominated
points. In Fig. 4, right, an optimization with fi,max3 as bound would
yield f3. Therefore, the arc between f3 and f2 would result in a
gap in the solution curve. Although in the mathematical sense this
is a merit of the constraint method, a designer might be interested
also in these non-Pareto parts of ∂F .

fifi,max3fi fi,max2fi,max1

f j f j

f3
f2

Figure 4: Constraint method detects efficient points in noncon-
vex regions and leaves out non-efficient parts

In contrast to the weighted sum formulation, which yields solu-
tions for any weight vector with non-negative entries, the constraint
method does not lead to solutions if the specified bounds are infea-
sible as shown with fi,max2 in Fig. 4, right. On the other hand,
different bounds may lead to the same Pareto point.

While the constraint method overcomes the limitation regard-
ing nonconvex Pareto curves, it still does not generate evenly dis-
tributed points on the Pareto front. Therefore, we introduce the
normal-boundary intersection approach [1] to the area of circuit de-
sign. This technique goes even further than the constraint method
in that it transforms all objectives into constraints.

3.3 Normal-Boundary Intersection

3.3.1 General Idea

∂F

H

f∗a

n

fa

fb

F ·w

f∗b

Figure 5: Normal-boundary intersection

The normal-boundary intersection method (NBI) relies on four
corner stones as illustrated in Fig. 5:
1. individual minima: f∗i

There are special points f∗i in a Pareto front where the individ-
ual performances fi show their global minima. These points
are boundary points of the Pareto front and are called individ-
ual minima. It has been pointed out in the previous section that
caution has to be taken not to initiate searches in regions where
no efficient points can be found. Therefore, in a first step, ex-
treme points of the Pareto front are sought. If no two perfor-
mances can be minimized at the same time, there is one unique
individual minimum for each of the n performances. Beyond
their algorithmic importance, the individual minima are of great
interest to a designer.

2. convex hull of individual minima: H
The basic idea behind NBI is that there are Pareto optimal points
“underneath” the convex hull H of the individual minima. Ge-
ometrically, H is a polyhedron with the individual minima as
its corner points. It is (n–1)-dimensional if n individual minima
exist.
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3. normal vector to convex hull: n
A search on a line perpendicular to H towards the origin yields
Pareto optimal points if the respective portion of ∂F is convex.
If the searches start from points evenly spaced within H and run
in the direction of a vector n normal to H , the solution points
on the efficient front are also well-balanced. Note that it is not
even necessary for n to be exactly orthogonal to H . The only
requirement on n is that it contains significant negative entries
for every performance fi.

4. NBI optimization problem formulation
A suitable optimization formulation captures the geometric de-
liberations from above mathematically. The NBI optimization
problem can be solved using nonlinear optimization.

3.3.2 Algorithmic Details
In this section, the four NBI main ideas from above are elabo-

rated mathematically.
1. individual minima: f∗i

The individual minima f∗i can be determined using a conven-
tional single-objective optimization formulation in fi:

p∗i = argmin
p

fi(p) s.t. c(p) ≥ 0 ;

f = [ f1 f2 . . . fi . . . fn]
T
, f∗i = f(p∗i) . (8)

The argmin operation yields the argument leading to the mini-
mum objective value. Let

fi,min = f ∗i
i (9)

denote the optimal value of performance fi as obtained from (8).
Analogously, fi,max could be defined as the upper bound of per-
formance fi within ∂F ≺. Since the exact knowledge of these
bounds is of minor interest, it is sufficient to estimate them by the
largest objective values occurring in the set of individual minima
{f∗1, f∗2, . . . , f∗n}:

fi,m̃ax = max( f ∗1
i , f ∗2

i , . . . , f ∗n
i ) , i ∈ {1,2, . . . ,n} . (10)

Adequate normalization of the objective values is crucial to any
numeric optimization. We use normalized performance values
according to (9), (10) and

f̂i =
( fi − fi,min)

( fi,m̃ax − fi,min)
, i ∈ {1,2, . . . ,n} . (11)

This normalization maps the performance values to a range
[0,u]. Here, u = 1 if (10) yields the true maximum values.

2. convex hull of individual minima: H
If the normalized individual minima are combined in a matrix

F =
[
f̂∗1 f̂∗2

. . . f̂∗n
]

, (12)

then their convex hull can be written as

H = F ·w , w = [w1w2 . . .wn]
T

,

wi ≥ 0 , ∑
i

wi = 1 , i ∈ {1,2, . . . ,n} . (13)

Note that the diagonal elements of F are all zeros due to the
normalization (11).

