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ABSTRACT 

This paper presents an analytical framework for the 
implementation of digital infinite impulse response filters in 
fixed-point hardware on field programmable gate arrays.  This 
analysis is necessary because FPGAs, unlike fixed register size 
digital signal processors, allow custom bit widths.  Within the 
framework, the designer determines the number of bits 
necessary for representing the constant coefficients and the 
internal signals in the filter.  The coefficient bit widths are 
determined by accounting for the sensitivity of the filter’s pole 
and zero locations with respect to the coefficient perturbations.  
The internal signal bit widths are determined by calculating 
theoretical bounds on the ranges of the signals, and on the 
errors introduced by truncation in the fixed-point hardware.  
The bounds tell how many bits are required at any point in the 
computation in order to avoid overflow and guarantee a 
prescribed degree of accuracy in the filter output.  The bounds 
form the basis for a methodology for the fixed-point digital 
filter implementation.  The methodology is applied to the 
implementation of a second-order filter used as a compensator 
in a magnetic bearing control system. 

Categories and Subject Descriptors 
B.5.2 [Register-Transfer Level Implementation]: Design 
Aids – automatic synthesis.  

General Terms 
Design, Experimentation.  

Keywords 
Finite word length effects, infinite impulse response filter, 
design methodology, field programmable gate array. 

1 INTRODUCTION 

Finite word-length effects are often a critical issue in the 
implementation of digital signal processing algorithms in finite 
precision hardware.  This is particularly true for infinite 
impulse response (IIR) implementations with a high sampling 
rate, as the computational accuracy becomes more critical. 

Field programmable gate arrays (FPGAs) are an ideal platform 
for implementation of IIR filters; using fixed-point structures 
and parallel computations, they provide a computational speed 
as much as two orders of magnitude greater than that possible 
with digital signal processors, and still offer the ability to 
reprogram [7].  With an FPGA, the designer can use a separate 
fixed-point format for each individual signal in a system; in 
contrast, on a digital signal processor, the register lengths are 
fixed, so the designer must work with a single fixed-point 
format.  The ability to choose custom signal bit widths allows 
flexibility in overcoming numerical difficulties caused by 
finite word-length effects. 

The design freedom inherent in FPGA implementation 
necessitates the use of a systematic algorithm for choosing 
coefficient and signal bit widths.  This work outlines a 
practical methodology for choosing bit widths in IIR filters to 
guarantee a desired level of precision in the filter output.  The 
coefficient precisions are chosen so as to limit perturbations in 
the transfer function poles and zeros.  The signal bit widths are 
chosen both to accommodate the maximum signal amplitudes 
and to limit the maximum output error resulting from 
quantization.  By the judicious use of variable bit widths, the 
methodology produces a high-quality implementation with less 
hardware than would be possible using a single fixed-point 
format for all the signals in the system. 

Some past related work has focused on limit cycles and 
overflow, and their relationship to the bit widths in finite 
precision digital filters.  Bounds on limit cycle amplitudes are 
derived in [5] and [2], giving guidance for the selection of the 
bit widths in fixed-point and floating-point filter 
implementations, respectively.  It is shown in [6] that, if 
overflow does not cause instability for a theoretical infinite-
precision system, then the quantization bounds of the 
computed signals can be chosen small enough that the 
overflow will likewise not cause instability for the finite-
precision implementation.  In contrast, the methodology 
presented in this paper addresses the issues of both overflow 
and limit cycle amplitude by the use of two different types of 
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Figure 1. System simulation diagram for a direct-form realization of a second-order system. 
Truncation errors are represented as the fictitious inputs e0 and e1. 
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There are a number of possibilities for organizing the 
computations necessary to implement the discrete-time system.  
This paper focuses on the direct-form realization shown in 
Figure 1.  This form clearly separates the hardware into a 
section for the zeros, on the left in the figure, and a section for 
the poles, on the right.  It requires more registers, but fewer 
adders, than standard canonical realizations do.  Figure 1 
includes error “inputs” e0 and e1 to facilitate signal error bound 
computations in Section 4.  These bounds determine the 
necessary bit widths for representing the filter coefficients and 
the stored variables.  Similar bounds could be calculated for 
other realizations of the same filter. This would allow the 
comparison of the amount of hardware required for the various 
realizations to maintain a given level of filter performance.  
Such a comparative analysis is left for future consideration. 

