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Abstract— We proposea realizable RCLK-in-RCLK-out parasitic re-
duction technique. The method employsgeneralizedY-A transformation.
In our method, admittances are kept in their original rational forms
of s, and their orders are reduced by truncating high-order terms.
Therefore reduced admittances match the low-order terms in exact
admittances. First-order realization of admittances is guaranteed, and
higher-order realization is achieved by template optimization using
Geometric Programming. The algorithm uniquely uses common-factor
identification and cancelation operations to make Y-A transformation
numerically stable. The experiment shows that our method can achieve
higher reduction ratio than TICER and comparable simulation results
with PRIMA.

Categories& Subject Descriptors: B.7.2 Simulation,B.8.2 Perfor
manceAnalysis & DesignAids, G.2.2 GraphTheory

General Terms: Algorithms, PerformanceDesign.

Keywords: Y-A Transformation,model order reduction, parasitic
reduction.

1. INTRODUCTION

With ever increasingdesigncompleity hugeamountof extracted
interconnectlatasizehaspushedhe capacityof existingtiming/noise
analysisand transistorlevel simulationtools to the limits. Recent
work in the model order reductionhasbeenfocusedon generating
stable and passie macromodels[1]-[6]. However, these models
cannotdirectly be fed into a generalsimulator Integratingrealizable
reductiontechniguesnto designflow of realapplicationsshavs more
adwantanges.For example, RC-in-RC-outlike reductiontechnique
hasbeenusedwidely in the extractionandtransistorevel simulation
stage.

Liao [7] proposesa methodto realizereducedRC macromodels
from progressiely memgedsub-circuits.Sheehanj8] presentsan RC-
in-RC-outreductionschemenamedTICER, in which internalnodes
with extremely large and small time constantsare eliminatedusing
Gausseliminations.A nice property of the methodsis that reduced
RC circuits can be plugged back into the systemand simulated
usingary generalsimulator At the sametime they presere the zero
and first order of moments.But thesemethodsonly work for RC
networks.

In anotheraspect,topological analysis[9] is an approachto cal-
culating driving-point admittancesising Cramers rule in s-domain.
Thedeterminanbf anadmittancematrix of a passie network without
mutual inductancess equalto the sum of all the tree admittance
productsof the network. Hencethe method avoids cancelationsn
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the expansionof determinantsHowever, enumeratingall the treesin
a large network is very difficult.

Recentlylsmail proposeDTT to approximatearansferfunctionsin
tree-structuredRLC networks by direct transferfunction truncations
[10]. The transferfunctions are kept in the rational form so that
low-ordermomentsarematchedmplicitly. Sincea truncatedransfer
function may not be a positive real function, the method is not
compatiblewith generalsimulatorseither

Unsatisfiedwith these limitations, we devise a nev RCLK-in-
RCLK-out reductionmethodbasedon Y-A transformation[11] [12]
for generalRCLK-VJ! linear networks. The ideais that, given such
a network, we perform Y-A transformationon all internal nodesin
an efficient order Y-A admittancesn eachtransformationare kept
in the rational form, and admittancesvhoseorder is higher than a
thresholdg will be truncated.Unlike topologicalanalysisand other
symbolic approachesthe new reductionmethodonly evaluatesthe
first 8 termsin the denominatorand numeratorof A admittanceg.
Discardedhigh-orderterms, however, do not affect the preseration
of thelow-orderterms,i.e., the low-ordertermsarepreciselythe first
B + 1 termsin exact admittances.

The main contritution of this paper:

1) Realizability of reducedRCLK network is achieved via Y-A
transformatiorand GeometricOptimization;

Fidelity of low-ordertermsin A admittancesarekept, andthe
ordersof A admittancesre reducedto no morethan g;

First 3+1 momentsf exactadmittancesirematchedmplicitly

by reducedY-A admittancesincluding the zeroordermoment
for DC correctness;

Two kinds of common-&ctor effects are first discovered in

Y-A transformation.The findings lead to essentialnumerical
improvementto Y-A transformation.

