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ABSTRACT 
Reduction of an extracted netlist is an important pre-processing 
step for techniques such as model order reduction in the design 
and analysis of VLSI circuits. This paper describes a method for 
realizable reduction of extracted RLCK netlists by node 
elimination.  The method is much faster than model order 
reduction techniques and hence is appropriate as a pre-processing 
step. The proposed method eliminates nodes with time constants 
below a user specified time constant. By giving the freedom to the 
user to select a critical point in the spectrum of nodal time 
constants, this method provides an option to make a tradeoff 
between accuracy and reduction. The proposed method preserves 
the dc characteristics and the first two moments at all nodes. It 
also recognizes and eliminates all the redundant inductances 
generated by the extraction tools. The proposed method naturally 
reduces to TICER [13] in the absence of any inductances.   

Categories and Subject Descriptors 
J.6 [Computer-Aided Engineering]: Computer-aided design 
(CAD), B.7.2 [Integrated Circuits]: Design Aids – Simulation. 

General Terms 
Algorithms, Performance, Design, Reliability, Verification. 

Keywords 
passive, realizable, model order reduction, simulation, 
interconnect, crunching. 

1. INTRODUCTION 
With increasing frequencies and faster signal transistion times, on 
chip inductive effects are becoming increasingly important [1]-
[2]. Consequently, many commercial and proprietary extraction 
tools, such as [3], generate RLC circuits for high performance 
designs. These circuits together with the non-linear drivers are 
then analyzed by fast timing simulators such as [4] or by 
interconnect-centric tools such as RICE [5] using linearized 
models of the drivers. Due to the large amount of data typically 
generated by extraction tools, significant run-time and memory 
issues affect the analysis tools. Therefore, in the past decade there 
has been a significant focus on model order reduction methods 
which attempt to model the extracted netlist by a smaller model 
with minimal loss in accuracy.  

Starting with AWE [6], methods such as [7], [8] use moment 
matching - either explicitly or implicitly - and projection 
techniques to generate a low order approximation of the original 

circuit. More recently, PRIMA [9] modified these techniques to 
guarantee the passivity of the reduced circuit. Reducing an 
extracted netlist is an important step before the netlist is fed into 
tools such as AWE and PRIMA so that they run faster. In order to 
take advantage of the model order reduction techniques, it is 
important to have a realizable netlist crunching method, i.e. RLCK 
in – RLCK out feature. 

Realizability is important because this avoids the modification of 
mainstream analysis tools to handle reduced state-space or 
transfer function representations [10], since these tools are usually 
geared towards reading circuit netlists. Moreover, some analysis 
tools such as circuit checkers can only accept inputs in terms of 
RLCK circuits. In addition to realizability, however, maintaining 
sparsity is also important when reducing a circuit with a large 
number of ports. Even though the original circuit is large, it is 
very sparse since each node is only connected to a few nodes. It is 
important to maintain sparsity since model order reduction 
techniques perform better on sparse circuits. 

Circuit reduction approaches based on Gaussian elimination 
include [11]-[12]. A different approach based on Gaussian 
elimination - called TICER - was presented in [13] for RC 
circuits. By selectively removing the non-port nodes of the 
original circuit, a smaller, realizable, passive RC circuit is 
produced. A method to reduce RLC netlists with coupling-
inductors was presented in [14] but it requires matrix inversion 
and long run-time. In this paper, we extend the TICER approach 
to reduce general RLC circuits including coupling-inductors using 
run-time in the order of the number of nodes in netlist. We also 
present a heuristic to control the sparsity of the reduced circuit. 
This is similar to the technique presented for RC circuits in [11]. 
The presented reduction algorithm is much faster than model 
order reduction techniques and can be used as a pre-processing 
step for these techniques. This paper is organized as follows. The 
underlying theory behind the proposed reduction method is 
discussed in section 2. In section 3, a high level algorithm for 
reducing RLC circuits is presented. Experimental results are 
provided in section 4. Finally, section 5 concludes the paper. The 
appendix describes the procedure to reduce RLC circuits with 
coupling-inductors. 

