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Abstract| In this paper, an e�ective algorithm is pre-

sented for performance driven multi-level clustering for com-

binational circuits, and is applicable to hierarchical FPGAs.

With a novel graph contraction technique, which allows some

crucial delay information of a lower-level clustering to be

maintained in the contracted graph, our algorithm recur-

sively divides the lower-level clustering into the next higher-

level one in a way that each recursive clustering step is ac-

complished by applying a modi�ed single-level circuit clus-

tering algorithm based on [1]. We test our algorithm on

the two-level clustering problem and compare it with the

latest algorithm in [2]. Experimental results show that our

algorithm achieves, on average, 12% more delay reduction

when compared to the best results (from TLC with full node-

duplication) in [2]. In fact, our algorithm is the �rst one for

the general multi-level circuit clustering problem with more

than two levels.

I. Introduction

Circuit clustering is de�ned as assigning circuit elements into

clusters under di�erent design constraints, such as area and pin

constraints [1, 3, 4, 5]. In this way, the circuit clusters are smaller

compared to the original circuit, and hence manipulation and

synthesis of the clusters are easier. Most circuit clustering algo-

rithms aim at either minimizing the circuit delay or the inter-

cluster connections.

In this paper, we focus on the problem of combinational cir-

cuit clustering for delay minimization subject to area constraints.

This problem is �rst studied in [5]. The authors formulate the

problem in the unit delay model in which no delay value is as-

sociated with any connection within a cluster or with any gate

while unit delay is assigned to each inter-cluster connection. A

polynomial time algorithm is also proposed to solve the problem

optimally. Recently, most researches adopt the general delay

model [4], in which each gate is associated with a delay value,

no delay is for each connection within the same cluster, and a

constant delay is for each inter-cluster connection. An algorithm

which solves the circuit clustering problem based on the general

delay model is proposed in [1]. It is proved that the algorithm

can optimally solve the problem in polynomial time. The prob-

lems considered in [1, 4, 5] are referred to as single-level circuit

clustering.

The necessity of a solution to the multi-level circuit clustering

problem is increasing when more and more designs are built on

hierarchical FPGA architectures. The two-level clustering prob-

lem with area constraints is studied in [2]. The problem formu-

lation requires the division of a circuit into clusters (second-level

clusters) and each cluster is then further divided into smaller

clusters (�rst-level clusters). It is proved that two-level circuit

clustering for delay minimization is NP-hard. Hence, they pro-

pose a heuristic which is extended from [1]. Their algorithm

constructs a candidate second-level cluster rooted at each node

and then covers the whole circuit based on the clusters. Dur-

ing the construction of each candidate second-level cluster, the

�rst-level clusters within it are formed at the same time. Both

�rst-level and second-level clusters are constructed according to

the same criterion { nodes are chosen by comparing the maxi-

mum delay of the paths from primary inputs to the cluster root

passing through them.

However, the heuristic in [2] is not e�ective enough accord-

ing to our experiments. The main reason may be related to the

restriction in which it does not allow node duplication within

a second-level cluster. Node duplication within a second-level

cluster has two contrasting e�ects on delay minimization. On

one hand, it may reduce the circuit delay since a node can be in-

cluded into di�erent clusters so that the number of inter-cluster

connections may be reduced. On the other hand, each cluster

is constrained by an area bound and node duplication consumes

area, so less di�erent nodes can be included into a second-level

cluster and then the circuit delay may increase. However, we

have shown by experiment that properly allowing node duplica-

tion within second-level clusters is bene�cial to delay minimiza-

tion. Moreover, since the algorithm in [2] performs �rst-level and

second-level clusterings at the same time, for each node included

into a �rst-level cluster, all the data for �rst-level and second-level

clusters (e.g., lists for candidate nodes and immediate successor

with maximum delay) should be updated accordingly. It makes

their algorithm hardly extensible to solve the circuit clustering

problem with more than two levels.

In order to cope with the diÆculties mentioned above, we pro-

pose an algorithm for the general combinational circuit clustering

problem with any arbitrary number of levels. Our algorithm con-

structs clusters for each level separately, from the �rst level to

the desired level. The clustering of each level is performed on a

contracted graph which only captures the most important delay

information from the clustering of the previous level. Besides,

since we only perform circuit clustering on the contracted graph

formed from the previous level, a simple but e�ective single-level

circuit clustering algorithm can be employed. As a result, our

algorithm e�ectively handles the multi-level problem by repeat-

ing the graph contraction technique and the single-level circuit

clustering algorithm.