The remainingof the paperis organizedas follows. Generalized
Y-A transformatiorformula are given in Section2. Common-actor
effectsareillustratedandsolvedin Section3. In section4, we present
the RLC realizationmethodusingGeometridProgrammingSection5
reviews the proposedeductionalgorithm.Section6 shavs examples
and experimentalresults.

2)

3)

4)

2. GENERALIZED Y-A TRANSFORMATION

Firstwe clarify the assumptionandnotationswe will usethrough-
out the paper We confineour discussiorto linear RCLK-J networks.
We assumehatall currentsourcesareshuntto groundandall storage
elementshave no initial conditions.?

« ni denoteghe k-th labelednode,wherek startsfrom 0. Nodes

are eliminatedin the orderlabeled;

1A RLCK-VJ network containsresistorscapacitorsinductors K elements,
independentoltageand currentsourcesonly.

2y and A admittancesare referring to inputs and outputs of a Y-A
transformation.

3Voltage sourcesand floating current sourcescan be corverted to shunt
current sourcesusing sourcetransformation,and initial conditions can be
simply modeledas constantcurrentor voltagesourcesin s-domain.
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« when the k-th node is eliminated, the network will be up-
dated accordingly We label the network (graph) before the
elimination as G(Vk, Ex), and the network (graph) after as
Grt+1(Vit1, Er41);

o (n;,n;) denoteshe branchbetweenn; andn;, Y; ; the admit-
tanceof (ni,n;), I; the currentsourceimpinging on n;, and
I'; the neighborsetof n;. A superscriptk) on thesenotations
standsfor “in G”;

« Thefirst neighborof n; is thenodein I'; with the smallestabel.

OurY-A transformatioris generalizedn thefollowing threeways:

1) it identifiesand cancelscommonfactorspresentin A admit-
tancesto assurenumericalstability;

2) it covers circuits of generaltopology in contrastto DTT,
which is tree-basedAside from RLC, it alsocovers mutual K
elementsandcurrentsourceswhich call for moresophisticated
sourcetransformatiorbecauseof common-actor effects.

3) it eliminatesnodesefficiently by dynamicallychoosingthe one
with the minimum degree.In TICER, however, the degree of
quick andslow nodesis not a concernin its orderingscheme.

We cover K-elementtransformationin the next sub-sectionfol-
lowed by Y-A transformationformula. Common-&ctor effects will
be coveredin the next section.

2.1. Corversion of Mutual K Branch

RLC canbe handleddirectly by Y-A transformatiorbecausehey
have well-knovn admittanceforms in s-domain. Mutual inductors,
on the contrary have no simpleadmittanceform. Becausehe branch
voltagew; of a mutualinductorrelys on currentvariationsin more
thanbranchesncluding itself

Vi=Liilis+ Lislss+---.

Including mutual inductorsis difficult, becausewe are not able to
eliminate a node if one of its incident branchinductively couples
with more thanone branch.

Alternatively, with K elementsjnductive couplingcanbe modeled
in sucha way that variation of a branchcurrentreplieson multiple
coupling branchvoltages.I-V relationshipof mutualK elementss
given by

K Ko

SR+ =2V =1 ()
S S

whereV;’s are branchvoltages.
In orderfor usto invoke Y-A transformationon arbitrary nodes,
we still have to changemutual-K elementsto self-K elements.In

Nia N2a
+ +
I; Kio I
S
K K
Vi K \ 22y,
N1y n2p

@)

Fig. 1.  Corversion on mutual K in s-domain: (a)gven mutual K; (b)
corvertedself K.

(b)

Fig. 1(a), the KCL equationsfor the four nodesin termsof V; and
V> canbe written as

Kll

—WVi + —VWVo=1

s s

Ki: K.