2. THEORY 
Consider a source free RLC circuit consisting of n nodes. The 
nodal voltages must satisfy the following equation in the s-
domain: 
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where Y(s) is the n x n admittance matrix. Consider the ith node of 
the circuit and its k neighbors as shown in Figure 1(a). The ith row 
of (1) is given by: 
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Figure 1. A general node in an RLC circuit. Admittances are 
added between node 1 and other neighbors of node i due to 

elimination of node i. 
In order to eliminate Vi from the system (which is equivalent to 
eliminating the ith node), we solve for Vi using  (2): 
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and substitute for Vi in the k equations where Vi occurs. Consider 
the first neighbor of i. Its equation is now given by: 
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where 
1̂Y  is the sum of all admittances from node 1 except to 

node i and k1 is the number of nodes connected to node 1.  The 
above equation can be simplified to 
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Note that this is equivalent to adding k - 1 new elements between 
node 1 and the k -1 former neighbors of node i, (see Figure 1(b)). 
Specifically, for any two neighbors of node i, say m and n, the 
elimination of node i results in the addition of a new element 
between nodes m and n, whose admittance is given by: 

inmmn Yyyy )(= . (6) 

Thus, repeating this process for all the k neighbors of i will result 
in the addition of k(k-1)/2 new elements. Note that the elimination 
of node i may introduce a fill-in in the original Y matrix of (1). 
For instance, referring to (6), if the (m,n)th entry in Y was a zero, 
i.e., no element existed connecting m and n, elimination of node i 
would produce a fill-in in the (m,n)th entry of Y. In general, the 
formula for computing the fill-in produced by eliminating node i, 
φi, with k neighbors is given by 

pkkki −−−= 2)1(φ . (7) 

where p is the number of elements connecting the neighbors of i 
in the original system.  

Note that the new admittance given by (6) will be a polynomial in 
s. Without loss of generality, we assume that each admittance 

connecting a pair of nodes in the original system in Figure 1 
consists of R, L, and C connected as shown in Figure 2. 
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Figure 2. An admittance branch connected to node i 

In most practical circuits, one or more of these elements will be 
zero. Note that this topology is general enough to handle any RLC 
circuit including coupling capacitances. If  no inductance is 
incident on the node, then (6) reduces to the TICER case and we 
proceed as outlined in [13]. In that case (6) can be expressed by 
(8). 
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case (6) can be expressed as 
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is the sum of all susceptances (reciprocal 

inductances) connected to node i.  

For every node in the circuit two time constants are defined: the 
RC time constant given by 

iiRCi GC /=τ , and the LC time 

constant given by 
iiLCi BC /=τ . The nodal time cosntant at a 

node i is given by:  
),max( LCiRCii τττ = . (10) 

A node i is said to be a quick node if: 

maxmin /2 ωπττ =<i , (11) 

where τmin is a user defined time constant below which a node is 
considered quick and depends on the maximum frequency of 
interest in the circuit, ωmax, as given above. The selection of τmin is 
circuit specific and is discussed in sections 3 and 4. According to 
(10) and (11), both time constants of a quick node must be less 
than τmin. Note that τmin is proportional to 1/smax as given by (11). 
Hence a quick node satisfies the following approximations: sCi < 
Gi, Gi < Bi /s, and sCi < Bi / s.  

To eliminate a quick node with the above general RLC branch 
(Figure 2) two cases can be considered. In the first case, τRCi is 
much larger than τLCi and  (8) can be used as in TICER [13]. With 
the quick node approximation ( sCi < Gi,), (8) can be expanded 
into Taylor series upto first order:  
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Here the constant coefficient of (12) gives the required 
conductance to be inserted between node m and n to eliminate 
node i. The coefficient of s gives the capacitance value to be 
inserted.  In the second case, τLCi is much larger than τRci, (9) is 
used. Again with the quick node approximation ( sCi < Bi /s), (9) 
can be expanded into Taylor series: 
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The coefficient of 1/s in (13) gives the required susceptance 
(reciprocal to inductance) to be inserted between nodes m and n to 
eliminate node i. The coefficient of s gives the capacitance value 
to be inserted. For the general case, when both R and L are present 
with C as in Figure 2, the rules for eliminating node i based on the 
equations (12) and (13) are derived in Figure 3. The values for the 
conductance and the susceptance come directly from the equations 
(12) and (13) respectively. But two expressions for capacitance 
are obtained from (12) and (13). If τRCi is larger than τLCi the 
expression for capacitance is taken from (12) and when τLCi is 
larger than τRCi the expression for capacitance is taken from (13). 
Therefore, all but one of the rules shown in Figure 3 for merging 
any two branches connected to a particular node i can be easily 
derived from (12) and (13). The exception is for the case when 
nodes m and n are connected to node i through capacitances. In 
that case the value of the capacitance to be inserted is cmcn/Ci, 
which is the series combination of the capacitances. Since only 
positive valued RLC elements are added during node elimination, 
the passivity of the reduced circuit is guaranteed by construction. 
In contrast to TICER, we do not consider the notion of slow 
nodes. This is because in practice the lowest frequency of interest 
is zero, i.e., the DC operation of the circuit is also required. In the 
following section, a high level algorithm implementing these ideas 
is presented. The appendix describes a method to reduce RLC 
netlists with coupling-inductors. 
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Figure 3. Rules for eliminating node i 

