
ABSTRACT
We present a novel method to efficiently generate, compress and
apply test patterns in a logic BIST architecture. Patterns are gen-
erated by a modified automatic test pattern generator (ATPG) and
are encoded as linear feedback shift register (LFSR) initial values
(seeds); one or more patterns can be encoded into a single LFSR
seed. During test application, seeds are loaded into the LFSR with
no cycle overhead. The method presented achieves reductions of at
least 100x in test data and 10x in tester cycles compared to deter-
ministic ATPG while maintaining complete fault coverage, as con-
firmed by experimental results on industrial designs.

Categories and Subject Descriptors: B.8.1 [Perfor-
mance and Reliability]: Reliability, Testing and Fault-Tol-
erance.
General Terms: Algorithms, Design.
Keywords: self-test (BIST), test-generation (ATPG).

1. INTRODUCTION
Testing digital circuits represents a significant portion of the
design, manufacture and service cost. Scan [1], [2] and logic BIST
[3], [4] are the primary design-for-test (DFT) methods to control
test cost. Logic BIST (hereafter referred to as BIST) is commonly
implemented as originally described in [5]: values from a pseudo-
random patterns generator (PRPG) are loaded into the internal scan
chains of the design to be tested, and the chain outputs are unloaded
into a signature analyzer that performs test response compaction.
After a predetermined number of cycles, the state of the signature
analyzer is compared to the known “signature” of the fault-free
design. All inputs and outputs of the tested design are bounded by
scan cells. The PRPG is commonly implemented as a linear-feed-
back shift register (LFSR) and the signature analyzer is often
implemented as a multiple-input signature register (MISR) [3], [6].

To achieve a test coverage close to that achievable by deterministic
ATPG patterns, the number of BIST patterns must be significantly
greater and, in some cases, unreasonably so which forces a trade-

off between increased test application time and reduced test cover-
age. Several solutions have been devised to address this problem.
Using a multiplicity of parallel scan chains reduces the number of
cycles per scan load, although not enough to compensate for the
increased number of patterns [4], [5]. Adding test points to the
design can improve fault detection by pseudo-random patterns,
reducing the total number of patterns, but silicon area and propaga-
tion delay are increased. Further, pseudo-random patterns can be
biased or modified so that they test random-resistant faults at the
cost of adding silicon area, BIST data and BIST synthesis time [7],
[8]. Deterministic ATPG patterns are often added to BIST patterns
for a complete test coverage, but the total data volume stored on the
tester is much greater than just the BIST data [4]. Finally, signifi-
cant attention has recently been given to initializing (seeding) the
PRPG so that desired scan cells are set to values that achieve target
faults detection [9], [10], [11], [12], [13], [14], [15]. This solution
can improve test coverage, but can result in increased pattern count
and test application time.

2. PROPOSED DBIST SOLUTION
We present an efficient solution that combines the same high fault
coverage as deterministic ATPG (with full access to scan cells)
with a logic BIST architecture. Compared to deterministic ATPG
with highest dynamic compaction of test patterns, our method
achieves significant reductions in both test data and tester cycles.
Test patterns are generated by a modified deterministic ATPG,
compressed into LFSR seeds and applied in a modified BIST archi-
tecture; hence we hereafter refer to our method as “deterministic
BIST”, or DBIST. To facilitate comparison with full-scan-cell-
access deterministic ATPG, we present DBIST as a test stored on
and driven by a tester; nonetheless, DBIST can also be imple-
mented as a stand-alone selftest. The proposed solution consists of
an apparatus that enables reseeding the PRPG LFSR with no cycle
overhead (section 3), and a method to compress one or more deter-
ministic ATPG patterns into a single LFSR seed (sections 4). Sec-
tion 5 compares deterministic and DBIST patterns and section 6
presents experimental results on industrial designs. Section 7 con-
cludes this paper.