%‘G + %‘/2=IZ (2

One can check that the KCL equationsfor the four nodesin
Fig. 1(b) are exactly the sameas (2), so that (b) is equialent to
(a). However, (b) hasonly self-K elementsAlthough somevaluesin
(b) are negative, the circuit is still passie becauseK-basedmethod
guaranteeshe extractedK matrix to be positive definite.

2.2. Geneanlized Formula for Y-A Transformation

The generalizedY-A transformatiorformula for linear RCLK-VJ
networks are given belaw.

Theoem 1 (Y-A Formula): Supposeny in Gy, is the nodebeing
eliminatedVn;, n; € ng's neighbors"*)  if branch(n;, n;) is notin
G, thenit will beaddedinto Gx+1 afterny is eliminated;otherwise
anew admittancewill beaddedonto thebranchin G1. Admittance
vV for (ni,n;) is calculatedas

k k
Y (s) x Y (s)

(k+1) (k)
Y () = v (s) + .
! > Y (s)

A , V¥mer®. @3

i I # o,

(k)
I.(k+1)(s) =I-(k)(s)+ Y '(s)

1

Ji0) eT® (4
Sy ¢ T e @
For admittancesand currentsourcesnot mentionedabove, they will
be inheritedfrom G to Gg+1.

The theoremstatesthat whenwe performY-A transformationon
ng, heighborsof ng in G will becomepairwiseadjacentin G-
And if ng in G hasa currentsource,then eachof its neighbors
will have a currentsourcein Gg+1. It can be proven by solving
for v from the KCL of ng in terms of other voltage variables
and substitutingthe solution for v in other KCL equations.The
proposedransformatioris differentfrom Gausselimination,because
we caIcuIateYigk“) in (3) only up to the term of order 3. Since
computationof higherordertermsis skipped,we getan approxima-
tion of Yig.k“) whosenumeratorand denominatorare equalto the
first 8 termsin ¥;"*"'s numeratorand denominatar respectiely.
Stable admittancesand transferfunctions can be obtainedfrom A
admittancedecaus®f this nice property[14]. This furthertreatment
is notin DTT.

Corollary 1: If all RLC elementdn a linear network are positive,
v{#* in (3) is a rationalfunction of s

ARFDsm P
(B+1) 0y — =0 Op
Vi (s) = = ;

Bl(‘]k+1) ZZ:O bqsq ’

®)

anday, by in (5) are non-ngative.

Corollary 1 holds becauseno subtractionis introduced in (3).
Note that all the coeficients of pawers of s in (5) are computed
numerically

3. COMMON-FACTOR EFFECTS

Commonfactorsare introducedinto the numeratorand denomi-
natorof new admittanceand currentsourcein (3) and (4). They are
harmful becausel) they causeexponentialgronth of the magnitude
of coeficients in the numeratorsand denominators?) they create
fake zeros/poleshathampermpole/zerocapproximationUnfortunately
common-&ctor effects are presenteven thoughwe perform trunca-
tions. First we go throughan exampleto shav whenthesecommon
factors are generatedand what they are composedof. Then we
will give theoremdor their existence.The impactof common-actor
effectson Y-A admittancess discussedn the experiments.
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Fig. 2. A numericalexample shaving commonfactor existence:(a) ng is
to be eliminated;(b) n; is to be eliminated;(c) no andn; eliminated.

3.1. Exampleon Common-Ector Effects

A second-ordecircuit is givenin Fig. 2(a). We wantto apply Y-A
transformatioron ng andn; orderly First we eliminateng using(3)
in Fig. 2(a). After the transformationye have six admittancesn (b):

1 2s 1 882 1 4
Y1(2) _ 45 Y1(4) — — Y2(4) — -
2
1 6s 1 3 1 12s
YI(S) = - Yz(s) = w Y3(4) = w (6)

wherew = 1+ 7s + 2s%. Note thatw is the commondenominator
of the new admittancesn (6).