It should be noted that the derivation of the above method of node 
elimination is based on two approximations, namely dominant τRCi 
and dominant τLCi approximations. Therefore, the correctness of 
the method is dependent on the validity of these two 
approximations. If for any node the two time constants (τRCi and 
τLCi) are far from each other the proposed method will work very 
effectively. If the two time constants are comparable (rarely 
happens in practice) then the reduction will introduce larger error.  
In such situation it is suggested not to eliminate that node if very 
low error is required. Therefore, to eliminate a node from the net 
list with less error two criteria have to be considered. First the 
node has to be a quick node, and second the two time constants 
should not be comparable. Tuning the threshold for these two 
conditions produces a tradeoff between accuracy and reduction. 

3. REDUCTION ALGORITHM 
The high level algorithm is shown in Figure 4. All the nodes in 
the original circuit are stored in a priority queue with the node 
with the smallest nodal time constant at the head of the queue. In 
addition to checking for the time constant of the node, we also 
check if the fill-in due to this node is less than some user specified 
threshold φmax. If unspecified this threshold defaults to zero. This 
heuristic is added to ensure that the admittance matrix of the 
reduced circuit remains sparse. Of course, this heuristic may cause 
the algorithm to get stuck in a local optimum where even though a 
node’s time constant may be less than τmin, it may fail the fill-in 
check. However, for most interconnect circuits, such as those with 
a tree like topology, this algorithm will produce reasonably sparse 
reduced circuits. On the other hand, for very dense topologies 
where each node has several neighbors, the algorithm will 
perform poorly. While not explicitly shown in Figure 4, certain 
non-port nodes may also be marked as required by the user in 
which case these nodes cannot be eliminated. A check for this can 
be easily added to the algorithm. 

Figure 4. Circuit crunching algorithm 

One natural question arises regarding the choice of τmin. While 
signal transition times and operating frequencies do play a part in 
the choice, a histogram showing the distribution of the time 
constants can be very helpful. As we show in the next section, a 
large number of nodes typically have very small time constants. 
By choosing τmin appropriately, these nodes can be eliminated 
with almost no loss in accuracy. A histogram helps in placing the 
time constants of all the nodes in the circuit in perspective as 
described in the next section. 

4. RESULTS 
We implemented the reduction algorithm in C++. Specifically, p 
was assumed to be zero in (7). We also required φmax = 0, which 
guarantees no refills by the reduction algorithm and maintains the 
sparsity of the Y matrix. Therefore, only nodes with a degree less 
than or equal to three were candidates for elimination. By 
applying the methods on some smaller industrial circuits (Table 1 
and Figure 5) with less than 500 hundred nodes an average 50% 
reduction of circuit elements and nodes is obtained with less than 
1% error in rise time and delay calculation. If the allowable 
margin of error is around 3% an average reduction of 55% can be 
achieved by selecting a higher τmin.  Higher error tolerance 
(around 5% and higher) will give even higher reduction in the 
range of 55 to 70%. 

CRUNCH_NETLIST (τmin, φmax) 

1. Place all non-port nodes of the circuit in a priority queue 
sorted by local nodal time-constants. 

2. i = head of the priority queue 
3. while (queue is not empty AND τi < τmin AND φi < φmax) 
4. set S = {neighbors of i} 
5. if (1/Bi == 0) 
6. eliminate i according to the TICER quick-node 

rules in [13]  
7. else 
8. eliminate i according to rules in Figure 3 
9. update time-constants of nodes in set S (neighbors of i) 
10. i = head of the priority queue 
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For symmetric and uniformly distributed RLC networks this 
method will give very high reduction. For a balanced and uniform 
H-tree network a reduction of about 90% is obtained with almost 
0% error (Table 2 and Figure 6). With this amount of reduction a 
twenty-fold decrease in simulation time is obtained. Such a high 
reduction of the simulation time is due to the symmetric and 
uniform nature of the original and resultant reduced circuits. 