Although we employ a single-level clustering algorithm which

is extended from [1], our overall algorithm is not merely a trivial

extension of [1], because without our graph contraction tech-

nique, the single-level clustering algorithm cannot be repeatedly

applied to the circuit to obtain a multi-level clustering. As a

result, the graph contraction algorithm plays a critical role in

our work and it successfully links every two successive levels of



circuit clustering.

Taking the two-level clustering problem as an example, our

algorithm �rst divides the circuit into a set of �rst-level clus-

ters with node duplication, so that the node duplication within

second-level clusters can be later guided by those �rst-level clus-

ters. In this way, node duplication within a second-level cluster

happens only when the duplication helps minimizing the delay of

the resultant �rst-level clustering. In fact, our implementation

and experimental results show that, in this mechanism, allowing

node duplication within second-level clusters indeed further re-

duces the delay values. We are able to achieve 12% more delay

reduction when comparing with the algorithm in [2], in which

node duplication within the second-level clusters is not allowed.

II. Definitions and Problem Formulation

A combinational circuit can be represented as a directed acyclic

graph (DAG) G = (V;E). V is the set of nodes which represent

the functional blocks (e.g., gates) in the circuit and E is the set

of edges which stand for the connections among the blocks. In

the graph, PIs are nodes with out-going edges only, and on the

contrary, POs have in-coming edges only.

An area function w(v) is de�ned for each node v 2 V . The

value of w(v) represents the area of the corresponding functional

block.

A �rst-level cluster C1 � V is a set of nodes fv1; v2; :::; vkg

which satis�es the �rst-level area bound M1, and a second-level

cluster C2 is a set of �rst-level clusters fC1
1 ; C

1
2 ; :::; C

1
l g which

satis�es the second-level area boundM2. In general, an i-th-level

cluster Ci is a set of (i�1)-th-level clusters fCi�1
1 ; Ci�1

2 ; :::; Ci�1
r g

and its area bound is denoted asMi. For each �rst-level (second-

level) cluster, its area function is de�ned as the sum of area of all

nodes (the sum of �rst-level area bounds) in the cluster. That is,

w(C1) =
X
v2C1

w(v) and w(C2) =
X

C1
2C2

M1

In general, for each i-th-level cluster Ci, we have

w(Ci) =
X

Ci�1
2Ci

Mi�1; i 2 f2; :::; ng

where n is the desired level of circuit clustering.

In the de�nition of the cluster area for an i-th-level cluster Ci,

all (i � 1)-th-level clusters inside Ci are considered to have the

same area Mi�1. So totally no more than
Mi

Mi�1
(i� 1)-th-level

clusters can be included into one i-th-level cluster1.

Besides area constraints, there are delay values associated with

all nodes and edges. For each node v 2 V , a delay function Æ(v)

is de�ned as a non-negative value which represents the delay of

the functional block. The notation Æ(a; b) represents the edge

delay from node a to node b. For each edge within the same

�rst-level cluster, it is associated with a �xed delay D1. For each

edge connecting two nodes in di�erent �rst-level clusters, but

in the same second-level cluster, the edge delay is assigned to a

�xed delay D2. Generally, for each edge connecting two nodes

in di�erent (i � 1)-th level clusters, but in the same i-th-level

cluster, the edge delay is associated with a �xed delay Di. And,

1It seems that the area de�nitions of clusters are di�erent from [2], but
in fact, the TLC implementations we obtained from the authors of [2] follow
our de�nitions here. Details are discussed in Section VI.

each edge, which connects two nodes between two di�erent n-

th-level clusters, has a �xed delay Dn+1. Practically, we have

D1 < D2 < D3 < ::: < Dn+1 for an n-level circuit clustering.

For the delay of a path from node a to node b, we always

include all node delays and edge delays along the path. The

path delay at a node v is de�ned as the maximum delay of all

paths from PIs to v. The delay of a clustered circuit is de�ned

as the maximum path delay at all PO nodes; in other words, it

is the maximum delay of all paths from PIs to POs within the

clustered circuit. According to the above de�nitions, the multi-

level circuit clustering problem with area constraints is presented

in the following.