Next we eliminaten: in (b). The admittancein (c) is computed
againusing (3). for instance,

1 1
Y1(2 ) % Y1(3 )

(2) (1)
Yo' = Yo3' + 1 1 1)° )
Y1(2) +Y1(3) +Y1(4)
Insert(6) into (7),
65 + 425 +12s°
vy =2 2o (8)

w(2s + 14s2)

Note that we have consideredw as a common denominatar so
that the resultin (8) is simplified. Without identifying this common
denominatgrwe would have

6s5w? + 185%w? + 24s5%w? + 125%w? 9
w(2sw? + 6s2w? + 8s2w?) ©

w in (6) is called “type-I common factor”, when it is shared
explicity amongdenominatorsof admittancesncidentto the node
being eliminated, e.g., n1 in Fig. 2(b). Note that the existenceof
type-1 commonfactor is not straightforvard in the casethat n; is
alsoadjacento nodesbesidesng’s neighborswhenn; is eliminated,
andin the casethatothernodesareeliminatedbeforen; andafterno,
when admittancememging happensin the two casesw is generally
just a factor sharedby the denominatorof someof the admittances
incidentto n;.

To shaw the otherkind of form of commonfactorw, we go back
to look at (8). Interestingly w is presentn not only the denominatar
but alsothe numeratorbecauses + 42s* + 12s® canbe factorized
as6s(1+7s+2s”) = 6sw. Thereforew is commonfactorsharedoy
the denominatomnd numeratorof Y,;”. We computeY,;’ andYy,’
in the sameway, andit turnsoutthatw is presenin their numerators
and denominatorsas well. Becausethe presenceof w is implicit in
the numeratorswe nameit as “type-Il commonfactor”.

In summarywe have foundout that Type-lcommorfactor emepges
explicitly in the denominatorof every new admittanceimmediately
afterno is eliminated.Type-Il postponesintil n; — thefirst neighbor
of no is eliminated, when type-ll emeges implicitly in both the
numeator and denominatorof every new admittanceinduced by
n1. Both typesof commonfactors needto be treatedfor numerical
stability concerns.Sub-sectior8.2 to 3.5 clarify the compositionof
commonfactors,and their existencein A admittancesand current

2
Y2(3) =

sourcedor generallinear network reductionusingthe proposedy-A
transformationWe will make the theoremseasyto follow. Rigorous
proofs canbe found in [13].

3.2. Compositionof CommonFactor

Theoem 2: Supposeny, is to be eliminated,n, hasm neighbors
in G, and the admittanceof branchesncidentto n; are denoted

as 4L Az Am  Type-l and type-Il commonfactorsassociated

Bl’B_27---’Bm

with ng areequalto wy, which is definedas:

E;L (Ai H§n=1,j;ei BJ')
Wi,

k—1
Wk = ,  where W = H wPi. (10)
i=0
pi is the numberof denominatorsn {Bi, B, - - - , B } with factor
Ws.

Th. 2 definesthe composition of type-lI and type-ll common
factoré in a recursie way, basedon Th. 1. It is derived from the
denominatomf the new admittance in (3), andwe have simplified it
by consideringtype-l commonfactorsin denominatorsBs, - - - , Bp,.
Each node has a unique w which emepes at different times in
differentforms: it appearsexplicitly first in denominatorsaasa type-
I commonfactot and it appearsmplicitly later in numeratorsand
explicitly in denominatorsisa type-ll commonfactor w’s areatomic
commonfactors.W;, definedin (10) are composedof one or more
differentatomic commonfactors.

3.3. Existenceof Type-I CommonFactor

A Type-l common factor associatedwvith ary node n; appears
immediately after it is eliminated. We figure out that w in (10)
definesa factor that the denominatorof every newv admittancewill
have afterny, is eliminated.Evenwhenadmittancemeiging happens,
i.e., Yig.k) # 0, the factor is still with the denominatorof the
resultantadmittanceYig.k“). Becausewhen two admittancesare
memged, their denominatorsare multiplied together So that a factor
in ary denominatorbefore the meming is still a factorin the new
denominatorafter it. We formally statethe obserationin Th. 3.

