
Determining Appropriate Precisions for Signals in
Fixed-Point IIR Filters

Joan Carletta
The University of Akron
Electrical & Comp. Eng.
Akron, OH 44325-3904

+1 330 972-5993

carlett@uakron.edu

Robert Veillette
The University of Akron
Electrical & Comp. Eng.
Akron, OH 44325-3904

+1 330 972-5403

veillette@uakron.edu

Frederick Krach
The University of Akron
Electrical & Comp. Eng.
Akron, OH 44325-3904

+1 330 972-5993

fk@uakron.edu

Zhengwei Fang
The University of Akron
Electrical & Comp. Eng.
Akron, OH 44325-3904

+1 330 972-5993

zfang@uakron.edu

ABSTRACT

This paper presents an analytical framework for the
implementation of digital infinite impulse response filters in
fixed-point hardware on field programmable gate arrays. This
analysis is necessary because FPGAs, unlike fixed register size
digital signal processors, allow custom bit widths. Within the
framework, the designer determines the number of bits
necessary for representing the constant coefficients and the
internal signals in the filter. The coefficient bit widths are
determined by accounting for the sensitivity of the filter’s pole
and zero locations with respect to the coefficient perturbations.
The internal signal bit widths are determined by calculating
theoretical bounds on the ranges of the signals, and on the
errors introduced by truncation in the fixed-point hardware.
The bounds tell how many bits are required at any point in the
computation in order to avoid overflow and guarantee a
prescribed degree of accuracy in the filter output. The bounds
form the basis for a methodology for the fixed-point digital
filter implementation. The methodology is applied to the
implementation of a second-order filter used as a compensator
in a magnetic bearing control system.

Categories and Subject Descriptors
B.5.2 [Register-Transfer Level Implementation]: Design
Aids – automatic synthesis.

General Terms
Design, Experimentation.

Keywords
Finite word length effects, infinite impulse response filter,
design methodology, field programmable gate array.

1 INTRODUCTION

Finite word-length effects are often a critical issue in the
implementation of digital signal processing algorithms in finite
precision hardware. This is particularly true for infinite
impulse response (IIR) implementations with a high sampling
rate, as the computational accuracy becomes more critical.

Field programmable gate arrays (FPGAs) are an ideal platform
for implementation of IIR filters; using fixed-point structures
and parallel computations, they provide a computational speed
as much as two orders of magnitude greater than that possible
with digital signal processors, and still offer the ability to
reprogram [7]. With an FPGA, the designer can use a separate
fixed-point format for each individual signal in a system; in
contrast, on a digital signal processor, the register lengths are
fixed, so the designer must work with a single fixed-point
format. The ability to choose custom signal bit widths allows
flexibility in overcoming numerical difficulties caused by
finite word-length effects.

The design freedom inherent in FPGA implementation
necessitates the use of a systematic algorithm for choosing
coefficient and signal bit widths. This work outlines a
practical methodology for choosing bit widths in IIR filters to
guarantee a desired level of precision in the filter output. The
coefficient precisions are chosen so as to limit perturbations in
the transfer function poles and zeros. The signal bit widths are
chosen both to accommodate the maximum signal amplitudes
and to limit the maximum output error resulting from
quantization. By the judicious use of variable bit widths, the
methodology produces a high-quality implementation with less
hardware than would be possible using a single fixed-point
format for all the signals in the system.

Some past related work has focused on limit cycles and
overflow, and their relationship to the bit widths in finite
precision digital filters. Bounds on limit cycle amplitudes are
derived in [5] and [2], giving guidance for the selection of the
bit widths in fixed-point and floating-point filter
implementations, respectively. It is shown in [6] that, if
overflow does not cause instability for a theoretical infinite-
precision system, then the quantization bounds of the
computed signals can be chosen small enough that the
overflow will likewise not cause instability for the finite-
precision implementation. In contrast, the methodology
presented in this paper addresses the issues of both overflow
and limit cycle amplitude by the use of two different types of

This material is based upon work supported by the National
Science Foundation under Grant No. 0113168.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
DAC 2003, June 2-6, 2003, Anaheim, California, USA.
Copyright 2003 ACM 1-58113-688-9/03/0001…$5.00.