Problem (Multi-Level Circuit Clustering)

Divide the graph G into a set S1 = fC1
1 ; C

1
2 ; :::; C

1
m1
g

of �rst-level clusters, divide the set of all �rst-level clus-

ters into a set S2 = fC2
1 ; C

2
2 ; :::; C

2
m2
g of second-level

clusters, and recursively divide all the (i � 1)-th-level

clusters into a set Si = fCi
1; C

i
2; :::; C

i
mi
g of i-th-level

clusters until a set of n-th-level clusters is obtained, such

that the delay of the clustered circuit is minimized. The

clusters of each level may have common elements, but

the clustered circuit must be logically equivalent to the

original circuit. The clusters of each level should satisfy

the following conditions.

8j 2 f1; :::;m1g; C
1
j � V , s.t.

�
w(C1

j ) �M1,Sm1

j=1 C
1
j = V

8j 2 f1; :::;m2g; C
2
j � S1 , s.t.

�
w(C2

j ) �M2,Sm2

j=1 C
2
j = S1

and,

8i 2 f3; :::; ng;8j 2 f1; :::;mig; C
i
j � Si�1 ,

s.t.

�
w(Ci

j ) �Mi,Smi

j=1 C
i
j = Si�1
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Fig. 1. An example of circuit clustering with three levels



An example is shown in Figure 1. In the �gure, there are 17

nodes in the graph and a three-level clustering is shown. In the

clustering, the delay of edge (j; k) is D4 since j and k are in

di�erent third-level clusters. The delay values of (l; q) and (i; j)

are D3 and D2, respectively. Since e and f are in the same �rst-

level cluster, the delay associated with (e; f) is D1. If each node

is associated with unit area and M1 = 2;M2 = 6;M3 = 12, the

area w of all �rst-level clusters in the clustering is 2 except for

the clusters containing i,j or o, whose w equals 1. The second-

level cluster containing fa; b; c; d; e; fg has an area of 6. The area

of the second-level cluster containing fg; h; i; jg is also 6 since it

consists of three �rst-level clusters and no more �rst-level cluster

can be further �lled into it. In fact, the area of all second-level

clusters in Figure 1 is 6 except the one containing fk; lg (whose

area is 2). The area of each third-level cluster in the graph is the

same, which is 12.

In the example, we assume D1 = 1; D2 = 3; D3 = 7; D4 = 17

and Æ(v) = 1 for each node v. The delay of the clustered circuit

is equal to 85, which is along the path a ! b ! e ! f ! g !

h ! j ! k ! l ! q, including the edge entering a and the one

leaving q (The delays of both are D4).

III. The Algorithm

The 
ow of our algorithm is depicted in Figure 2. The algo-

rithm mainly consists of two parts: single-level graph clustering

and graph contraction.

Optimal Single-level
Graph Clustering Graph Contraction

lev = n?

Yes

No

lev = 0, G0=G

Slev+1

Glev

Slev,Glev-1

Input

Output

Output

Input

Glev

Sec 3.1
Sec 3.2

lev++

Fig. 2. The 
ow of our algorithm

At the beginning of our algorithm, the level index (denoted by

lev) is set to 0, which means the circuit is not yet clustered.

Then, single-level graph clustering is performed on the input

graph Glev (= G when lev = 0) and it outputs a set of clus-

ters, Slev+1 (= S1 for the �rst time). After that, lev is increased

by 1. If lev is equal to the required number of levels, n, the al-

gorithm terminates. Otherwise, graph contraction is performed

on Glev�1 (=G0 for the �rst time) based on Slev . To generate

the contracted graph Glev , we treat each lev-th-level cluster C
lev
i

(at the �rst iteration, we have the set S1 of �rst-level clusters) as

an independent supernode. Thus, Glev is built in the way that

each node represents a supernode, which stands for a cluster in

Slev . Then single-level graph clustering is performed on the new

graph Glev , and the output is a set Slev+1 of clusters. The algo-

rithm is iterated until the desire level n of clusters is obtained.