Theoem 3 (Existenceof Type-l CommonFactor): After ng in
Gy, is eliminated,Vn;,n; € ni's neighborsl“g“), the denominator
of new admittanceYig.k*l) in Gr+1 Will have a factorwy associated

3.4. Existenceof Type-Il CommonFactor

A Type-Il commonfactorassociatedvith ary noden; appearsn
bothnumeratoranddenominator®f new admittancesftern;’s first
neighboris eliminated.ldentifying the existenceof type-ll common
factorsis very difficult, becausehey appeaiin numeratorsmplicitly.
The proof of their existenceis a key steptowardsan effective and
efficient Y-A transformationfor our reductionpurpose.

Theoem 4 (Existenceof Type-Il CommonFactor): Suppose ng
is the first neighborof ny in Gi. After n;, andny are eliminated,
Vni,n; # ny € ng’s neighborset, the numeratorand denominator
of new admittanceYig.”l) in Gsy1 has a common factor wy
associatedvith ng.

Theoem 5 (Recusive Existenceof Type-Il CommonFactor):
Supposeny is the first neighborof n; in G, andwy, is associated
with ng. Th. 4 holdsno matterhov mary nodesare eliminatedand
hov mary type-ll commonfactorsare cancelledin A admittances
betweenn;’s andny’s eliminations.

Similar to mathematicainduction, Th. 4 lays the foundationof the
existenceof type-ll commonfactors,and Th. 5 affirms thatit is safe
to canceltype-Il commonfactorsat ary time after they appear

4Commonfactor associatedvith a node changesaccordingto different 3
(orderof truncation).But the common-actor effects are persistentys > 0.
5t refersto the admittanceon the right in (3) beforethe memging.
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3.5. Existenceof CommonFactor in Current Souce Transformation

Currentsourcetransformationis performedalongwith Y-A trans-
formation.Common-actoreffectsin the latteroccurin theformeras
well. We summarizethemin Th. 6.

Theoem6: Supposen; is thefirst neighborof ny, in G, andws,
is associatedvith ny.

1) If ng hasa currentsourcel,gk), then after ny is eliminated,
Vn; € ng's neighborsF,(ck), the denominatorof new current
sourceIi(k“) in Gr41 Will have a factorwy;

2) After ng andny areeliminated,Vn; € ng's neighborsl“}ck) in
G ¢+1, the numeratorand denominatorof nev currentsource
Ii(f“) hasa commonfactorwy. The statemenholdsno matter
howv mary nodesareeliminatedandhow mary type-1l common
factors are cancelledin Y-A admittancesand transformed
currentsourcesbetweenny’s andn¢’s eliminations.

4. A ADMITTANCE REALIZATION

After eliminating all internal nodesusing Y-A transformation,
we realize each A branchby calling for a positive real function
approximation.Sinceall the coeficientsin A admittancesare non-
negative, first order realization is guaranteed.Therefore Elmore
delaysof original networks arepresered. Higher orderrealizationof
A admittancefare achiared by choosinga passie templatestructure
with the sameorder and do the approximationwith the constraints
that eachelementneedsto be positive and the momentsare kept
approximatelythe same.

4.1. First Order Realization
For ary second-orderA admittanceof the form

ao +ais

so that Y12 can be realizedusing RC model shavn in Fig. 3(a). It
canbe proven by inductionthatany A admittancereducedirom ary
RC network can be realizedby the RC model.

4.2. TemplateRealization

To achieve high-orderapproximationto A admittanceswe devise
high-ordertemplatesborraved from circuit structuresn admittance
realization theory For example, the circuit shavn in Fig. 4 is a
structureused in Brunes synthesisprocedure[15]. When serial-
parallel withdrawval doesnot work for a realizableadmittance one
can always invoke Brune’s procedureto realize it using a similar
structure. The method, however, can not be applied directly to A
admittanceshecause¢heseadmittancesretruncatedsothatthey may
not be realizable.But sincethe A admittancesgpresere low-order
termsof exactinputadmittanceswhich arepositive realfunctions,we
canexpectthatthe A admittancesre positive andreal within some
moderatdrequeng range.Thisinspiresusto usethe generaBrunes
admittancestructureastemplatesto approximatethe A admittances,
with the constraintthat eachelementneedsto be positve and the
objectie that the coeficients of the A admittancesare matchedas
much aspossible.