656

38.3

bounds. The
calculated varia
integer bits is u
The second de
that can arise fr
fixes the numb
limit cycles wi
similar in that i
of signals, but
bound the var
maximum ampl

The paper is o
simple example
its implementa
filter coefficien
appropriate num
system. Sectio
for infinite imp
the methodolog
design of a seco
magnetic bearin

2 COMP

It will be assum
desired propert
purposes of illu
described by th

which represen

 ky +2

A filter with
magnetic beari
derived by disc
sampling perio
of 100 ns, appro

 1=a

e

z-1 z-1

a

b

c

d

y

u
- -

z-1 z-1

e0

e1

Figure 1. System simulation diagram for a direct-form realization of a second-order system.
Truncation errors are represented as the fictitious inputs e0 and e1.
first determines the maximum range of the
bles. It guarantees that, if a certain number of
sed, overflow cannot occur in the calculations.
termines the maximum amplitude of the error
om truncation in calculating the filter output. It
er of fraction bits that should be used to keep
thin a given prescribed bound. Work in [3] is
t presents a methodology for choosing bitwidths
it chooses the number of fraction bits so as to
iance of the output error, rather than the
itude of the output error.

rganized as follows. Section 2 introduces a
 filter and defines a computational structure for

tion. Section 3 addresses how to quantize the
ts, and Section 4 addresses how to choose an
ber of bits for calculated variables within the

n 5 summarizes the overall design methodology
ulse response filters. In Section 6, the results of
y are illustrated by an example, which involves
nd-order compensator used for the control of a
g. Conclusions are drawn in Section 7.

UTATIONAL STRUCTURE

ed that a digital IIR filter is given that has the
ies when implemented in infinite precision. For
stration, we will consider a second-order filter,
e z-domain transfer function

edzz
cbzaz

zU
zYzG

++
++== 2

2

)(
)()(, (1)

ts the difference equation

kkkkk ucubuayeyd ++=++ +++ 121 . (2)

this structure is used as a compensator in a
ng control system [7]. This compensator was
retizing an analog control system for a specific
d. When implemented with a sampling period
priate values of the coefficients are:

0.968-1.968
101.60-203.4001.80

==
==

ed
cb (3)

There are a number of possibilities for organizing the
computations necessary to implement the discrete-time system.
This paper focuses on the direct-form realization shown in
Figure 1. This form clearly separates the hardware into a
section for the zeros, on the left in the figure, and a section for
the poles, on the right. It requires more registers, but fewer
adders, than standard canonical realizations do. Figure 1
includes error “inputs” e0 and e1 to facilitate signal error bound
computations in Section 4. These bounds determine the
necessary bit widths for representing the filter coefficients and
the stored variables. Similar bounds could be calculated for
other realizations of the same filter. This would allow the
comparison of the amount of hardware required for the various
realizations to maintain a given level of filter performance.
Such a comparative analysis is left for future consideration.

3 COEFFICIENT REPRESENTATION

In a fixed-point implementation, each controller coefficient a
through e must be given a finite-precision representation. For
each coefficient, both the number of integer bits and the
number of fraction bits must be chosen. Choosing the number
of integer bits is straightforward: a coefficient c requires
  1log2 +c bits to the left of the binary point. Choosing the
number of fraction bits requires more care. In general, the
coefficients must be approximated to fit in a finite-length
register. The approximation can be interpreted as a
perturbation of the coefficient from its ideal infinite precision
value. The coefficients (3) place the poles of G(z) at z =
{0.9683, 0.9997}, and the zeros at z = {0.9981, 0.9999}. The
poles and zeros of G(z) are crowded together near z=1, as is
typical for discrete-time filters with short sampling periods.
This makes the discrete-time calculations particularly sensitive
to numerical errors. The truncation of the filter coefficients
may even move a pole outside the unit circle, and therefore
into the instability region. A careful analysis is required to
ensure adequate precision of the coefficients.