The details of the single-level graph clustering and graph con-

traction algorithms are presented in Section 3.1 and 3.2 while

the graph contraction algorithm is the main contribution

in the paper since without graph contraction, single-level graph

clustering cannot be repeatedly applied to the circuit G.

A. Single-Level Graph Clustering

In the algorithm, given a graph Glev , clustering Slev+1 is con-

structed by applying the single-level circuit clustering algorithm

in [1] with modi�cations. The delay model adopted in [1] is

slightly di�erent from the delay model that we consider in this

paper. There is no delay value (e.g., D1 = 0) for each edge within

the same cluster in the delay model in [1]. But, in our model,

the delay of each edge within the same cluster can be any non-

negative number. (Note that Æ1(e) = D1 for each edge e at the

beginning of the algorithm when lev = 0. After the �rst itera-

tion, lev � 1, each edge delay is assigned by graph contraction

and it may not be a �xed value for every edge. Here, we only use

D1 for the illustration of the delay model di�erence.) However,

if we assume each edge has the delay D1 during the calcula-

tion of the delay matrix �1, which stores the maximum delay

(including node delays and edge delays) of the paths between

any two nodes, single-level graph clustering under our model can

be solved optimally in a similar way. The pseudo-code of the

modi�ed single-level graph clustering algorithm is shown in the

following.

ALGORITHM Single-Level Circuit Clustering(Glev)

Input : graph Glev = (Vlev; Elev)

Output : clustering Slev+1 = fC
lev+1
1

; C
lev+1
2

; :::;Clev+1
mlev+1

g

1. begin

2. compute the delay matrix �lev+1, where �lev+1(i; j) is the maximum

delay (including node and edge delays) of the paths from i to j ;

3. FOR each PI i, DO l(i) = Ælev+1(i);
4. Sort the non-PI nodes of Glev in a topological order to obtain list T;
5. WHILE T is not empty
6. Remove the first node v from T;
7. Compute Nv;

8. FOR each node u 2 Nv � fvg do

9. l0(u) = l(u) + �lev+1(u; v)� Ælev+1(u);
END FOR

10. P = Sort the nodes in Nv � fvg in decreasing order of l0

11. Labeling(v;P);
END WHILE

12. L = all PO nodes;
13. Slev+1 = � ;
14. WHILE L is not empty
15. Remove a node v from L;
16. Slev+1 = Slev+1 [ fcluster(v)g;

17. FOR all nodes x 2 Vlev�cluster(v), such that x is
an input of cluster(v) and cluster(x) 62 Slev+1

18. L = L [ fxg;
END FOR

END WHILE
19. end

Labeling(v;P)
Input : node v, list P

Output : llev+1(v); cluster(v)
1. begin

2. cluster(v)=fvg;
3. WHILE (P is not empty)
4. Remove the first node u in P;
5. IF(w(cluster(v)[ fug) � Mlev+1 )

6. cluster(v) =cluster(v) [ fug;
7. ELSE
8. break;

END IF
END WHILE

9. l1lev+1(v) = maxfl0(x)jx 2cluster(v) \ (PI)g;

10. l2lev+1(v) = maxfl0(u) + (Dlev+2 �Dlev+1)ju 2 Pg;

11. llev+1(v) = maxfl1lev+1(v); l
2
lev+1(v)g;

12. end

In this algorithm, Nv is de�ned as the set of all predecessors

of v together with v in the graph. Each cluster has exactly one

root node and we denote the cluster rooted at v as cluster(v).

All nodes in cluster(v) are also in Nv.

At the �rst time the algorithm is performed, the circuit is un-

clustered. We have lev = 0, Æ1(v) = Æ(v) for each node v, and

Æ1(x; y) = Æ(x; y) = D1 for each edge (x; y) in the graph G0. Af-

ter the �rst time (lev � 1), the values of Ælev+1(v) and Ælev+1(x; y)



are determined in the graph contraction step (discussed in the

next section). Moreover, the calculation of delay matrix �lev+1 is

based on the Ælev+1(v) and Ælev+1(x; y) values in the input graph

Glev .

In Single-Level Circuit Clustering, lines 1-11 describe the la-

beling phase; for each node v, a best cluster rooted at v is calcu-

lated, and the corresponding path delay at v (namely the label

llev+1(v) of v) is recorded. The cluster and label calculation for

each node is in the function \Labeling". Lines 12-19 in Single-

Level Circuit Clustering is the clustering phase. The clusters are

built from POs until the whole circuit is covered by them.

