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ABSTRACT 
A new methodology is presented to solve a strongly nonlinear 
circuit, characterized by Piece-Wise Linear (PWL) functions, 
symbolically and explicitly in terms of its circuit parameters and 
is amenable to computer implementation. The method is based on 
a modified nodal formulation of piecewise linear circuit equations 
as a mixed Linear Complementarity Problem (MLCP). The 
technique of determinant-decision diagrams is applied to 
implement the symbolic transformation of the MLCP to the 
standard LCP. Complementarity-decision diagrams are used to 
represent the resulting LCP. Examples are presented that 
demonstrate the accuracy and efficiency of the proposed method. 

Categories and Subject Descriptors 
T5.3 Analog and mixed-signal design tools and RF 

General Terms Algorithms    
Keywords 
Symbolic Analysis, Circuit Nonlinearity, PWL 

1. INTRODUCTION 
Analysis of the effect of device nonlinearity on the system 
performance is critical to high-performance analog/RF systems-
on-chip design [5][8].  While a class of nonlinear circuits, known 
as weakly nonlinear, can be analyzed via linearized techniques 
such as small-signal analysis or techniques based on linearized 
analysis such as harmonic balance or Volterra series [10], many 
circuits ranging from switches, mixers, saturation-limited 
amplifiers to switched-capacitor filters and switching power 
converters, exhibit strong nonlinearities. Circuits exhibiting 
strong nonlinearities refer to sudden changes of device behavior, 
for example, switching of operating regions, sudden changes of 
device physics, and piecewise I-V characteristics.  

Strong nonlinearities also arise in the following two scenarios. 
First, there is increasing interest in using digital logic signals to 
control the operations of analog/RF front-ends. As a consequence, 
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more “novel” analog signal processing circuits may change their 
behaviors abruptly. Second, with the analog hardware description 
languages such as VHDL-AMS and Verilog-AMS gaining more 
momentum [5], behavioral models are being developed for 
systems-on-chip simulation and architecture evaluation. Many 
behavioral models are characterized as piecewise linear models 
consisting of sudden behavior changes.  

Analysis of circuits demonstrating strong nonlinearities is known 
to be challenging [8]. Time-varying Volterra series [12], sliding 
kernels dynamic Volterra series [3], and describing functions [4] 
have been proposed to handle a certain class of circuits such as 
mixers, the methods depend highly on the specific circuit 
structure, require derivatives, and are hard to automate. Further, 
the complexity increases dramatically when high order series are 
required. The multi-rate partial differential equation (MPDE) 
formulation [10] can compute numerically the multi-rate behavior 
efficiently with strong known linearity such as output spikes. 
However, the method also requires the computation of a Jacobian 
matrix, which prohibits its use towards hard nonlinearity analysis. 

This paper presents a new method capable of analyzing explicitly 
and exactly the behavior of circuits with strong nonlinearities 
characterized by piecewise linear functions. Our work is inspired 
by the recent work of Bokhoven and Leenaerts [7], which 
demonstrates that explicit formulae can be derived for a class of 
PWL circuits that can be formulated as so-called P-class linear 
complementarity problem (LCP). Our novel contributions are as 
follows: (1) To be amenable to computer implementation, we first 
present a formulation of PWL circuits equations using the 
framework of Modified Nodal Analysis (MNA). This leads to a 
mathematical problem known as the Mixed Linear 
Complementarity Problem (MLCP) [2]. (2) We exploit a compact 
data structure known as determinant decision diagrams (DDDs) 
[11] to represent all the manipulations from MLCP to LCP 
symbolically and utilize complementarity decision diagrams 
(CDDs) [8] to characterize the LCP expressions.  