When the denominator coefficients of the second-order filter
are perturbed by d∆ and e∆ , respectively, the poles of the
transfer function will also be perturbed by an amount [8]

21

2
2

12

1
1 pp

edpp
pp

edpp
−

∆+∆=∆
−

∆+∆=∆ (4)

657

where p1 and p2 denote the two poles. A similar relation holds
for the perturbations of the zeros of the transfer function. The
positions of the poles and zeros relative to the unit circle are
critical to the performance of the filter; therefore, we require

 ε<
−
∆

i

i
p

p
1

, (5)

where ε is a prescribed maximum allowable percent change in
pole location relative to the unit circle. Using equation (4), a
conservative sufficient condition for (5) is

 121 ppped i −−<∆+∆ ε , i = 1,2. (6)

If d and e have the same number of fraction bits, then ∆d = ∆e,
and (6) will hold if the number of fraction bits is given by

 ()  11log 122 +−−−= pppf iε , i = 1,2. (7)

As an example, to guarantee ε = 10% for both poles, our
compensator G(z) requires 21 bits of fraction for coefficients d
and e. Altogether (including integer bits), d and e would
require 23 and 22 bits, respectively.

The above calculations are based on sufficient conditions (6),
and therefore may yield conservative results. For this
example, the condition (5) with ε = 10% is actually achieved
using 21 bits for d and 18 bits for e. Similarly, a tolerance of
ε = 10% for the zeros is achieved with bit widths of 25 bits, 26
bits, and 26 bits for coefficients a, b, and c, respectively.
These are the coefficient bit widths that will be used in the
sample FPGA-based filter implementation presented in the
results section.

Given that the poles and zeros of the implemented system are
sufficiently close to those of the infinite-precision system, we
will now take the truncated coefficient values as the nominal
ones. The range and the necessary precision of the calculated
variables in the filter can be analyzed using the truncated
values of the filter coefficients.

4 CALCULATED VARIABLE
REPRESENTATION

For our purposes, a system consists of additions and
multiplications that produce calculated variables, and registers
that hold delayed versions of those variables. The next
question in the fixed-point filter implementation is what fixed-
point format to use for each calculated variable and register
within the system. Here, we explicitly consider only those
calculated variables that are the results of additions. Once the
formats of the addition results are chosen, the formats for
multipliers and registers can be derived.

Two types of bounds are used to determine appropriate
representations for calculated variables. The first type gives
the range of a calculated variable; this determines the
maximum amplitude of the variable, and thus the number of
integer bits needed to avoid overflow. The second type of
bound relates truncation errors in the calculated variables to
errors in the filter output. This type of bound tells how many
fraction bits are required for calculated variables to ensure a

desired precision in the filter output. The two types of bounds
together determine the total bit width needed for the calculated
variables. The bounds are determined by the analysis of
various system transfer functions. The analysis can be done
for either open-loop systems (appropriate for signal processing
applications) or closed-loop systems (appropriate for control
systems, where the filter is used as a compensator in a
feedback loop). Open-loop analysis is presented in this paper.

4.1 Bounds on Range
For any calculated variable, the fixed-point representation
must include enough integer bits to avoid the occurrence of
overflow. To ensure this, we need to know the variable’s
range, or how large its magnitude can become.

Let uvG , (z) represent the transfer function from the input of
the system u to a particular variable v, and gv,u(k) the
corresponding system impulse response. A bound [4] on the
maximum value of |v| is given by

 ∞∞ ⋅≤ ugv uv 1, , (8)

where ∞⋅ and 1⋅ denote respectively the l∞ and l1 norms,

defined by { })(sup kxx
k

≡∞ , and { }∑∞
=≡ 01)(k kxx . Note

that both quantities on the right-hand side of the inequality (8)
are well known. The l1 norm of the impulse response can be
computed numerically, and the l∞ norm of the input signal is
bounded by the range of the analog-to-digital (A/D) converter
that supplies it.
As an example, consider the direct-form realization of the
example second-order filter of Equation (1), depicted in Figure
1. This form has only one calculated variable, at the output of
the adder; it happens to be the filter output y.
For the example system with a sampling period of 100 ns, the
transfer function is

968.0968.1

60.10140.20380.101)()(2

2

,
+−

+−==
zz

zzzGzG uy . (9)

The impulse response g(k) of this system may be determined
by the inverse z transform of the transfer function G(z). Then
||g||1, the absolute sum of g(k), may be computed. Here,

 ||g||1 = 197.96. (10)
Our A/D produces a ten-bit digital signal u that is the input of
the system. For our particular application the analog signal to
be processed lies in the voltage range 4± V; therefore, any
possible input signal to the filter satisfies ||u||∞ ≤ 4. Equation
(8) tells us that ||y||∞ ≤ 791.84; that is, the magnitude of the
output signal y can never exceed that value. As a result, eleven
bits of integer should be used when calculating y, to allow a
range of [−−−−1024, +1024).