B. Graph Contraction

After constructing the set Slev of lev-th-level clusters, we build

a contracted graphGlev from the graphGlev�1 and the clustering

Slev . The contracted graph Glev is constructed such that each

node vi in Glev corresponds to a lev-th-level cluster C
lev
i in Slev

and its path delay in Glev is the same as that of the root node of

Clev
i . Since di�erent clusters have di�erent numbers of elements

and sub-graph structures, and there are di�erent edges connect-

ing the nodes of two clusters, delay assignment to each supernode

and each edge connecting the supernodes is not straightforward.

The general algorithm for constructing Glev from graph Glev�1

and clustering Slev is shown in the following.

ALGORITHM Graph Contraction(Glev�1, Slev)

Input : Graph Glev�1, Clustering Slev=fC
lev
1 ; Clev

2 ; :::;Clev
mlev

g

Output : Glev
begin

1. FOR each cluster Clev
i in Slev

2. construct a node vi in Glev

3. Ælev+1(vi) = D(Clev
i );

/* Ælev+1(vi) is assigned in Glev */
4. END FOR
5. FOR each edge e = (a; b) in Glev�1

6. IF (a and b are not in the same cluster of Slev)

7. assume b in Clev
i which is rooted at r;

8. find the cluster Clev
j rooted at a;

9. IF (there exists no edge from vj to vi in Glev)

10. add an edge from vj to vi in Glev;

11. Ælev+1(vj ; vi) = Ælev(a; b) + (Dlev+1 �Dlev)

�Ælev+1(vi) + �lev(b; r);

12. /* Note that Ælev+1(vj ; vi) refers to Glev */

13. /* and Ælev(a; b) refers to Glev�1 */

14. ELSE IF (there exists an edge from vj to vi in

Glev)
15. IF (Ælev+1(vj ; vi) < Ælev(a; b) + (Dlev+1 �Dlev)

�Ælev+1(vi) + �lev(b; r))

16. Ælev+1(vj ; vi) = Ælev(a; b) + (Dlev+1 �Dlev)

�Ælev+1(vi) + �lev(b; r);
17. END IF
18. END IF
19. END IF
20. END FOR
21. return Glev;
end

In the graph contraction algorithm, in the �rst FOR loop (lines

1-4), each new node (or namely supernodes) vi in Glev is �rst

created, which is corresponding to each cluster Clev
i in Slev . The

delay of each new node vi is set to D(Clev
i ), which is de�ned

as the maximum delay of the paths from any node within Clev
i

to the root of the cluster, in order to keep the maximum delay

values of the clusters in the new graph.

The second FOR loop (lines 5-20) is to create edges between

the supernodes and to calculate the delay value for each edge.

For each inter-cluster edge, we build an edge between the two

corresponding supernodes and assign the delay value such that

the maximum delay of the paths passing through that inter-

cluster edge is maintained. This is the most complicated part

for the graph contraction since di�erent edges may connect dif-

ferent nodes of the two clusters. The delay assignment to each

edge (lines 9-18) is depicted in Figure 3. (Note that the nota-

tion Ælev(a; b) represents the edge delay between nodes a and b in

graph Glev�1. At the �rst time graph contraction is performed,

Æ1(a; b) is set toD1 for each edge (a; b) inG0. For the case where a

and b are nodes generated by the previous graph contraction step,

Ælev(a; b) is already assigned during the last graph contraction.)

In Figure 3, the \height" of a node, an edge or a cluster represents

its delay. It is obvious that x+Ælev+1(vi) = Ælev(a; b)+�lev(b; r),

so we have x = Ælev(a; b)� Ælev+1(vi) +�lev(b; r). Since the edge

between a and b becomes an inter-cluster edge connecting two

lev-th-level clusters (originally it connects two (lev�1)-th-level

clusters), Ælev+1(vj ; vi) = x + Dlev+1 � Dlev and then we can

easily derive the equation in line 11 of Graph Contraction.

Finally, for every two supernodes, if there exists more than

one edge between them, we only keep the edge with maximum

delay value and remove all the others in the new graph Glev .