All patterns can be controlled by LFSR seeds so that all “care bits”
(scan cells that must be set to a certain value) are set to the desired
value, while all other scan cells are set to pseudo-random values
from the LFSR. The LFSR could also be used to apply “random”
patterns (with no care bits determined); however, when DBIST pat-
terns are applied from a tester, it is important to minimize the total
number of patterns so that the total number of tester cycles is min-
imized. In this environment, it is preferable not to use random pat-
terns because the total number of patterns would increase. 
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3. RESEEDING WITH 0-CYCLE OVER-
HEAD USING SHADOWS
Figure 1 shows the basic DBIST architecture. As is common in

logic BIST, all primary inputs and outputs of the tested design are
wrapped by scan cells. All scan cells of the design are linked in par-
allel, with internal scan chains placed between the pattern genera-
tor and the signature analyzer. Values from the PRPG-LFSR are
loaded into the scan chains of the design to be tested, and the scan
chain outputs are unloaded into a signature analyzer that performs
test-response compaction. To reduce test application time, we use
a large number of short parallel scan chains. A combinational phase
shifter converts the uni-dimensional stream of pseudo-random val-
ues generated by the LFSR into a two-dimensional array of values
to load parallel scan chains [6], [16]. The values unloaded from
scan chains are fed into a MISR that must be at least as wide as
there are scan chains [6]. But, a wide MISR increases BIST over-
head by requiring a large area and storage of wide signatures.
Therefore, we use a smaller MISR and a combinational [space-]
compactor between the scan-chain outputs and the signature-ana-
lyzer inputs [17]. 

A PRPG shadow register, of the same length as the PRPG LFSR,
has been added to the classical BIST architecture [5], [6]. The
PRPG shadow is loaded through several parallel scan chains so that
it can be fully loaded in the number of cycles it takes to load the
internal chains. After a new PRPG seed has been loaded into the
PRPG shadow, it is transferred in a single cycle to the PRPG LFSR.
The architecture in Figure 1 achieves reseeding of the PRPG LFSR
with 0-cycle overhead; the PRPG is continuously clocked and the
scan chains are loaded every cycle with a new value. During the
functional capture clock, the values loaded in the PRPG shadow
can be transferred into the PRPG LFSR, thus allowing any pattern
to start with a new seed if required. To use the same seed for mul-
tiple patterns, the transfer of the PRPG shadow into the PRPG
LFSR is simply delayed until the prior seed has been used for all
desired patterns. 

Figure 2 details the PRPG shadow and the transfer mechanism. The
PRPG shadow register is the same length as the PRPG LFSR; it is
loaded through several parallel scan chains. In BIST mode, the
scan chains of the design are configured into many, short internal
chains, but no shorter than the shadow chains, so that the shadow
can be completely reloaded during a single load; therefore, no addi-
tional test cycles are added to reload seeds. The PRPG shadow con-
tent is transferred to the PRPG LFSR during the capture cycle,
when “shadow_transfer”=1, so no cycle is added even for
the transfer of the new seed to the PRPG LFSR. The PRPG shadow
registers are only loaded through scan; they need no unload. 

The architecture in Figure 1 also supports a special scan mode to
enable testing of the DBIST logic itself. In this mode, the PRPG
shadow is configured as a single scan chain which is both loaded
and unloaded. The PRPG LFSR, the MISR LFSR and the DBIST
controller state elements (not shown in Figure 1) are also config-
ured as scan chains. The internal scan chains of the design are
bypassed with multiplexors. In this mode, all DBIST logic (includ-
ing the aforementioned scan chains and the phase shifter, compac-
tor and DBIST controller) can be fully tested with a handful of scan
ATPG patterns.