4.2 Bounds on Output Error
There are two main sources of error in the filter output y due to
quantization for our system, namely

658

1. the error 0y∆ introduced by the limited resolution of the
analog-to-digital (A/D) converter, and

2. the error truncy∆ introduced by truncation in each
summation of a calculated variable of the system.

Both types of errors may be represented as exogenous
disturbance inputs to the system, with the filter calculations
and input assumed to be otherwise ideal. For the direct-form
realization of Figure 1, there are two places at which
quantization error is introduced. These are shown on the
simulation diagram as e0 and e1. The disturbance e0 represents
the A/D quantization error, and the disturbance e1 represents
the truncation error in the summation. Other realizations may
have more than one summation; for a system with m
summations, we use the notation ei to represent a disturbance
due to the truncation error in the summation for calculated
variable vi, for i = 1, 2, … m.

If a particular disturbance ei is the only source of error in the
system, the output error is governed by the bound

 ∞∞ ⋅≤∆ ieyi egy
i 1, (11)

where
ieyg , (k) is the impulse response of the system from ei

to y. Here,
1, ieyg is a constant, given the implementation of

the filter, and ∞ie is the maximum error introduced at the

source of the quantization. Errors from multiple sources may
be superimposed to find the total effect on the output y. The
total output error is governed by the bound

 ∑
=

∞∞∞ ⋅≤∆+∆=∆
m

i
ieytrunc egyyy

i
0 1,0 . (12)

In order to design a filter whose output has a desired accuracy
of at least ε , we must choose a precision i∆ for each
quantization error source i such that

 ε≤∆⋅∑
=

m

i
iey i

g
0 1, . (13)

Choosing a precision of i∆ implies keeping  )(log2 i∆−
fraction bits at that point in the calculation.

The transfer function from e0 to y is the same as the transfer
function from system input u to y. Therefore, working with the
example for T = 100 ns,

968.0968.1

60.10140.20380.101)()(2

2

, 0 +−
+−==

zz
zzzGzG ey . (14)

The l1 norm of the impulse response of this transfer function
is 197.96

1, 0
=eyg . Our ten-bit A/D output is interpreted as

three bits of integer (including sign) and seven bits of fraction.
Since the A/D converter rounds its digital output to the nearest
available quantized output, the worst case error is given by

8
0 2−

∞ =e V. Using the error bound (11), the maximum

error in y resulting from the A/D converter quantization is

 773.0276.197 8
01, 0

=⋅=⋅ −
∞eg ey V. (15)

The only way to reduce the size of this error is to use an A/D
converter that provides more bits of precision.

The second source of quantization error is the truncation of the
lower order bits when calculating the sum; this is shown as e1
on the simulation diagram of Figure 1. The corresponding
transfer function (for T = 100 ns) is

968.0968.1

)(2

2

2

2

, 1 +−
=

++
=

zz
z

edzz
zzG ey . (16)

The l1 norm of corresponding system impulse response
is 97443

1, 1
=eyg . The size of e1 depends on the number of

fractional bits that are retained in calculating the sum.
Assuming that the result of the summation is truncated after f
fraction bits, the maximum error can be fe −

∞ = 21 V. Using

the error bound (11), the maximum error in y due to truncation
after summation is

 f
ey egy −

∞∞ ⋅=⋅≤∆ 29744311,1 1
V. (17)

This error in y can be reduced by keeping more fraction bits.

Superimposing the effects of the two sources of quantization
error, the total error in the filter output is governed by the
bound

 fy −
∞ ⋅+≤∆ 2443,97773.0 V, (18)

where f is the number of fraction bits retained in the
calculation of the sum.