In Fig. 4, theshuntRLC boxrepeatghe samecircuit topologyfrom
the left, but elementsmay have differentvalues.lt is therebecause
Brunes realizationprocesamay have multiple cycles.In eachcycle,
it usesthe network on the left to the RLC box to reducethe order of
theinput admittanceY (s) by two, until the RLC box canberealized
by a conductanceln Brune’s realizednetworks, L, is allowed to be
either positive or negative, and L3 always has an oppositesign to
L,. All otherelementsn Fig. 4 are positive. Admittancein the form
of Fig. 4 is a positive real function of s, andthe T inductor series

Yi;(s) = , (11) canbe replacedby an ideal transformerwith positive primary and
bo + b1s —secondaryinductances.
it is seenfrom Corollary 1 that
Y R +L; Ls= :FLLll-f—LI?Z;
ao,a1,bo,b1 > 0.
. . . S Y L
If aobi < aibo, Yi;(s) in (11) can be realized using circuit in Y(s) RLC
Fig. 3(a), where C
b b b h L
Ri=—2 Ry=220"%% o 4 ; (12)
ai aoal a1bo — aob1
o . ) o Fig. 4. Brunes AdmittanceStructure
otherwiseit canbe realizedusingcircuit in (b), where
N bo aob1 — a1bo aob1 — a1bo We formulatethe realizationproblemin GeometricProgramming
=" R; = o L= 2 : (13)  [16]. SupposeY (s) is a A admittancein the form of
0

Ro Ra
Ry Ry
(&
@ (b)
Fig. 3. First OrderRealization:(a) RC configuration;(b) RL configuration

Consider RC networks with each branch consisting of a con-
ductanceg; and capacitance:; in parallel. Someelementsmay be
absent,jn which casethe correspondingy; or ¢; is zero.For sucha
network with two branchesthe A admittanceafter the centernode
is eliminatedis

_ 9192 + (g1c2 + g2c1)s

Yio(s) = (91 + g2) + (c1 + ¢2)s”

It canbe seenthat

g192 (c1 + ¢2) < (g1c2 + g2¢1) (g1 + g2),

8A admittancesanbe changedo stableadmittancedeforethe realization
is called.

E(ﬂ) a;s*

Zg bist

Here a; and b; are positive real numbers.We build a 3-th order
Brunes admittanceY (s) in Fig. 4, Y (s) canbe written as

Y(s) =

- B &gl
V(s) = 2z bt 14)
Zi:o b; st
a; andb; aregiven by
=(a;) _ z(b;)
ai= py, and bi=3_ gy, (15)
j=1 j=1
where o
pij = ety g2 Lty eij > 0, (16)
and P
qij = figt; 1,72 b fiz > 0. a7

In (16) and(17), t1,t2, ..., ., areelementvariablesin the template
Y (s), z(a;) and z(b;) are the numbersof p;; and g;; in b; and
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a;, respectiely. Note thatthey are not variables.Oncea templateis
determinedz(a;) andz(b;) areknown. We formulatethe Geometric
Programmingproblemasfollows:

Objective function:

B w(b;) 1 B =(@;) 1
min (Y0 433 ) as)

izo j=o0 Pi o j=o Y

subjectto

t; >0, j=1,2,...v (19)
ai<ai, bi<b; i=0,2,...08. (20)

For example,given a 2nd-orderA admittance

2

Y(s)— ao +a18+ azs (21)

T bo+bis+bas?’