The method is amenable to computer implementation. 
Furthermore, it represents all the solutions (voltages and currents) 
explicitly in terms of circuit parameters, input sources based on a 
special mathematical operator = .. The symbolic expressions 
can help designers to gain insight on how circuit parameters affect 
the circuit linearity. A very efficient numerical time-domain and 
harmonic simulator have been implemented based on the 
repetitive evaluation of the resulting expressions. The simulator 
can calculate the harmonics and time-domain responses exactly, 
while the SPICE-like numerical simulators have to invoke various 
smoothing functions to compute the approximate solutions. As 
observed in our experiments, how the PWL is smoothed can lead 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that copies 
bear this notice and the full citation on the first page. To copy otherwise, 
or republish, to post on servers or to redistribute to lists, requires prior 
specific permission and/or a fee. 
DAC 2003, June 2-6, 2003, Anaheim, California, USA. 
Copyright 2003 ACM 1-58113-688-9/03/0006…$5.00. 

542

31.5



to significant changes in the operating point, linear and nonlinear 
circuit characteristics. 

This paper is organized as follows. Section 2 presents preliminary 
PWL information, which is followed by an MNA formulation of 
PWL circuits as the mixed linear complementarity problem 
(LCP). Experimental results are described in Section 4. Section 5 
concludes this paper. 

2. PRELIMINARY 
Piece-Wise Linear (PWL) functions are used to model devices 
that exhibit strong nonlinearities. Numerous research by Chua [1] 
and furthered by van Bokhoven and Leenaerts [7] derived 
functions to represent networks consisting of nonlinear devices in 
an explicit form. For an explicit model the output vector can be 
obtained simply by substituting the input vector into the 
description. Therefore, these functions can be solved in a fraction 
of time needed by other models, such as, table look-up or spline 
function approximation. 

 
Figure 1. An orthoator and its I-V curve. 

To be able to represent each piece of the PWL function in a 
behavioral model van Bokhoven and Leenaerts in [7] makes use 
of an ideal diode. To be amenable to Modified Nodal Analysis 
(MNA), we will call this “new” basic two-terminal circuit element 
an orthoator, as illustrated in Figure 1. An orthoator describes the 
behavior of a circuit with “extremely hard” nonlinearities, and it 
is defined in terms of the current j through the orthoator and the 
voltage u across the orthoator as 

u  ≥ 0,   j ≥ 0,    uTj = 0.  (1) 

The relationship between u and j is defined as the linear 
complementarity problem (LCP) [7].  
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i=f(v)
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Figure 2: A PWL curve example. 

Now consider the one-dimensional continuous PWL function i = 
f(v) shown in Figure 2. It can be represented by the so-called 
state-model shown below [7]: 
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The standard LCP resulting from circuit formulation can be re-
written from (2) as follows:  

00 ≥jjDj
T  (3) 

where u (voltage across orthoator), j (current through orthoator) 
and q (input sources) are column vectors of size m x 1 and D 
(linear components of the circuit) is a m x m square matrix. 

It has been shown that there exists a unique solution to (3) if and 
only if D is of class P, i.e., all the principle minors of the matrix 
are positive [2].  Then explicit solutions of j and u can be 
obtained explicitly using an operator called the modulus 
transform, which is stated here, as [7]: 
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and is equivalent to the mapping u, j → z which satisfies: 

( )
2

juz +
=  and ( )
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juz −

=  (5) 

Consider the 1-dimensional (1-D) case (m = 1). The solution is u 
= q, j = 0 or j = -q/D, u = 0.  This result is clearly seen by 
plugging in a zero for u to find j and vice versa.  
The solution to the case m = 2 can be broken down to solve the 
problem of m = 1. Given the 2-D LCP: 

 (6) 
 

Assume j1 = 0, then the following is true u1 = D12*ĵ2 + q1 and û2 
= D22*ĵ2 + q2.  The formulation of û2 is equivalent to solving a 1-
D case. Assume û2 = 0, then ĵ2 = -q2/D22.  Substitute ĵ2 into u1 
yields the u1 expression found in (7).  To find j1 then u1 must be 
zero leading to: 0 = D11*j1 + D12*j2 + q1. Evaluating the function 
in terms of j1 leads to the equation found in (7). The solutions for 
u2 and j2 are found the same way and are shown below. 