If the filter is to be used as a part of a closed-loop system, the
analysis is similar, except that the impulse response functions
gy,e(k) used for computing the bounds are those of the closed-
loop system. Accordingly, the bounds will depend not only
upon the filter itself, but also upon the system being controlled.

4.3 Bit Width Selection
Assuming that the number of bits provided by the A/D
converter is given and fixed, the designer is left only with the
choice of the number of fraction bits f in the sum calculation
that produces the filter output y. Given that the constant term
0.773 V is already a significant fraction of the output range of
±8 V, it seems logical to choose f to ensure that the second
term in the bound (12) is considerably smaller. We (rather
arbitrarily) choose the condition that the second term should be
no greater than 10% of the first, or

 97443⋅2−f ≤ (10%)⋅0.773. (19)

This condition implies f ≥ 20.2; that is, 21 fraction bits are
required.

Recall that the range of the computed variable has already
been determined to require 11 integer bits. This means that, to
guarantee the quantization errors produce a filter output error
no greater than (110%)⋅0.773 = 0.850 V, a total of 32 bits are
required to represent the calculated variable in the filter.

659

The procedure for bit width selection was carried out for filter
implementations with a wide range of sampling periods, using
the same criteria for computational accuracy. The shorter the
sampling period, the greater the range and error bounds, and
therefore the more integer and fraction bits required to
represent the digital variables. Figure 2 shows the total
(integer plus fraction) number of bits required in the calculated
variable as a function of the sampling period

5 FILTER IMPLEMENTATION
METHODOLOGY

The range and error bounds can be used as the basis of a
methodology for implementing fixed-point digital filters. The
starting point is an infinite precision IIR filter with a desired
response. The steps are:

1. Choose a computational structure for the filter
computation. (Here, we have used a particular direct-
form realization, but others are possible.)

2. Determine the necessary precision of the discrete-time
filter coefficients so as to perturb the poles and zeros no
more than a desired percentage ε relative to the unit
circle, as described in Section 3.

3. Determine a bound on the filter output error that results
from the A/D quantization as 010 ∆⋅≤∆ ∞ gy , where

g(k) is the overall filter impulse response and ∆0 is the
quantization error of the A/D. Use the bound to identify
an A/D bit width that will result in a tolerable output
error. Keep in mind that some additional output error will
be introduced by truncation in the filter.

4. Determine a bound on the maximum value of each
calculated variable vi that results from an addition
operation as ∞∞ ⋅≤ ugv uvi i 1, , where)(, kg uvi

 is the

filter impulse response from u to vi, and ∞u is the full-

scale value of the filter input. In order to avoid the
possibility of overflow, represent the variable vi using

1log
1,2 +



 





 ⋅ ∞ug uvi

 integer bits, where the extra bit

is for the sign.

5. Define a fictitious input ei perturbing each calculated
variable vi that results from an addition operation. For
each calculated variable vi , determine the corresponding
norm

1, ieyg , where)(, kg
iey is the impulse response of

the system from ei to the filter output y. Determine the
number of fraction bits fi for each calculated variable such
that, for if

i 2=∆ , the bound on the output error resulting
from truncations of all summations in the system, given

by ∑
=

∞ ∆⋅≤∆
m

i
ieytrunc i

gy
1 1, , is tolerably small. In our

example, we have chosen the number of fraction bits to
guarantee that this bound would be no more than 10% of
that associated with the A/D quantization from Step 3.

6 RESULTS

Two implementations of the second-order compensator with a
100 ns sample time were compared experimentally. The first
uses the proposed methodology to choose appropriate bit
widths. The second fixes the bit width of all internal variables
of the system at 32 bits. Both compensators were implemented
on Altera’s DSP Development Board [1]. This board contains
ten-bit analog-to-digital and digital-to-analog converters
interfaced to an Altera Apex EP20K200EBC652-1X field
programmable gate array. VHDL was written to program the
hardware using Altera’s Quartus II version 1.1 design package.
The implementations were evaluated in both open- and closed-
loop operation.

Table 1 compares the two systems. For each entry, the fixed-
point data format is shown as (n,−f), where n is the total
number of bits and f is the number of fraction bits. Overall, the
proposed methodology requires 14% fewer bits than the fixed-
bit width system. This is reflected in the hardware cost; the
proposed methodology requires 1404 logic elements, while the
fixed bit version requires 4257 logic elements. Not all of this
difference is due to the pure increase in number of bits;
Altera’s synthesis software used different multiplier structures
for the larger 32-bit multiplications. For such large bit widths,
larger but faster array multipliers are necessary to meet timing
requirements.