Note that in the clustering generated by our modi�ed single-level

graph clustering algorithm mentioned in Section A, inter-cluster

edges only connect from the roots of the predecessor clusters.

Vj

Vi

a

r

b

Cj
lev

Ci
lev

D(Ci
lev)

Dlev(b,r)

dlev(a,b)
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in Glev-1 in Glev

=D(Ci
lev)

dlev+1(vi)

+Dlev+1-Dlev
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+x

Fig. 3. Illustration of Graph Contraction

We describe in Section IV that in this graph contraction al-

gorithm, some crucial delay information of each new node vi is

extracted from the root of the corresponding cluster Clev
i . Since

this delay information is retained in the contracted graph, �nd-

ing the next higher-level clustering from the contracted graph for

delay minimization can be achieved by the modi�ed single-level

graph clustering algorithm in polynomial time.

C. Remarks

A multi-level clustering is achieved when we iteratively per-

form the single-level graph clustering and graph contraction. At

�rst, we set lev = 0 and G0 = G which is the target unclus-

tered circuit. After the single-level graph clustering process, the

�rst-level clustering S1 is obtained and we can produce G1 by

the graph contraction algorithm. Then, a second-level cluster-

ing S2 can be found from the contracted graph G1 by the same

graph clustering algorithm with lev = 1. This time, the algo-

rithm takes D3 � D2 for the calculation of l22 value, (in line 10

of \Labeling"),M2 for area bound (in line 5 of \Labeling"), and

edge and node delays in G1 for the calculation of �2. After the

second-level clustering S2 (or in general, the i-th-level clustering

Si) is obtained, a contracted graph G2 (Gi) is constructed. The

third-level clustering S3 ((i+1)-th-level clustering Si+1) can then

be generated similarly. It is obvious that our overall algorithm

can be employed recursively to get an n-level circuit clustering.



IV. Analysis of the Algorithm

In our algorithm, the contracted graphGlev is constructed such

that the path delay at vi in Glev equals the label value llev(r) of

the root node r of the corresponding cluster Clev
i in Glev�1. We

have the property stated in the following theorem.

Theorem 1 For any node vi in the contracted graph Glev =

fVlev ; Elevg generated by the algorithm Graph Contraction, the

path delay at vi in Vlev is equal to the label, llev(ri), of the root

node ri of the corresponding cluster C
lev
i 2 Slev .

Proof It is omitted due to limited space.

Theorem 1 implies that the single-level graph clustering algo-

rithm can be repeatedly applied to cluster the circuit to any level

n with correct delay information. With Theorem 1, we can fur-

ther derive the local optimality of our algorithm as stated in the

following theorem.

Theorem 2 Given an i-th-level clustering produced by our algo-

rithm, our algorithm generates a (i+1)-th-level clustering which

divides the i-th level clusters and minimizes the delay of the re-

sultant circuit.

Proof It is omitted due to limited space.

The local optimality described in Theorem 2 does not guar-

antee a �nal globally optimal solution but the local optimality

of each recursive step tends to maintain the circuit with a small

delay value. In fact, our experiments have shown that the de-

lay reduction achieved by our algorithm is much better than the

state-of-the-art algorithms.

For the time complexity of the algorithm, the modi�ed single-

level graph clustering algorithm takes O(jV j2log(jV j) + jV jjEj)

time [1], and each graph contraction takes O(jV j + jEj) time,

where V and E are the node and edge sets of a given graph respec-

tively. For each graph contraction, the number of edges and num-

ber of vertices both are non-increasing. So for each level, the com-

plexity of single-level graph clustering algorithm should be still

bounded above by O(jV j2log(jV j)+ jV jjEj). Therefore, the over-

all time complexity of our algorithm is O(njV j(jV jlog(jV j)+jEj))

for the multi-level circuit clustering problem with n levels.

V. Postprocessing Techniques

In the experiment, our algorithm generates large clustered cir-

cuits since node duplications occur frequently in order to mini-

mize the circuit delay. So, we present two simple postprocessing

techniques to reduce the area of a clustered circuit. The tech-

niques are employed after the clustered circuit is generated, and

they do not increase the delay of the clustered circuit. Assuming

we have an n-level clustered circuit, the �rst technique locates

those n-th-level clusters each of which is a subset of another n-

th-level cluster and so they can be deleted without changing the

delay and functionality of the whole circuit.