we substituteR; for R and R, for the RLC box in Fig. 4 and use
theresultaninetwork asa template Hencethe input admittanceY”(s)
of the templateis

_ LR+ (Li+ CLR\Ry) s+ (CL3R:1 + CL’R,) s°

Y(s) L+ CLRs + CL}s?

b)
(22)
whereR = R1 + R, and L = L, + L». In this case,p;; and
gi; in (18) are producttermsin the numeratorand denominatorof
(22) respectiely; ¢; in (19) is elementsin the template;a; and b;
are symbolic coeficients of powers of s in (22), and a; and b;
are numerical coeficients in (21). The objective function tries to
minimize the reciprocalsof p;; and g;;. On the other hand under
the constraintghatthesetermscannot be greaterthanthe numerical
coeficientsin (21). When the objective function is minimized and
the inequalitiesin the constraintsall becomeequalities, then the
coeficientsin (21) are matched,and so are the moments.

In summaryfirst-orderrealizationof A admittancess guaranteed,
andhigh-orderrealizationis accomplishedy templateoptimization.
The new realization procedureworks effectively for templatesof
orderten or lessin our experiments.And the merit of the method
is thattemplatesarerealizedand presere electricalpropertiesat the
port simultaneously

5. REDUCTION FLOW

PROCEDURET eduction_flow(ckt)

1 Transformvoltagesourcesto currentsources;

2 Decoupleary floating currentsourcein ckt;

3  WHILE (3 internalnodein ckt) DO

4 Pick noden;, with the minimum degree;

5 IF I, # 0 THEN

6 CALL currentsourcetransformatiorfor I;
7 CALL Y-A_transformatiorto eliminateny;

8 Remae commonfactorsfrom new admittances;
9 Remaore n; andits incidentbranchedrom ckt;
10 Realizeall A admittances.

The proposedY-A transformationis more efficient than LU
decompositiorin SPICEin two ways.First, it invokesLU decompo-
sition only oncein s-domain.But SPICE doesit repeatedlydue to
varying time stepsfor stiff circuits. Secondly the algorithm allows
dynamical memory de-allocation,as branchesof nodeseliminated
are no longer neededand can be freed. As a result, the memory
requirementgrons up in the middle of the reductionprocessand
goesdown until it terminatesMemory requiremenin SPICEgrows
monotonicallyuntil LU decompositioris completedThis alsomeans
lessnon-zerofill-ins, which resultin fasterdecomposition.

6. EXAMPLES

We useafew examplesin orderto shav the superiorityof proposed
realizableparasiticreductionin termsof ordersof reducedmodels
and reduction efficiengy. The first example is a high-performance
clock distribution circuit in a realdesigncase The circuit with 78564
nodesis a mixture of RC treesand meshesOur methodcan reduce
it to a simple RLC circuit with four nodesonly. Circuit given in
Fig. 5(b)is sucharealization.In this casejf we useTICERto achieve

Fig. 5. Comparisornof two reducedcircuits

the samereductionratio’, the reducedcircuit is given in Fig. 5(a).
Both methodsrealize each admittanceusing passie elements.But
none of them in (a) matchesfirst-order moments.In (b) the two
shuntadmittanceso groundmatchto thefirst order andthe floating
one matchedo the secondorder In Fig. 6, we usea reducedcircuit
with higherorder branchadmittanceto generatehe waveform. The
waveform for TICER-reducectircuit (Fig. 5(a)) is alsogiven in the
figure for comparison.We find out that the waveform of Y-A are
closerto the SPICEresultwithout reduction.

. INPUT
\ SPICE —
081y \x TICER -
k - X
S 064 Y-A
& L\
£ 04 e
o W
0.2 1
o ~:\35m> g~

20
Time (pS)
Fig. 6. Comparisorof responsesf a RC network

40

Theresponsef a 62-nodeRLC network with 7 portsis plottedin
Fig. 7. Theresponsevaluatedfrom the reducechetwork is very close
to PRIMA's curve, andboth of themarevery closeto SPICEoutput.