3. normal vector to convex hull: n
The search along a family of normal vectors n offers the benefit
of well-balanced solution points. This trait is only marginally
impaired if the search direction is not exactly normal to H .
Therefore, the following quasi-normal vector ñ, which is very
easy to calculate, is sufficient:

ñ = −F ·1 , 1 = [11 . . .1]T . (14)

This is illustrated in Fig. 6. The dotted arrows show the negative
vector sum of the individual minima f∗a and f∗b which yields
vector ñ. It is evident that a search along this quasi-normal di-
rection also yields good results.

fa

fb

(−1) · f∗a

(−1) · f∗b

f∗b

f∗a
ñF ·w

H

Figure 6: NBI with quasi-normal vector ñ (not normalized)

4. NBI optimization problem formulation
Finally, the following NBI optimization formulation combines
all components described above:

[
p∗

t∗

]
= argmax

[ p
t ]

t s.t. F ·w+ t · ñ = f̂(p) ∧ c(p) ≥ 0 ;

wi ≥ 0 , ∑
i

wi = 1 , i ∈ {1,2, . . . ,n} ;

f∗ = f(p∗) . (15)

For a given vector w, the solution to this problem is a unique
Pareto optimal point f∗. Note that the objective function just
consists of a newly introduced parameter t. The geometric idea
behind NBI is coded in a vector equality constraint: The term
F ·w ∈ H defines the base point of the quasi-normal vector ñ.
Therefore, the left-hand side of the equality constraint describes
all points along the quasi-normal. The parameter t is a measure
of the distance from H . Since c(p)≥ 0 ensures the feasibility of
the parameter vectors, f̂(p)∈ F is a feasible performance vector
according to (2). This optimization formulation can be seen as
a line search in the performance space: The goal is to find a
normalized feasible performance vector that has the maximum
distance from H .
For an even spread of k efficient points, the components of w can
be chosen according to

wi =
ji
k

; k ∈ � +
,

ji ∈

{
{0,1, . . . ,k · (1−∑i−1

l=1 wl)} , 1 ≤ i < n
{k · (1−∑i−1

l=1 wl)} , i = n
. (16)

Prior to practical implementations, the conceptual parameter t
can be eliminated from the problem (15) algebraically. For the
two-dimensional case, (15) can be simplified to

min
p

f̂1 s.t. f̂1 − f̂2 +2w−1 = 0 ∧ c(p) ≤ 0 ;

0 < w < 1 . (17)

Owing to the normalization given in (11), vector ñ from (14)
turns out exactly normal in this case: ñ = [−1−1]T , see Fig. 7.

.

f1

1

0

f2

n

1
Figure 7: Normalized NBI in 2 dimensions

This figure also shows that NBI can trace mildly nonconvex
boundaries as well. In contrast to path following methods, NBI
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is applicable to higher dimensions as well. Additionally, the
pre-image of the efficient front, i.e. the set of points which are
mapped onto ∂F ≺, does not have to be continuous.

3.3.3 Practical Solution via SQP
To operationally solve the NBI problem, we use a state-of-the-art

SQP algorithm in combination with a SPICE-like circuit simulator.
For every sample point on ∂F ≺, one optimization run has to

be carried out. Often, a new solution vector can be found in the
neighborhood of the previous solution. Therefore, we reuse the
approximation of the Hessian matrix and the solution vector found
in one optimization run to jump-start the SQP algorithm for the the
subsequent optimization.

For a shorter execution time, our approach can be parallelized:
In the first step, the individual minima can be calculated in parallel
according to (8). In the second step, the remaining efficient points
are calculated using (15), which can be done in parallel. In order
to retain the jump start feature, however, it might be preferable to
proceed from the individual minima towards the center of H .

We are aware of the problem that, like any gradient-based tech-
nique, SQP can get trapped in local optima. This might yield solu-
tion points which are mistakenly classified as Pareto optimal. How-
ever, it was observed that circuit performances are usually well-
natured as soon as all sizing rules are fulfilled [2, 6].

While evolutionary approaches [2] only yield solution points
more or less close to the Pareto front, a deterministic search ad-
vances to the actual border of P . The advantage is two-fold: First of
all, the solution points are really located on the boundary of P . Ad-
ditionally, the SQP algorithm identifies the entire set of active, i.e.
performance-limiting sizing constraints, and can even rank them in
terms of stringency as explained below.

Since the vector equality constraint of the NBI problem (15) does
not correspond to any sizing rule, it can be neglected in this con-
text. For a total number of r inequality constraints, the Lagrangian
function is

L(p,λλλ) = t − ∑
j∈{1,2,...,r}

λ j c j(p) . (18)

In a solution point, some of the constraints are active, i.e. c j(p) = 0.
This set of active constraints reveals “design bottlenecks” because
the circuit performances cannot further be improved without violat-
ing the corresponding sizing rules, box constraints, or performance
specifications.

By convention, λ j 6= 0 only for the active constraints. If the right-
hand sides of the active constraints are disturbed, i.e. c j(p) = ε j,
then the optimum value t∗ of the objective changes accordingly. It
is well-known [5] that the Lagrange multipliers can be interpreted
as the sensitivities of the optimum objective values with respect to
variations of the active constraints:

dt∗

dε j
= λ j . (19)

From (15) it can be derived that

df̂∗ = ñdt . (20)

Substitution and denormalization (cf. (11)) yield the sensitivities
of the circuit performances

d f ∗i
dε j

= ( fi,m̃ax − fi,min) · ñi ·λ j . (21)

These sensitivities are of great importance to a designer because
they are a measure of how stringent the active constraints are in a
certain Pareto point.