3 COEFFICIENT REPRESENTATION 

In a fixed-point implementation, each controller coefficient a 
through e must be given a finite-precision representation.  For 
each coefficient, both the number of integer bits and the 
number of fraction bits must be chosen.  Choosing the number 
of integer bits is straightforward: a coefficient c requires 
  1log2 +c  bits to the left of the binary point.  Choosing the 
number of fraction bits requires more care.  In general, the 
coefficients must be approximated to fit in a finite-length 
register.  The approximation can be interpreted as a 
perturbation of the coefficient from its ideal infinite precision 
value.  The coefficients (3) place the poles of G(z) at z = 
{0.9683, 0.9997}, and the zeros at z = {0.9981, 0.9999}. The 
poles and zeros of G(z) are crowded together near z=1, as is 
typical for discrete-time filters with short sampling periods.  
This makes the discrete-time calculations particularly sensitive 
to numerical errors.  The truncation of the filter coefficients 
may even move a pole outside the unit circle, and therefore 
into the instability region.  A careful analysis is required to 
ensure adequate precision of the coefficients.  

When the denominator coefficients of the second-order filter 
are perturbed by d∆  and e∆ , respectively, the poles of the 
transfer function will also be perturbed by an amount [8] 
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where p1 and p2 denote the two poles.  A similar relation holds 
for the perturbations of the zeros of the transfer function.  The 
positions of the poles and zeros relative to the unit circle are 
critical to the performance of the filter; therefore, we require  

 ε<
−
∆

i

i
p

p
1

, (5) 

where ε is a prescribed maximum allowable percent change in 
pole location relative to the unit circle.  Using equation (4), a 
conservative sufficient condition for (5) is  

 121 ppped i −−<∆+∆ ε ,      i = 1,2. (6) 

If d and e have the same number of fraction bits, then ∆d = ∆e, 
and (6) will hold if the number of fraction bits is given by    

 ( )  11log 122 +−−−= pppf iε ,  i = 1,2. (7) 

As an example, to guarantee ε = 10% for both poles, our 
compensator G(z) requires 21 bits of fraction for coefficients d 
and e.  Altogether (including integer bits), d and e would 
require 23 and 22 bits, respectively. 

The above calculations are based on sufficient conditions (6), 
and therefore may yield conservative results.  For this 
example, the condition (5) with ε = 10% is actually achieved 
using  21 bits for d and 18 bits for e.  Similarly, a tolerance of 
ε = 10% for the zeros is achieved with bit widths of 25 bits, 26 
bits, and 26 bits for coefficients a, b, and c, respectively.  
These are the coefficient bit widths that will be used in the 
sample FPGA-based filter implementation presented in the 
results section.  

Given that the poles and zeros of the implemented system are 
sufficiently close to those of the infinite-precision system, we 
will now take the truncated coefficient values as the nominal 
ones.  The range and the necessary precision of the calculated 
variables in the filter can be analyzed using the truncated 
values of the filter coefficients. 

4 CALCULATED VARIABLE 
REPRESENTATION 

For our purposes, a system consists of additions and 
multiplications that produce calculated variables, and registers 
that hold delayed versions of those variables. The next 
question in the fixed-point filter implementation is what fixed-
point format to use for each calculated variable and register 
within the system.  Here, we explicitly consider only those 
calculated variables that are the results of additions.  Once the 
formats of the addition results are chosen, the formats for 
multipliers and registers can be derived.  

Two types of bounds are used to determine appropriate 
representations for calculated variables.  The first type gives 
the range of a calculated variable; this determines the 
maximum amplitude of the variable, and thus the number of 
integer bits needed to avoid overflow.  The second type of 
bound relates truncation errors in the calculated variables to 
errors in the filter output.  This type of bound tells how many 
fraction bits are required for calculated variables to ensure a 

desired precision in the filter output.  The two types of bounds 
together determine the total bit width needed for the calculated 
variables.  The bounds are determined by the analysis of 
various system transfer functions.  The analysis can be done 
for either open-loop systems (appropriate for signal processing 
applications) or closed-loop systems (appropriate for control 
systems, where the filter is used as a compensator in a 
feedback loop).  Open-loop analysis is presented in this paper. 