Table| summarizethe reductionratio versusreductionefficiengy. It

ReductionTime(sec)
reductionratio TICER | Y-A
20% 5.96 6.58
40% 23.58 23.79
60% 56.37 25.42
80% 249.33 27.76
99% 1634.78 46.56
TABLE |

EFFICIENCY COMPARISON

is clearthatminimizing non-zerdfill-ins is agoodorderingschemen
Y-A transformation-basestductiontechniquesFor instance TICER
eliminatesnodesby picking thosewith extremetime constantdirst.
Becausédt doesnot considerthe degreesof nodeswhen eliminating
them, this ordering schemeis inferior in terms of efficieny when

"The original TICER algorithmusestime constanof eachnodeasan error
control mechanismthereforesucha high reductionratio may not be allowed
in the algorithm. The point of our comparisonis that Y-A achiees a better
reductionratio, yet the resultis closeenoughto SPICE.
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Fig. 7. Comparisorof response®f a RLC network

high reductionratio is preferred.Although one can specify a limit

on reductionratio in TICER, the compleity may be passedo the
following simulationstagebecausehe sparsityof circuits hasbeen
tamperedalready A compromiseof the two orderingschemess also
promising.
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Fig. 8.

Fig. 8 compareshe magnitudegrowth of coeficientsin onebranch
admittance.The two ends of the branch are ports so that other
admittanceswere meiged onto it. The figure plots the coeficients
collected from different powers of s. In the casewhen common
factors are not canceled,they gronv wildly along with reduction
percentageso that most of the actual significant bits are lost due
to finite-precisioncomputation.In fact, the higher the order is, the
fastercoeficients grow. For instancethe figure shavs that the 2nd-
order coeficient is smallerthan the 1st-orderone at low reduction
ratio, but becomedarger at higherratio. Becausecoeficientsgrow at
differentrate, the problemcannot be solved by scaling.It is shavn
by theline with squaredot that Y-A becomesractically usefulonly
after common-&ctor cancelationsare invoked.

As a special caseof generalY-A transformation,DTT method

doesnot raise common-&ctor questionbecausehey are tree-based.

If nodesin atreeareeliminatedin a bottom-upfashion,no non-zero
fill-ins will be introduced.Thereforecommonfactorsdo not exist in
reductionof tree-structuredircuits.

Fig. 9 plots locationsof poleson comple plane.Thesepolesare
approximatedor a pover-grounddesignextractedat board-leel with
RLC elementsWe leave only one currentsource(port) in the circuit
becauséPRIMA's accurayg heavily dependson the numberof ports.
We find out that PRIMA doesnot return ary comple poles. And
althoughwe have obsered voltage oscillationin a wide frequeng
range,unfortunatelySPICEis not ableto do pole analysison this stiff
circuit either However somelow frequeny polesareevaluatedusing
Y-A transformationThe exampleshaws the contribution of common-
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°
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Y-A o

-le+6

-10000 &
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Fig. 9. Pole approximation

-le+3 -le+4 -le+7

factorcancelationso numericalstability of Y-A transformatiorfrom
anotheraspect.

7. CONCLUSIONS AND FUTURE WORK

We have proposeda realizableparasiticRCLK reductionmethod
basedngeneralizedr-A transformatiortechnique Sincethemethod
is RCLK-in-RCLK-out, it is compatible with general simulators
suchas SPICE.The algorithmemplg/s common-&ctoridentification
and cancelationoperationgo make Y-A transformatiomumerically
stable. First-orderrealizationof A admittancesis guaranteedand
high-order realization is achieved by template optimization using
GeometricProgramming.

The algorithmcanbe easily extendedto multi-port reduction.One
can either stop Y-A reductionat ary point and realize branches,
or call for A-Y transformationwhich is equialentto LU’s back
solving. Like the forward Y-A transformation,the backward A-Y
alsohasthe two typesof commonfactorsto cancelout.
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