Table 1: Small and Medium Industrial Circuits 

Original Original
taumin (ps) - 0.002 20 200 - 80 180 192
Nodes 81 55 43 29 227 158 147 127
Total Elements 152 105 79 54 526 290 271 241
% Reduction of nodes - 32 47 64 - 30.39 35.24 44.1
% Reduction of elements - 31 48 64.5 - 44.87 48.47 54.2
% Error in Rise Time - 0.02 0.8 0.7 - 0.09 3.1 13.7
% Error in Delay - 0.36 0.36 11 - 0.34 0.97 7.5

Small industrial circuit (less 
than 100 nodes)

Medium industrial circuit 
(several hundred nodes)

Reduced circuit for 
different taumin (ps)

Reduced circuit for 
different taumin  (ps)

 
 
 
 
 
 
 
 
 

 
(a) (b) 

Table 2: Balanced and uniform H-tree networks. 

Original
taumin (ns) - 0.1 0.5 1
Nodes 2502 666 416 128
Total Elements (R: 1250, L: 
1250, C: 1250)

3750 997 617 190

% Reduction of nodes - 73.4 83.4 94.9
% Reduction of elements - 73.4 83.5 94.9
% Error in Rise Time - 0.00 0.01 0.03
% Error in Delay - 0.00 0.00 0.00

Reduced circuit for 
different taumin (ns)

 

 
Figure 6. Sample signals from balanced and uniform H-tree 

network 
The above small and medium sized circuits do not give clear idea 
of speed up (reduction of actual simulation time) due to nodes and 

elements reduction. With these objectives in mind the method is 
applied to an extracted clock distribution network from a 
commercial high-performance microprocessor. The extracted 
circuit contained over 678,608 elements and more than 10,000 
sinks. A histogram of the distribution of the nodal time constants 
of this circuit up to a maximum of 100ps is shown in Figure 7. 
Based on this histogram, we made three choices of τmin for circuit 
reduction: τmin=15 ps, τmin=25 ps, and τmin=35ps. The results of 
running RICE (v5) on the original as well as the three reduced 
circuits are shown in Table 3 for an input rise time of 50ps. A 
fourth order approximation was computed at every sink. Clearly 
τmin=15 ps offers the best choice resulting in over three times 
decrease in analysis time with almost no loss in accuracy. These 
reductions in run-time are expected to be much higher when 
nonlinear elements are combined with the interconnects. Note that 
the reduced RLC circuit can be readily inserted in any simulator 
such as SPICE or AS/X. As expected, choosing larger values of 
τmin resulted in a loss of accuracy. Besides improving the analysis 
time, the reduction algorithm also reduced the storage 
requirements by one-third. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Table 3. Reduced commercial circuit statistics 

Original
taumin (ps) - 15 25 35
Nodes 380K 148K 141K 113K
Total Elements (R: 368K, 
L: 72K, C: 239K) 679K 285K 277K 239K

% Reduction of nodes - 60.8 62.8 70.1
% Reduction of elements - 57.9 59.2 64.6
% Error in Rise Time - 0.05 -1.80 -11.1
% Error in Delay - 0.25 10.5 21.7
Speedup - 3.23 3.26 3.54

Reduced circuit for 
different taumin (ps)

 

The average reduction at different levels of error in delay and rise 
time calculation is shown in Figure 8 from the reduction statistics 
of all the circuits presented above. It is observed that if the error is 
limited to 1% an average reduction of 60% is obtained. If the 
error is allowed to go up to 3% an average reduction of 66% is 
obtained. At 5% error, average 67% reduction can be achieved. It 
is observed from Figure 8 that beyond 67% reduction point, for a 
smaller gain in reduction a very high error is introduced. This is 
because at these amounts of reduction many critical circuit nodes 
and elements are thrown out of the netlists. Consequently the 
circuit behavior changes sufficiently and very high error in 
performance evaluation occurs. 

The RLCK node elimination scheme (see Appendix) was applied 
to a 16-bit coupled bus with 18,000 elements (3200 R, 3200 L, 

Figure 8. % Error vs. Reduction            

Time (ps) 

Original and 60% 
Reduced Circuit with 

less than 1% error 

Original 

Time (ns) 

45% Reduced Circuit 
with 4% error. 