4.1 Bounds on Range 
For any calculated variable, the fixed-point representation 
must include enough integer bits to avoid the occurrence of 
overflow.  To ensure this, we need to know the variable’s 
range, or how large its magnitude can become. 

Let uvG , (z) represent the transfer function from the input of 
the system u to a particular variable v, and gv,u(k) the 
corresponding system impulse response.  A bound [4] on the 
maximum value of |v| is given by 

 ∞∞ ⋅≤ ugv uv 1, , (8) 

where ∞⋅  and 1⋅  denote respectively the l∞ and l1 norms, 

defined by { })(sup kxx
k

≡∞ , and { }∑∞
=≡ 01 )(k kxx .  Note 

that both quantities on the right-hand side of the inequality (8) 
are well known.  The l1 norm of the impulse response can be 
computed numerically, and the l∞ norm of the input signal is 
bounded by the range of the analog-to-digital (A/D) converter 
that supplies it.   
As an example, consider the direct-form realization of the 
example second-order filter of Equation (1), depicted in Figure 
1.  This form has only one calculated variable, at the output of 
the adder; it happens to be the filter output y. 
For the example system with a sampling period of 100 ns, the 
transfer function is 
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The impulse response g(k) of this system may be determined 
by the inverse z transform of the transfer function G(z).  Then 
||g||1, the absolute sum of g(k), may be computed.  Here, 

 ||g||1 = 197.96. (10) 
Our A/D produces a ten-bit digital signal u that is the input of 
the system.  For our particular application the analog signal to 
be processed lies in the voltage range 4± V; therefore, any 
possible input signal to the filter satisfies  ||u||∞ ≤ 4.  Equation 
(8) tells us that ||y||∞ ≤ 791.84; that is, the magnitude of the 
output signal y can never exceed that value.  As a result, eleven 
bits of integer should be used when calculating y, to allow a 
range of [−−−−1024, +1024). 

4.2 Bounds on Output Error 
There are two main sources of error in the filter output y due to 
quantization for our system, namely 
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1. the error 0y∆ introduced by the limited resolution of the 
analog-to-digital (A/D) converter, and 

2. the error truncy∆ introduced by truncation in each 
summation of a calculated variable of the system. 

Both types of errors may be represented as exogenous 
disturbance inputs to the system, with the filter calculations 
and input assumed to be otherwise ideal. For the direct-form 
realization of Figure 1, there are two places at which 
quantization error is introduced.  These are shown on the 
simulation diagram as e0 and e1.  The disturbance e0 represents 
the A/D quantization error, and the disturbance e1 represents 
the truncation error in the summation. Other realizations may 
have more than one summation; for a system with m 
summations, we use the notation ei to represent a disturbance 
due to the truncation error in the summation for calculated 
variable vi, for i = 1, 2, … m. 

If a particular disturbance ei is the only source of error in the 
system, the output error is governed by the bound 

 ∞∞ ⋅≤∆ ieyi egy
i 1,  (11) 

where 
ieyg , (k) is the impulse response of the system from ei 

to y.  Here, 
1, ieyg is a constant, given the implementation of 

the filter, and ∞ie  is the maximum error introduced at the 

source of the quantization.  Errors from multiple sources may 
be superimposed to find the total effect on the output y.  The 
total output error is governed by the bound 

 ∑
=

∞∞∞ ⋅≤∆+∆=∆
m

i
ieytrunc egyyy

i
0 1,0 . (12) 

In order to design a filter whose output has a desired accuracy 
of at least ε , we must choose a precision i∆  for each 
quantization error source i such that 

 ε≤∆⋅∑
=

m

i
iey i

g
0 1, . (13) 

Choosing a precision of i∆  implies keeping  )(log2 i∆−  
fraction bits at that point in the calculation. 