4. APPLICATIONS AND RESULTS

4.1 Performance Space Exploration

N7 N8

N12N6

Figure 8: Folded cascode operational amplifier
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Figure 9: Pareto curve and validation data of folded cascode

As an example, the folded cascode architecture given in Fig. 8
was analyzed using the NBI method based on a 0.65 µm process.
The Pareto optimal front of the two performances DC gain (A0) and
phase margin (PHM) is depicted in Fig. 9. The amplifier is subject
to 204 inequality sizing rules, and, in this example, the remaining
performances are unconstrained. Since the goal is to maximize both
performances, each of them has to be multiplied by –1 in order
to obtain a minimization problem according to (8)–(15). In this
sense, points 1 and 5 are the individual minima of DC gain and
phase margin, respectively (cf. (8)). Three NBI runs are performed
according to (15) in order to obtain points 2 to 4. Interpolation
yields an approximation of the entire Pareto front. The result was
validated by extensive simulation runs, as indicated by the gray
dots.

It is evident that this operational amplifier cannot achieve a DC
gain substantially exceeding 100 dB. This maximum gain leads to
a phase margin of roughly 62◦. The trade-off curve shows that
“the last few dBs” come at the price of significantly lowering the
phase margin. In the mathematical sense, all efficient points are
equally optimal. Yet, a designer might choose point 3 as “best”
point because it combines a “relatively high” gain with a “relatively
high” gain margin. This point, where the efficient front has the
strongest curvature, is called the “knee” of the Pareto curve.

4.2 Examination of Limiting Sizing Rules
In addition to the ultimate performance capabilities of a circuit

topology, our approach reveals the obstacles of a further improve-
ment. In the example at hand, a number of 14 sizing rules turn out
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Pareto points
1 2 3 4 5

lowerBound w(N7,N8) • • •
minimumVds(N6) • •
minimumVgs(N12) •

si
zi

ng
ru

le

...
...

Table 1: Active sizing rules
to have a limiting effect on the performances. Tab. 1 focuses on
three of them. The spots indicate where the different sizing rules
are active. It can be seen that the phase margin is limited by the
minimum width of the transistors N7 and N8 (points 1–3). The DC
gain, on the other hand, is restricted among others by the minimum
drain-source voltage of N6 (points 4,5). The associated sizing rule
is meant to ensure saturation and is given by

vds − (vgs −Vth) ≥Vsat,min . (22)

In this formula, vds denotes the drain-source voltage, vgs the gate-
source voltage and Vth the threshold voltage. The safety margin
Vsat,min is chosen by the designer. According to Tab. 1, lowering
this margin would result in a higher DC gain. An analysis of the
respective Lagrange multiplier at point 5 yields a sensitivity of

dA0
dVsat,min

= −19
dB
V

. (23)

In this example, we chose Vsat,min = 0.1V. According to the linear
estimation, giving up this margin entirely would only yield a gain
improvement of about 2 dB. Therefore, it might be preferable to
ensure saturation of N6 by a topological modification.

In this way, valuable design information can be gained by exam-
ining the set of active design rules and the associated sensitivities.

4.3 Topology Selection
In applications, where a certain performance trade-off (e.g. speed

vs. power or amplification vs. phase margin) is critical, and spec-
ifications are given for the remaining performances, Pareto curves
are a valuable tool for topology selection.
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Figure 10: topology comparison

Fig. 10 compares performances of the folded cascode amplifier
at hand and a Miller compensated opamp. Although the trade-offs
are similar qualitatively, the Miller amplifier turns out superior in
terms of DC gain and phase margin.

4.4 Computational Effort
amplifier runtime [min:sec] # simulations

folded cascode 10:29 962
Miller 13:12 1019

Table 2: Computational effort
Tab. 2 summarizes the computational effort it took to calculate

the above two Pareto curves on a cluster of Pentium III machines.

The Pareto points were calculated sequentially, and the gradients
for the SQP algorithm were calculated in parallel using finite dif-
ferences. While [2] reports simulation times of several hours, our
approach yields the requested Pareto curves within minutes, which
makes our method applicable to practical circuit design and to
topology selection in analog synthesis. Our technique is well-suited
for cell-level design using circuit simulation and for system-level
design using adequate performance models.

5. CONCLUSIONS
In this paper, we describe a new simulation-based approach to

explore the Pareto optimal regions of a circuit performance space.
While sizing rules ensure a technically meaningful circuit sizing, a
line search in the performance space yields the desired trade-off
points. Our optimization formulation overcomes several limita-
tions of alternative approaches and enables a good approximation
of Pareto optimal regions with a low number of sample points.

With two operational amplifiers as examples we demonstrated
how our method can be used to explore the ultimate performance
capabilities of a given circuit topology at full transistor-level accu-
racy. The visualization of the results helps to examine the trade-offs
between competing performances and to compare different topolo-
gies. Owing to a gradient-based optimization algorithm it is now
possible in a simulation-based environment to identify the limiting
sizing rules and quantify their stringency.
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