Time (ns) 

Original and 90% 
Reduced Circuit with 

less than 1% error 

Figure 5. (a) Small circuit (b) Medium circuit 
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3200 C, 8400 K) including coupling-inductors and 9617 nodes. 
The circuit was reduced down by 93% with the new circuit having 
189R, 205C, 189L, and 916K.  A sample output for a middle bit is 
shown in Figure 9. The output signal for the reduced is almost 
identical to the signal in original circuit with 18,000 elements. 
Error in rise-time and delay was almost 0%. 

0 0.2 0.4 0.6 0.8 1
-9

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Original and 94%
Reduced RLCK
circuit with almost
0% error

 
Figure 9. 16-bit coupled RLC bus with coupling-inductors 

5. CONCLUSION 
This paper presented a realizable reduction method of RLC 
circuits (with coupling-inductors) by nodal elimination. This 
method is useful in analyzing and verifying large RLC networks. 
If model order reduction is not realizable it produces reduced 
mathematical model of transfer function or reduced state 
equations. Hence all downstream circuit simulation and associated 
tests have to be modified to handle these reduced mathematical 
representations of the circuits. Since the proposed realizable 
reduction method is an RLCK-in to RLCK-out, all standard 
simulators can handle the reduced circuits without any 
modification. Reduced netlist also guarantees faster simulation, 
lower memory and storage requirements. It is shown that for an 
average of 40 to 50% reduction of nodes and elements error in 
waveform shape calculation is less than 1%. If 3% error is 
allowed a reduction of about 60 to 70% is obtained. Higher 
allowance of error results in an even higher reduction. Therefore, 
the user has the freedom to make the trade-off between accuracy 
and speed. Circuits with coupling-inductors are also reducible 
with the presented algorithm (see Appendix). 

APPENDIX: RLCK NETLIST CRUNCHING 
The circuit reduction scheme presented in section 2 can be 
extended easily to include RLC circuits with coupling-inductors 
(represented by K). Figure 10 shows the general node i of an RLC 
circuit with coupling-inductors. In Figure 10, each admittance has 
been decomposed into the generalized RLC branch form of Figure 
2 and coupling-inductors are added to the RL branch. 

The ith row of equation (1) is now given by: 
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Unlike equation (2), y here represents the RL branch only and c 
represents the capacitive branch of the generalized admittance. 
Coupling-inductors are represented by Mj,x (j=1..k, x=a,b,..) in 

equation (14) and they induce a voltage drop on the RL branch 
proportional to sMj,xIj,x where Ij,x is the current passing through an 
inductor which is coupled with inductor Lx. For generalized 
admittance j, there are ja coupling-inductors. 
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Figure 10. A general node in RLC circuit with coupling-

inductors 
In order to eliminate Vi from the system, we solve for Vi using 
(14) and obtain (15). Equation (16) describes the row 
corresponding to the first neighbor of node i where k1 is the 
number of nodes connected to node 1. 
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To eliminate node i, we substitute value of Vi as from (2) in 
equation (3) and obtain: 
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where 1̂Y  is the sum of all admittances (RL) from node 1 except to 
node i and 

1Ĉ  is the sum of all capacitances from node 1 except to 

node i. Equation (17) can be simplified to: 
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(18) 

Note that this is equivalent to adding k-1 new elements between 
node 1 and the k-1 former neighbors of node i. Equation (18) is 
very similar to equation (5) except that the admittances are split 
between RL and C branch and there are additional terms 
representing coupling-inductors. Specifically, for any two 
neighbors of node i, say m and n, the elimination of node i results 
in the addition of a new generalized admittance between nodes m 
and n whose equivalence is given by: 
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(19) 

where it is assumed that current flows from m to i and from n to i 
before eliminating node i and it flows from m to n after 
eliminating node i. For low frequency approximation, s2 terms in 
(19) are ignored. Thus, when node i is eliminated, the coupling-
inductors present on the RL branch between node m and node i 
are copied over to the new RL branch between nodes m and n. 
Similarly, all the coupling-inductors present on the RL branch 
between node i and node n are also copied over to the new RL 
branch between nodes m and n. The inductance, resistance, and 
capacitance of the new admittance between nodes m and n are 
obtained the same way as for circuits without coupling-inductors. 
Thus, for circuits without coupling-inductors, the elimination 
procedure falls back to the scheme presented in section 2. Figure 
11 shows the rules for eliminating node i for a general RLC circuit 
with coupling-inductors. 
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