The transfer function from e0 to y is the same as the transfer 
function from system input u to y.  Therefore, working with the 
example for T = 100 ns, 
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The l1 norm of the impulse response of this transfer function 
is 197.96

1, 0
=eyg . Our ten-bit A/D output is interpreted as 

three bits of integer (including sign) and seven bits of fraction.  
Since the A/D converter rounds its digital output to the nearest 
available quantized output, the worst case error is given by 

8
0 2−

∞ =e V.  Using the error bound (11), the maximum 

error in y resulting from the A/D converter quantization is  

 773.0276.197 8
01, 0

=⋅=⋅ −
∞eg ey V. (15) 

The only way to reduce the size of this error is to use an A/D 
converter that provides more bits of precision. 

The second source of quantization error is the truncation of the 
lower order bits when calculating the sum; this is shown as e1 
on the simulation diagram of Figure 1.  The corresponding 
transfer function (for T = 100 ns) is 
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The l1 norm of corresponding system impulse response 
is 97443

1, 1
=eyg .  The size of e1 depends on the number of 

fractional bits that are retained in calculating the sum.  
Assuming that the result of the summation is truncated after f 
fraction bits, the maximum error can be fe −

∞ = 21 V.  Using 

the error bound (11), the maximum error in y due to truncation 
after summation is 

 f
ey egy −

∞∞ ⋅=⋅≤∆ 29744311,1 1
V. (17) 

This error in y can be reduced by keeping more fraction bits. 

Superimposing the effects of the two sources of quantization 
error, the total error in the filter output is governed by the 
bound 

 fy −
∞ ⋅+≤∆ 2443,97773.0 V, (18) 

where f is the number of fraction bits retained in the 
calculation of the sum. 

If the filter is to be used as a part of a closed-loop system, the 
analysis is similar, except that the impulse response functions 
gy,e(k) used for computing the bounds are those of the closed-
loop system.  Accordingly, the bounds will depend not only 
upon the filter itself, but also upon the system being controlled. 

4.3 Bit Width Selection 
Assuming that the number of bits provided by the A/D 
converter is given and fixed, the designer is left only with the 
choice of the number of fraction bits f in the sum calculation 
that produces the filter output y.  Given that the constant term 
0.773 V is already a significant fraction of the output range of 
±8 V, it seems logical to choose f to ensure that the second 
term in the bound (12) is considerably smaller.  We (rather 
arbitrarily) choose the condition that the second term should be 
no greater than 10% of the first, or 

 97443⋅2−f ≤ (10%)⋅0.773. (19) 

This condition implies f ≥ 20.2; that is, 21 fraction bits are 
required. 

Recall that the range of the computed variable has already 
been determined to require 11 integer bits.  This means that, to 
guarantee the quantization errors produce a filter output error 
no greater than (110%)⋅0.773 = 0.850 V, a total of 32 bits are 
required to represent the calculated variable in the filter. 
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The procedure for bit width selection was carried out for filter 
implementations with a wide range of sampling periods, using 
the same criteria for computational accuracy.  The shorter the 
sampling period, the greater the range and error bounds, and 
therefore the more integer and fraction bits required to 
represent the digital variables.  Figure 2 shows the total 
(integer plus fraction) number of bits required in the calculated 
variable as a function of the sampling period 

5 FILTER IMPLEMENTATION 
METHODOLOGY 

The range and error bounds can be used as the basis of a 
methodology for implementing fixed-point digital filters.  The 
starting point is an infinite precision IIR filter with a desired 
response.  The steps are: 

1. Choose a computational structure for the filter 
computation.  (Here, we have used a particular direct-
form realization, but others are possible.) 

2. Determine the necessary precision of the discrete-time 
filter coefficients so as to perturb the poles and zeros no 
more than a desired percentage ε  relative to the unit 
circle, as described in Section 3. 

3. Determine a bound on the filter output error that results 
from the A/D quantization as 010 ∆⋅≤∆ ∞ gy , where 

g(k) is the overall filter impulse response and ∆0 is the 
quantization error of the A/D.  Use the bound to identify 
an A/D bit width that will result in a tolerable output 
error.  Keep in mind that some additional output error will 
be introduced by truncation in the filter. 