4. MULTIPLE PATTERNS PER SEED
Testing a single fault typically requires only a small number
(around 20) of scan cells to be set at desired values; these values are
referred to as “care bits” and, collectively, as a “test cube”. ATPG
exploits the sparsity of care bits by generating patterns that each
test as many target faults as possible, a process termed “dynamic
compaction.” Even so, in the final test cube, only a small percent-
age of the total number of scan cells are set; attempts to find further
faults that can be tested by the same pattern are likely to fail
because of conflicting values in some of the specified bit positions.
For deterministic patterns the remaining bits are filled in randomly
with the hope of fortuitously detecting additional faults. The fully
specified pattern is then fault-simulated and all detected faults are
taken off the active fault list. In DBIST, the test cube is encoded as
an LFSR seed computed so that the desired bits are set when the
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Figure 1. DBIST Architecture.
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LFSR is loading the scan chains; don’t-care bits are filled in ran-
domly from the LFSR. At the beginning of an ATPG run, a few test
patterns can be created to each set thousands of care bits and test
hundreds of target faults. To supply thousands of care bits from an
LFSR seed would require an LFSR with at least as many bits, cer-
tainly an impractical approach. Another approach continuously
streams “seed” bits into a smaller LFSR [15], but during the fill-up
cycles too few care bits can be controlled, while later too many bits
are available to control the remaining few care bits. We chose to use
an LFSR of reasonable size (250 - 500 bits) and limit DBIST ATPG
to a smaller number of care bits per test pattern, about 19 bits less
than the LFSR size [9]. 

For large designs that require thousands of highly compacted deter-
ministic patterns to fully test, the number of care bits per pattern
decreases very rapidly. After a few hundred patterns, test cubes are
only about one hundred bits, and the last hundreds of patterns have
test cubes of around 20-40 bits each. Several small test cubes can
be encoded into a single seed [10]. After loading a seed, the LFSR
is clocked during each internal chain shift and provides all needed
care bits for the loads of several consecutive patterns.

To generate DBIST test patterns and encode them as seeds, test
generation, encoding into seeds, and fault simulation are alternated
to obtain an optimal set of seed-encoded patterns. Unlike previous
methods [10], [11], a variable-sized set of patterns is first created
by ATPG, and then encoded into a single seed; the set encoded into
a single seed may contain any number of patterns and need not be
augmented with dummy cubes or random patterns. If the system of
equations to satisfy all care bits in a pattern set has no solution (no
seed exists), the care bits associated with the last targeted fault are
removed and the resulting reduced system of equations is solved.
We found that, in 98% of cases, a seed could be found to satisfy all
care bits; for the remaining cases, a seed was found after removing
a small number of care bits. 

The test-pattern generator [18] was modified to generate and add
test cubes to each pattern until the total number of scan cells set for
all patterns reaches a user-selectable limit, total_cells, or the num-
ber of patterns reaches its limit, pats_per_set; pats_per_set is also
user-selectable, but is set to a high enough value (at least 20) to not
limit the generation of an optimally encoded DBIST pattern set.
The test generator targets as many faults as possible in a single pat-
tern but, at the same time, limits the number of scan cells set to a
selectable limit, cells_per_pattern. Unlike previous methods [11],
DBIST ATPG uses the same powerful fault dynamic compaction
algorithm as deterministic ATPG and need not be biased toward
patterns with the least number of specified bits.

Controlling the set of patterns encoded into a single seed by the two
selectable limits, cells_per_pattern and total_cells, minimizes
total data volume and number of patterns at the same time, without
the added complexity of changing the LFSR polynomial [10].
Computing LFSR seeds for multiple patterns results in full utiliza-
tion of each seed, particularly towards the tail end of the pattern set
where each compacted pattern has only few care bits. Minimizing
the total number of seeds directly reduces total test data because
MISR signatures, the other component of test data, represent only
a very small part. Minimizing test data is most important for self-
test implementation of DBIST if all data is to be stored on-chip.

5. COMPARING DBIST WITH DETERMIN-
ISTIC PATTERNS
DBIST encodes load data into LFSR seeds and unload data into
MISR signatures; most data is taken by LFSR seeds. The data
reduction vs. deterministic ATPG can be computed as:

. (1)

assuming that 2 bits are required to store unload data and only 1 bit
is required to store load values; Patdet and Patbist are the number
of deterministic ATPG and, respectively, DBIST patterns; Cells is
the number of scan cells; PatsperSeed is the average number of
DBIST patterns that use the same seed, typically 1.5 - 3 (section 6);
PRPGlen, the number of bits of the PRPG LFSR, is from 250-500.
For very large designs (last rows in Table 1) larger or additional
PRPGs and MISRs can be added to support as many internal scan
chains as desired.