The second technique packs several n-th-level clusters into one

single cluster if the area constraint is not violated. This can be

done when the original clusters are small. The technique is based

on the First Fit Decreasing heuristic for the bin packing problem

(which is also mentioned in [4]). All the n-th-level clusters are

sorted in non-increasing order. We assume each bin has the ca-

pacity Mn. Then, it starts to place clusters one by one into the

bins. Each time we place a cluster in the leftmost bin that still

has enough space for it, and start a new bin if necessary.

VI. Implementation and Experimental Results

We tested our algorithm upon a two-level hierarchy which is

based on Altera's APEX FPGA architecture [2] and compared

our algorithm (namelyMLC) to the UCLA TLC implementations

which are obtained from the authors of [2]. Based on the timing

extraction done in [2], we used the same parameters: M1 = 10,

M2 = 160, D1 = 0:36ns, D2 = 0:85ns, D3 = 1:57ns, Æ(vi) =

0:61ns, w(v) = 1 for each node v. We evaluated our algorithm

on this 2-level hierarchy mainly because this FPGA architecture

is the latest FPGA model for the multi-level circuit clustering

problem.

Experiments were performed on MCNC benchmark circuits

which also were used by UCLA TLC [2]. The benchmarks were

pre-processed and mapped into 4-input LUT networks by UCB

SIS and UCLA RASP systems. Each benchmark circuit was clus-

tered into a two-level clustering by the two TLC implementations

(No node duplication and Full node duplication) and our algo-

rithm. The �rst TLC implementation did not allow any node

duplication among di�erent second-level clusters while the latter

one did. However, both TLC implementations did not allow node

duplication within a second-level cluster. The implementations

returned a new circuit (if node duplication happens) which is

functionally equivalent to the original circuit and also returned

the clustering information.

In order to carry out a fair and objective comparison, our im-

plementation strictly followed the same problem formulation as

the TLC implementations in [2]. First, in our implementation,

each PI node or PO node formed a second-level cluster by itself

and it was excluded from any cluster rooted at any other node

which is neither PI node nor PO node. As a result, the edge

delay from any PI node to any of its immediate successors was

always D3, while similarly the same delay D3 was always associ-

ated with the edge from any node to a PO node. Secondly, our

problem formulation and the problem formulation in [2] seemed

to be di�erent in the area calculation of second-level clusters. We

limited the total number of �rst-level clusters within a second-

level cluster while [2] limited the total number of nodes in a

second-level cluster. So, if some �rst-level clusters contain fewer

nodes, more �rst-level clusters can be included into a second-level

cluster in the problem formulation of [2]; While in our problem

formulation, the maximum number of �rst-level clusters within

a second-level cluster was always �xed. However, our problem

formulation was more appropriate to the APEX FPGA architec-

ture where one MegaLAB (=second level cluster) can hold no

more than 16 logic array blocks, LABs (=�rst level clusters),

even when some of the LABs are not full. In fact, we found that

the TLC implementations we obtained from the authors of [2]

followed our de�nition on the second-level cluster area bound, so

this ensured a fair comparison.

In our implementation, we have also imposed a constraint on

the maximum number of inputs for each �rst-level cluster. In the

speci�cation of Altera APEX FPGA devices, a �rst-level cluster

(LAB) cannot have more than 22 inputs. Hence, we controlled

the number of inputs to a �rst-level cluster by adding a condition

in the IF statement in line 5 of \Labeling", such that we stopped

adding new nodes into each �rst-level cluster when the number

of inputs to the cluster was more than 22. This constraint was

also included in the UCLA TLC implementations.