4. Determine a bound on the maximum value of each 
calculated variable vi that results from an addition 
operation as ∞∞ ⋅≤ ugv uvi i 1, , where )(, kg uvi

 is the 

filter impulse response from u to vi, and ∞u  is the full-

scale value of the filter input.  In order to avoid the 
possibility of overflow, represent the variable vi using 

1log
1,2 +



 





 ⋅ ∞ug uvi

 integer bits, where the extra bit 

is for the sign. 

5. Define a fictitious input ei perturbing each calculated 
variable vi that results from an addition operation.  For 
each calculated variable vi , determine the corresponding 
norm 

1, ieyg , where )(, kg
iey  is the impulse response of 

the system from ei to the filter output y.  Determine the 
number of fraction bits fi for each calculated variable such 
that, for if

i 2=∆ , the bound on the output error resulting 
from truncations of all summations in the system, given 

by ∑
=

∞ ∆⋅≤∆
m

i
ieytrunc i

gy
1 1, , is tolerably small.  In our 

example, we have chosen the number of fraction bits to 
guarantee that this bound would be no more than 10% of 
that associated with the A/D quantization from Step 3. 

6 RESULTS 

Two implementations of the second-order compensator with a 
100 ns sample time were compared experimentally.  The first 
uses the proposed methodology to choose appropriate bit 
widths.  The second fixes the bit width of all internal variables 
of the system at 32 bits.  Both compensators were implemented 
on Altera’s DSP Development Board [1].  This board contains 
ten-bit analog-to-digital and digital-to-analog converters 
interfaced to an Altera Apex EP20K200EBC652-1X field 
programmable gate array.  VHDL was written to program the 
hardware using Altera’s Quartus II version 1.1 design package.  
The implementations were evaluated in both open- and closed-
loop operation.  

Table 1 compares the two systems.  For each entry, the fixed-
point data format is shown as (n,−f), where n is the total 
number of bits and f is the number of fraction bits.  Overall, the 
proposed methodology requires 14% fewer bits than the fixed-
bit width system.  This is reflected in the hardware cost; the 
proposed methodology requires 1404 logic elements, while the 
fixed bit version requires 4257 logic elements.  Not all of this 
difference is due to the pure increase in number of bits; 
Altera’s synthesis software used different multiplier structures 
for the larger 32-bit multiplications.  For such large bit widths, 
larger but faster array multipliers are necessary to meet timing 
requirements. 

The filter implementations were evaluated in open-loop 
operation by looking at the response of the systems to a step 
input. Figure 3(a) shows an ideal, infinite-precision response 
of the compensator, while Figures 3(b) and (c) show the 
response of the fixed-point compensators designed using the 
proposed methodology and the fixed bit width approach, 
respectively. Both implementations have step responses close 
to the ideal, with similar noise levels. The implementations 
were also evaluated in closed-loop operation by using them to 
control the magnetic bearing for which the compensator was 
designed. Both fixed-point compensators successfully 
controlled the magnetic bearing system, with no noticeable 

 

Figure 2. Bit-width chosen for calculated variable y 
using the proposed design methodology, as a function of 

sampling time. 
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con
var

closed-loop responses, and was unable to control the magnetic 
bearing. 

Quantity using design 
methodology 

using 32 bits 
Everywhere 

a (28, -20) (32,-24) 
b (29, -20) (32,-23) 
c (28, -20) (32,-24) 
d (21, -20) (32,-31) 

Filter

e (22, -20) (32,-30) 
Feedback y(k-1) (32, -18) (32,-18) 
Feedback y(k-2) (32, -18) (32,-18) 

Total Bits 192 224 

Table 1.  Coefficient and calculated variable bit widths. 

7 CONCLUSIONS 

A methodology for choosing customized bit widths for the 
coefficients and signals in a fixed-point digital filter 
implementation is developed.  The methodology is applied to 
the implementation of a second-order IIR filter used as a 
compensator in a magnetic bearing control system.  The bit 
widths chosen according to the given bounds produce a digital 
compensator that is similar in performance to a compensator 
designed using a more conservative, fixed bit width approach. 
Signal overflow is completely avoided, and the limit cycle 
amplitudes are kept below the desired level.  The methodology 
is useful for managing the trade-off between computational 
accuracy and hardware utilization. 
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