 (7) 
 

In general, an n-dimensional (n-D) case can be found in the same 
way by breaking the problem down into smaller matrices. The n-
D case leads to n levels of the modulus transform. Clearly this 
procedure takes an exponential amount of computation and space.  
In [8] a new graph-based method was introduced called the 
complementarity decision diagram (CDD) to reduce the 
computation and space by sharing these n levels of sub-
expressions. For relatively large circuits, this technique can be 
orders of magnitude more efficient than the original method. 

3. MNA FORMULATION OF PWL CIRCUITS AS 
THE MIXED LINEAR COMPLEMENTARITY 
PROBLEM 
To facilitate the MNA formulation, we can represent the device 
described by the equations in (2) as a network of linear resistors, 
ideal voltage sources, and orthoators as shown in Figure 3. 

The first piece with slope m0 in Figure 2, is represented in Figure 
3 by a resistor of value 1/m0 and a voltage source whose value is 
in terms of the slope and the extrapolation of that piece to the 
current axis (f(0)). This is the starting piece for PWL modeling. 
Each branch in this circuit represents a slope update on the 
previous piece in the PWL curve, which means that a new piece is 
reached once a new branch is turned on. Using this technique, any 
PWL circuit can be represented by a circuit consisting of a set of 
linear elements, (controlled) sources and orthoators. 
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Figure 3. Network representing the PWL curve in Figure 2. 

The MNA method then can be applied to solve PWL problems 
with an appropriate stamping rule for the orthoators. During the 
MNA stamping, orthoators are treated as special voltage sources. 
The voltage across an orthoator is u while its current is j. So, in 
MNA stamping, u goes to the right-hand side (RHS) of the MNA 
formulation while j is treated as an extra current variable. Noting 
that an orthoator is generally connected in series with a linear 
resistor and a voltage source (directly coming from the PWL 
mapping for circuit representation to realize the slope update), we 
can further treat them together as a macro circuit element. The 
compact MNA stamping for such a macro circuit element is as in 
Figure 4:  
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Figure 4. MNA stamping rule for the orthoator. 

In general, the MNA formulation of PWL circuit equations can be 
written in the following mixed linear complementarity problem 
(MLCP) matrix: 
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jTu = 0 and j, u >=0 (8)  
where x  is the vector of MNA nodal voltages and extra current 
variables, j is the vector of current variables of orthoators, b is the 
RHS vector of voltage sources and current sources, u is the vector 
of voltages across orthoators,  o is the vector of voltages across 
voltage sources related to orthoators. The matrix M is the 
equivalent admittance matrix with all orthoators open or off. A is 
the incidence matrix of orthoators. N is the resistance matrix of 
linear resistors related to orthoators. 
Suppose there are m orthoators and n MNA variables. Then the 
matrix M is of rank n*n, matrix A is of rank m*n, matrix N is of 
rank m*m. It should be noted here that matrix A is a very sparse 
matrix with at most two non-zero elements in each column, and 
matrix N is just a diagonal. If M is not singular, we can eliminate 
x from (8). This allows the MLCP matrix to be converted to a 
standard LCP as considered by van Bokhoven and Leenarets in 
[7]: 

u = Dj + q (9) 
where obMAqNAMAD +=+= −− 1T1 -  ,T . Noting that M and A are 
both sparse admittance matrices, the matrix D and the vector q 
can be computed from at most four cofactors of the matrix M and 
its determinant. Since typical analog circuits only require a few 
orthoator macro circuits to represent the nonlinearity, then, only 
some cofactors and the determinant of matrix M need to be 
represented symbolically. This can be implemented efficiently 
using determinant decision diagrams introduced originally by Shi 
and Tan in [11]. 