The experimental results are shown in Table I. Columns 2-4

show the results of TLC [2] with no node duplication. Columns

5-8 show the best results of TLC in which node duplication is al-



TABLE I
Comparison between two TLC implementations and our algorithm

UCLA TLC (No ND) UCLA TLC (Full ND) Our Algorithm MLC 1-level
Circuits delay CPU area delay %de CPU area delay %de CPU area area-p delay %di

alu 23.38 0.26 22 21.22 9.2 0.34 59 16.61 29.0 1.13 168 74 15.89 4.5
apex2 17.08 0.91 141 14.92 12.6 1.97 181 12.73 25.5 6.96 311 59 12.01 6.0
apex6 10.79 0.23 99 10.56 2.1 0.34 99 9.09 15.8 0.37 104 14 9.09 0.0
C1908 15.66 0.22 25 15.43 1.5 0.26 25 13.21 15.6 0.30 93 43 12.49 5.8
C5315 16.38 1.50 109 14.45 11.8 1.42 136 13.70 16.4 1.79 206 67 13.46 1.8
C880 18.32 0.14 26 16.38 10.6 0.13 26 15.40 15.9 0.24 63 30 15.40 0.0
dalu 12.72 0.25 16 11.28 11.3 0.35 16 9.81 22.9 0.71 83 24 9.58 2.4
des 12.72 2.06 245 10.56 17.0 5.32 245 10.30 19.0 14.97 610 142 9.58 7.5
i10 23.89 1.50 230 22.45 6.0 3.85 288 18.07 24.4 9.69 521 217 17.35 4.1
i9 11.03 0.19 63 10.31 6.5 0.19 63 8.12 26.4 0.35 63 63 8.12 0.0
k2 14.67 0.37 48 13.95 4.9 0.72 101 11.27 23.2 2.47 246 64 10.55 6.8
large 16.36 0.69 116 15.41 5.8 1.43 145 12.73 22.2 5.99 307 66 12.01 6.0
misex3 14.18 0.69 45 12.97 8.5 1.42 63 11.27 20.5 4.98 262 62 10.55 6.8
too large 12.51 0.13 3 12.51 0.0 0.11 3 10.30 17.7 0.15 40 10 10.06 2.4
vda 11.77 0.18 39 10.56 10.3 0.26 39 9.81 16.7 0.71 127 38 9.58 2.4
x3 9.08 0.22 99 8.12 10.6 0.33 99 8.12 10.6 0.36 102 13 8.12 0.0

Average 8.1 20.1 3.5
Total 9.54 1326 18.44 1588 51.17 3306 986

lowed among second-level clusters. Columns 9-13 list the results

of our algorithm. For the \delay" columns, they represent the

delay for the clustered circuit in ns. \% de" columns list the per-

centage of delay reduced when comparing to the TLC (No ND)

implementation. \CPU" columns show the CPU time (in sec-

ond) consumed by each implementation on SUN Ultra4 worksta-

tions. \area" columns record the numbers of second-level clusters

which re
ect the total area in each clustered circuit . Moreover,

\area-p" column shows the number of second-level clusters in

each clustered circuit after our postprocessing phase described

in section V. Note that the clusters containing only a PI or PO

node are not counted in the calculation of \area" and \area-p"

in all implementations.

The results demonstrate that our algorithm achieves, on av-

erage, 12% more delay reduction than the TLC (Full ND) im-

plementation. Moreover, our results are constantly better or the

same for all benchmarks. Although our algorithm runs compar-

atively slower, the total run time for all 16 circuits is still less

than one minute.

Due to more node duplication, our resultant area is greater

when comparing to the TLC implementations before applying the

postprocessing techniques. However, our postprocessing tech-

niques e�ectively reduce the number of second-level clusters, on

average, by 70% (from 3306 to 986). The e�ectiveness of our

techniques is due to that most second-level clusters are not fully

occupied. In fact, 60% of second-level clusters are less than half

full in our results before postprocessing.

Our work aims at minimizing the circuit delay, and we do

successfully push the delay close to the minimum. This can be

seen in columns 14-15 of Table I. The columns show the delay

achieved by our algorithm with n = 1 (\one" level clustering

only) and only D1, D2 (without D3) used for edge delays, to-

gether with the percentage di�erence (\%di") when comparing

to the delays achieved by the our algorithm (n = 2, two-level

clustering). For the n = 1 case, the single-level graph clustering

algorithm is only performed once and no graph contraction is

performed. The local optimality of single-level graph clustering

ensures that the result is an optimal 1-level circuit clustering.

In fact, we can take these 1-level clustering results as a \loose"

lower bound for any two-level clustering. From the last column,

it is shown that our results produce only 3:5% more delay than

the optimal 1-level results. In fact, out of 16 benchmarks, we

obtain optimal 2-level clustering solutions for at least 4 circuits

(whose \%di" values equal to 0:0).
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