The number of scan chains in deterministic ATPG is limited by
available pins. By contrast, DBIST can use a large number of
shorter, internal chains, achieving a tester cycles reduction:

. (2)

Clendet and Clenbist are the length of scan chains when determin-
istic ATPG and, respectively, DBIST patterns are applied. The
number of scan chains in DBIST mode can be larger than the num-
ber of scan chains in deterministic ATPG mode, on the average, by
a factor of 20 - 30, because DBIST chains do not require tester pins.
Consequently, Clenbist is, on the average, 20 - 30 times smaller
than Clendet. 

6. RESULTS
This section provides experimental confirmation of the assump-
tions made when comparing DBIST with deterministic patterns

(section 5). The most critical assumption is that ; this

ratio directly affects the reduction of both data (equation (1)) and
cycles (equation (2)). The data reduction further depends on
PatsperSeed, the average number of DBIST patterns that use the
same seed; the cycle reduction depends on the length (Clendet) of
scan chains available in deterministic ATPG mode. Results mea-
sured on several industrial designs are shown in Table 1. The total
design sizes are estimated as number of equivalent NAND-gates.
The area overhead of DBIST logic is 1-2%; larger or multiple
PRPGs and MISRs support more internal chains, thereby reducing
chain length and total cycle count, but increasing the area over-
head. The number of scan cells and the total number of faults are
also shown as measures of design size. 

For all designs, the fault coverage obtained from deterministic
ATPG and from DBIST patterns were within 0.2% (differences
were due to different fault accounting), ranging from 98% to 99+%.
The number of seeds for DBIST patterns increases with design
size, but the ratio PatsperSeed remains within a small range (1.5 to
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3). More importantly,  as expected. Interestingly, the

total CPU time for DBIST is less than the CPU time for determin-
istic patterns even though DBIST includes additional operations
(such as seed encoding) and generates more patterns; this is due to
the fact that deterministic ATPG tries much harder to merge faults
into a pattern whereas DBIST ATPG is limited by
cells_per_pattern, which limits the fault-merging effort. As

expected, the DBIST data reduction  increases with the

number of scan cells; the DBIST cycles reduction  is about

constant and larger than 10 (Table 1). 

7. CONCLUSIONS
We presented DBIST, a deterministic BIST method that combines
test-generation, LFSR-seed encoding and fault simulation to
achieve the same high fault coverage as deterministic ATPG while
applying patterns in a logic BIST architecture. The number of pat-
terns encoded into a single LFSR seed varies continuously to
accommodate the most efficient encoding. LFSR seeds control all
care bits in all patterns. We also presented a mechanism that allows
seeds to be loaded and the LFSR reseeded with no cycle overhead.
The resulting patterns are fully compatible with scan testers.
DBIST can be applied to all fault models that deterministic test
generation supports. DBIST can also be implemented as self-con-
tained BIST, storing the seeds on-chip. Both test data volume and
tester cycles are significantly reduced over highly compacted
deterministic patterns while obtaining the same test coverage. The
method presented is fully integrated into an automated flow that
performs all design modifications, rules checking and DBIST pat-
tern generation.
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Table 1. DBIST results.

Design size ATPG results DBIST effectiveness

#gates
(1000s)

#scan cells
(1000s)

#faults
(1000s)

#chains
(det)

#chains
(bist)

PRPGlen
(total) #seeds Patdet/

Patbist
CPUdet/
CPUbist

Patsper
Seed

150 6.4 216 16 512 257 458 0.5 2.6 1.4 55 11.8
600 5.1 1,330 20 512 257 2,010 0.7 1.2 1.6 71 16.9
600 13.9 1,055 22 512 257 1,490 0.7 1.6 1.4 164 16.3
800 17.6 1,554 24 512 257 1,764 0.5 2.9 1.5 151 11.1

3,500 120.0 7,596 32 512 479 5,579 0.9 3.2 1.7 756 15.0
17,500 508.5 24,620 196 4592 4311 8,925 0.8 2.9 3.2 879 18.2
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