4. EXPERIMENTAL RESULTS 
The proposed new method has been implemented into a prototype 
CAD program. Results from applying the resulting program to a 
behavioral model of the µa741 and a generic hard nonlinearity is 
presented in this section. For all the examples, our program reads 
in the circuit description in the SPICE-like format, sets up the 
MLCP formulation based on the framework of MNA, and then 
constructs symbolically all the solutions. Numerical results are 
obtained by repetitively evaluating the resulting symbolic 
expressions. We use the numerical simulations as a form to 
validate the symbolic expressions.  
a) Example 1 
The first example is a generic circuit that behaviorally models a 
strong nonlinearity. In other words, our output waveform should 
exhibit abrupt changes in its behavior. To compare this to SPICE-
like algorithms we also implemented a smoothing algorithm, 
which is commonly performed for numerical simulators. The 
smoothing algorithm implemented was formulated in [6], which 
replaces the absolute operator by a hyperbolic cosine as done in 
[6]. Note that the modulus transform is related to Chua’s model 
by 

 (10) 

So x is replaced with the following: 
    , (11) 
 

where κ is the smoothing parameter. The closer κ is to zero the 
closer the expression evaluates to x. To illustrate the effect of 
the smoothing function the circuit in Figure 5a is simulated. Since 
there are two orthoators used in this example, then we are solving 
a 2-D LCP matrix as in (12).  The symbolic expression 
representing the voltage at node V3 is shown in equation (13), 
notice the expressions representing the voltage across the 
orthoators are encapsulated by the modulus transform. 

R1 R4-u1+

+u2-

R2

R3

j1

 j2+
-

E1

+
-E2

V3 L

L

8 8.5 9 9.5 10
x 10-8

-2

-1.5

-1

-0.5

0

0.5

Time (sec)

V
3 

(s
ec

)

Not Smoothed
Smoothed

 
(a) (b) 

Figure 5. (a) Circuit used for smoothing analysis.                    
(b) A section of the transient analysis. 
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A transient sweep is performed and the waveform at node V3 is 
shown in Figure 5b. The solid curve is the results of using the 
modulus transform, while the dotted curve is the results from 
using the smoothing function. The smoothing parameter, κ, was 
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set to 1. The smoothing function smoothes out the glitches seen in 
the modulus transform data as shown in the solid circle in Figure 
5b.  Taking the Fast Fourier Transform (FFT) of this data reveals 
differences in the distortion components. The normalized 
harmonic (HD) and intermodulation (IM) distortion components 
are shown in Figure 6.  What is opposite to the intuition is that 
smoothing actually yields larger distortion of the magnitude at 
third order harmonics and intermodulation distortions. 
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 Figure 6. HD and IM distortion components of the Figure 5. 

b) Example 2 

The second example is a commonly used µa741 behavioral model 
shown in Figure 7 [13]. Note that it contains a nonlinear output 
resistor to simulate output limiting and a nonlinear 
transconductance simulating slew rate limiting. The parameters 
used for the model are taken from [13]. Figure 8a shows the time-
domain waveforms when the input is a small-signal sin waveform 
computed by our method (PWL) and by SPICE. Clearly we can 
see that SPICE’s smoothing leads to an over-estimation of the 
signal magnitude. Figure 8b shows the computed nonlinear 
behaviors when the input is applied to a large signal by both our 
method and SPICE. In this case, both simulators captured the 
limiting behaviors. 
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Figure 7. µa741 behavior model.  
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Figure 8. (a) µa741 result with the Vin amplitude = 1mV.        
(b) µa741 result with the Vin amplitude = 0.1V. 

The harmonic distortion components of the µa741 time-domain 
results in Figure 8 are shown in Table 1. This clearly shows that 
SPICE and PWL obtain very similar results. 
  

Table 1. Normalized Harmonic distortion of µa741. 

Simulator Fundamental HD2 HD3 

PWL 35.2808 0.9099 0.7274 

Spice 35.2362 0.9102 0.7317 

5. CONCLUSIONS AND FUTURE WORK 
In this paper, we presented a method for analyzing circuits with 
device and model hard nonlinearity characterized by piece-wise 
linear (PWL) I-V functions.  The method is based on the modified 
nodal formulation of PWL circuits, where PWL devices are 
replaced by a network of linear resistors, (controlled) sources and 
orthoators. The resulting formulation is known as a mixed linear 
complementarity problem (MLCP), which can be converted to a 
standard LCP by implementing a determinant-decision diagram 
based procedure. Complementarity-decision diagrams were used 
to exploit the sharing of common sub-expressions of the LCP 
functions. The method has been implemented as a prototype tool 
and tested on a number of circuits.  
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