The filter implementations were evaluated in open-loop
operation by looking at the response of the systems to a step
input. Figure 3(a) shows an ideal, infinite-precision response
of the compensator, while Figures 3(b) and (c) show the
response of the fixed-point compensators designed using the
proposed methodology and the fixed bit width approach,
respectively. Both implementations have step responses close
to the ideal, with similar noise levels. The implementations
were also evaluated in closed-loop operation by using them to
control the magnetic bearing for which the compensator was
designed. Both fixed-point compensators successfully
controlled the magnetic bearing system, with no noticeable

Figure 2. Bit-width chosen for calculated variable y
using the proposed design methodology, as a function of

sampling time.

660

diff
fixe
bas
con
var

closed-loop responses, and was unable to control the magnetic
bearing.

Quantity using design
methodology

using 32 bits
Everywhere

a (28, -20) (32,-24)
b (29, -20) (32,-23)
c (28, -20) (32,-24)
d (21, -20) (32,-31)

Filter

e (22, -20) (32,-30)
Feedback y(k-1) (32, -18) (32,-18)
Feedback y(k-2) (32, -18) (32,-18)

Total Bits 192 224

Table 1. Coefficient and calculated variable bit widths.

7 CONCLUSIONS

A methodology for choosing customized bit widths for the
coefficients and signals in a fixed-point digital filter
implementation is developed. The methodology is applied to
the implementation of a second-order IIR filter used as a
compensator in a magnetic bearing control system. The bit
widths chosen according to the given bounds produce a digital
compensator that is similar in performance to a compensator
designed using a more conservative, fixed bit width approach.
Signal overflow is completely avoided, and the limit cycle
amplitudes are kept below the desired level. The methodology
is useful for managing the trade-off between computational
accuracy and hardware utilization.

REFERENCES
[1] Altera Corporation, “APEX DSP Development Board

(Starter Version),” Data Sheet, April 2002.
[2] P.H. Bauer, “Absolute response error bounds for floating

point digital filters in state space representation,” IEEE
Transactions on Circuits and Systems—II: Analog and
Digital Signal Processing, Vol. 42, No. 9, September
1995, pp. 610-613.

[3] G.A. Constantinides, P.Y.K. Cheung, and W. Luk, “The
Multiple Wordlength Paradigm,” IEEE Symposium for
Custom Computing Machines, 2001.

[4] J. C. Doyle, B. A. Francis, and A. R. Tannenbaum,
Feedback Control Theory, Macmillan, New York, 1992.

[5] B.D. Green and L.E. Turner, “New limit cycle bounds
for digital filters,” IEEE Transactions on Circuits and
Systems, Vol. 35, No. 4, April 1988, pp. 365-374.

[6] K.K. Johnson and I.W. Sandberg, “A Separation
Theorem for Finite Precision Digital Filters,” IEEE
Transactions on Circuits and Systems--I: Fundamental
Theory and Applications, Vol. 42, No. 9, September
1995, pp. 541-545.

[7] F. W. Krach, B. P. Frackelton, J. E. Carletta, and R. J.
Veillette, “FPGA-based implementation of digital
control for a magnetic bearing,” to appear in the 2003
erence. Therefore, the increased hardware expense of the

(a) using floating point precision in Matlab.

(b) for system with a 100 ns sampling time
 designed according to the methodology.

(c) for system with a 100 ns sampling time
 designed with a fixed bitwidth of 32.

Figure 3. Step responses of ideal and implemented
systems.
d bit width version yields no benefit. Further, although
ed on worst case bounds, the methodology is not overly
servative; a compensator with two fewer bits for the
iables was found to have significantly degraded open- and

American Control Conference.
[8] J. G. Proakis and D. G. Manolakis, Digital Signal

Processing: Principles, Algorithms, and Applications,
Prentice-Hall, New Jersey, 1996.

661

	Main Page
	DAC'03
	Front Matter
	Table of Contents
	Author Index

